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Abstract—Automatic Fetal Health Prediction plays a vital role
in supporting early prenatal intervention through continuous and
non-invasive monitoring. Recent advances in biocompatible
sensors enable the safe long-term acquisition of physiological
signals, which can be effectively analyzed using machine learning
techniques. This study proposes a comprehensive machine
learning pipeline for Fetal Health Prediction through fetal health
classification using the fetal health.csv dataset from Kaggle,
consisting of 2,126 samples and 22 cardiotocography-derived
features related to fetal heart rate and uterine contractions. To
address class imbalance and the presence of outliers, RobustScaler
normalization was applied during the preprocessing stage.
Feature selection was performed using Random Forest feature
importance to identify the most relevant predictors. Two
classification models, namely Random Forest (RF) and Support
Vector Machine (SVM), were trained and evaluated using an
80:20 stratified train—test split. Experimental results indicate that
the Random Forest model outperformed SVM, achieving an
accuracy 0f92.7% and a macro F1-score 0f85.9%, compared with
88.97% accuracy and a macro Fl-score of 79.85% for SVM.
Moreover, Random Forest demonstrated superior per formance in
detecting minority classes (Suspect and Pathological), which are of
high clinical significance. These findings suggest that the proposed
pipeline is robust, interpretable, and suitable for integration with
biocompatible sensor-based systems for real-time fetal health
monitoring and clinical decision support.
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I.  INTRODUCTION

Biocompatible sensors allow continuous physiological
monitoring without adverse tissue reactions, forming the basis
of wearable health systems. Fetal health assessment by
cardiotocography (CTG) is standard but manually interpreted
and subjective[7],[16]. Integratingmachine learning (ML) with
biocompatible sensor data enables objective and reproducible
classification of fetal conditions [22], [32]. This study focuses
on a robust ML pipeline to analyze imbalanced sensor data and
enhance fetal risk prediction.

Early and accurate assessment of fetal health is a comerstone
of modern obstetric care because timely detection of fetal
distress enables prompt clinical intervention and can
substantially reduce perinatal morbidity and mortality [1],[11].
Continuous monitoring of fetal physiological signals,
particularly fetal heart rate (FHR) and uterine contraction
pattemns captured through cardiotocography (CTG), provides
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rich information about fetal well-being, but interpretation is
challenging due to signal variability, noise, and subjectivity of
manual assessment [2],[5]. Recent advances in sensing
technology, especially the emergence of biocompatible and
wearable sensors, allow safer and longer-term acquisition of
fetal and maternal signals under minimally invasive or non-
invasive conditions, expanding opportunities for ambulatory
monitoring and remote prenatal care [3], [4], [6], [9], [34].

Machine learning (ML) has demonstrated strong potential in
automating the detection and classification of fetal health
conditions from physiological time-series data, offering
improved consistency and the ability to learn subtle patterns
beyond human observation [10], [13], [21]. Supervised
classifiers such as Random Forests and Support Vector
Machines, combined with appropriate feature engineering and
selection, have produced promising results on benchmark CTG
datasets and clinical repositories [14]. Nevertheless, several
technical challenges remain: imbalanced class distributions
(with normal cases overwhelmingly more common than
suspect/pathological), the presence of outliers and measurement
artifacts, inter-subject variability, and the need for
computationally efficient models suitable for real-time or near-
real-time edge deployment on sensor platforms [17], [19].

Feature selection and robust preprocessing are particularly
important in fetal health prediction to reduce dimensionality,
mitigate the influence of noisy features, and improve model
generalizability across populations and sensor modalities [ 18],
[20],[23]. Techniques such as tree-based importance measures,
recursive feature elimination, and regularization-based methods
have been applied to extract clinically meaningful predictors
from CTG-derived features (e.g., accelerations, decelerations,
short-term variability metrics) that correlate with fetal
compromise [8], [24]. Robust scaling and outlier-resistant
normalization algorithms also play a key role when working
with signals recorded by wearable biocompatible sensors, which
may present non-Gaussian noise profiles and baseline shifts
[25], [27].

Integration of biocompatible sensors with ML pipelines
raises system-level questions about data quality, signal
calibration, and domain adaptation. Sensor design choices
(materials, placement, sampling rate) and connectivity
constraints affect both the fidelity of FHR/UC signals and the
feasibility of continuous monitoring in home or low-resource
settings [28],[30],[31]. Moreover, the translation of ML models
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from curated datasets to real-world sensor streams requires
rigorous validation, cross-site testing, and safety assessments to
avoid false reassurance or unnecessary interventions [2].

This study addresses these gaps by proposing an end-to-end
pipeline that 1) leverages features derived from FHR and
uterine-contraction signals acquired or simulated from
biocompatible sensorinputs, 2) applies robust preprocessing to
handle outliers and scale differences, 3) utilizes principled
feature selection to identify a compact set of clinically
interpretable predictors, and 4) evaluates classification
performance with machine learning algorithms suitable for
deployment in real-time monitoring scenarios. We further
investigate strategies to mitigate class imbalance and to assess
minority-class (suspect/pathological) detection performance,
since such cases carry the highest clinical significance despite
their lower prevalence [12], [20], [26], [29].

The novelty of this study does not lie in the individual
components employed such as the fetal health.csv dataset,
Random Forest and SVM classifiers, RobustScaler
normalization, or Random Forest-based feature selection as
these techniques have been widely reported in prior CTG-based
fetal health prediction studies. Instead, the novelty resides in
their systematic integration and empirical evaluation within a
unified, end-to-end pipeline explicitly designed to address
practical challenges in fetal health assessment. Specifically, this
study emphasizes the simultaneous handling of class imbalance,
outlier-prone physiological features, and minority-class
interpretability, which are often addressed independently in
previous works. Through the combined application of robust
preprocessing and feature selection, the proposed pipeline
demonstrates consistent improvements in minority-class
performance and model stability, while highlighting clinically
relevant predictors associated with fetal heart rate variability.
Furthermore, rather than claiming directreal-time deployment,
this work positions the proposed pipeline as a validated
methodological foundation for future integration with
biocompatible wearable sensor systems, thereby bridging the
gap between offline CTG-based analysis and real-time maternal
fetal monitoring research.

The remainder ofthis paper is organized as follows. Section
II presents a comprehensive review of related works on fetal
health monitoring, biocompatible sensors [35], and machine
learning based classification approaches. Section Il describes
the dataset, data preprocessing procedures, feature selection
strategy, and overall methodology employed in this study.
Section IV details the machine learning models, experimental
setup, and performance evaluation metrics. Section V discusses
the experimental results, comparative analysis, and
interpretation of findings. Finally, Section VI concludes the
paper by summarizing the main contributions, outlining
limitations, and suggesting directions for future research.

II. RELATED WORKS

Previous studies on fetal health monitoring have extensively
explored cardiotocography (CTG), non-invasive fetal ECG [33]
(NIFECG), and wearable sensor technologies. Wahbah et al.
[42] demonstrated that deep learning—based extraction of fetal
ECG signals from abdominal recordings can significantly
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improve signal quality, which is a key strength for downstream
analysis. However, their work primarily focuses on signal
extraction and does not address end-to-end fetal health
classification, particularly under class imbalance and real-time
deployment constraints. The present study extends this direction
by proposing a complete machine learning pipeline for fetal
health prediction.

Machine learning approaches such as Random Forest and
Support Vector Machine have shown strong potential in CTG-
based fetal health classification due to their ability to model
nonlinear physiological patterns [15], [19]. Despite their
effectiveness, many studies rely mainly on accuracy as the
evaluation metric and implicitly assume clean and balanced
datasets, whichmay lead to biased performance toward majority
classes. In contrast, this study explicitly addresses these
limitations through robust preprocessing and macro F1-score—
based evaluation to ensure balanced performance across
clinically important minority classes.

Feature selection techniques, including tree-based
importance measures and recursive elimination, have been
widely used to enhance model interpretability and reduce
dimensionality [23], [29]. While effective, prior studies often
assume normalized feature distributions and minimal noise.
Such assumptions are less realistic forphysiological sensordata,
which commonly contain outliers. Accordingly, this work
incorporates RobustScaler prior to feature selection to improve
model stability and generalization.

Wearable and biocompatible sensor studies highlight the
feasibility of long-term, non-invasive fetal monitoring [44],[36]
but frequently focus on hardware performance without
integratingrobust machinelearningpipelines or addressingreal-
world data variability. This studybridges that gap by integrating
biocompatible sensor-oriented data with an end-to-end machine
learning framework designed for robustness and real-time
readiness.

In summary, while existing research has contributed
substantially to fetal monitoring technologies and classification
methods, limitations remain in handling class imbalance,
outlier-prone data, and deployment-oriented evaluation. This
study addresses these challenges by proposing a compact,
interpretable, and robust machine learning pipeline for fetal
health prediction using biocompatible sensor data.

III. METHODOLOGY

The workflow for processing the Kaggle Fetal Health
Dataset to build a fetal health condition classification model.
The process begins with outlier handling to improve data
quality, followed by normalization using RobustScaler to
stabilize the feature distribution. After that, feature selectionand
feature rankingbased on theirlevel of importance are carried out
using Random Forest. The data is then divided into training data
and test data through the train test split stage, before being
trained using two different algorithms, namely Random Forest
and Support Vector Machine (SVM). The final stage is model
performance evaluation using the accuracy, precision, recall,
and macro F1-score metrics to assess the prediction quality of
each model (Fig. 1).
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Fig. 1. Workflow of data preprocessing, feature selection, and model
evaluation for fetal health prediction.

A. Data Source

This study uses the fetal health.csv dataset from Kaggle
(2020), which contains [15]:

2,126 samples

22 numerical features
No missing values

Class imbalance present:
e Normal: 77%

e Suspect: 13%

e Pathological: 10%

The dataset is derived from extracted CTG
(Cardiotocography) signals and includes key features such as
accelerations, short-term variability (STV), long-term
variability (LTV), and histogram-based features.

B. Data Preprocessing Stages
1) Outlier handling

Accordingto Zhang and Chen, medical signals often contain
extreme outliers caused by physiological noise or instrument
errors [37].

Approach: Using RobustScaler, which performs
normalization based on:
e Median

e Interquartile Range (IQR = Q3 — Q1)
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Formula:
X-median
Xscaled = IQR 1)
Reasons for choosing this method:

e Robust against outliers (unlike StandardScaler, which is
sensitive to them).

e Suitable for biomedical signals that tend to fluctuate.

2) Normalization using robustscaler: All features are
normalized using RobustScaler to ensure that:

a) The feature scales become more uniform:
Normalization using RobustScaler (Fig. 2) is applied to all
features to achieve more uniform feature scales while reducing
the influence of extreme values by relying on the median and
interquartile range (IQR).

Feature 1

Feature 1
Feature 2

Feature 3
Feature 3

—{ RobustScaler ]—f

Feature 4
Feature 4

Feature 5

00

Feature 5

Aa0nn

Fig.2. The robustscaler normalizing process.

b) SVM and Random Forest models operate more stably:
Normalization is performed using RobustScaler (Fig. 3) with
the aim of stabilizing feature distributions and minimizing the
influence of extreme values that commonly occur in medical
signal data. RobustScaler operates based on the median and
interquartile range (IQR), making it more resistant to outliers
compared to other normalization methods, such as
StandardScaler. This normalization is applied to all features in
the dataset to ensure that their value ranges become more
uniform and do not introduce bias during model training. With
more consistent feature scaling, the Support Vector Machine
(SVM) and Random Forestalgorithms can operate more stably,
resulting in a more optimal learning process and improved
accuracy in predicting fetal health conditions.

8- -5l

Medical Median  RobustScaler Normalized
Signal Data  Interquartille l Features

e e g\jﬁ

(IQR)

Support Vector Random
Machine (SVM) Forest

More Stable Improved

Operation Accuracy

Fig.3. RobustScaler normalization pipeline enhancing SVM and random
forest stability.
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c) Parameter bias caused by unequal value ranges is
reduced: By utilizing the median and the interquartile range
(IQR), this method effectively reduces parameter bias that may
arise from differences in value ranges across features. As a
result, learning algorithms can operate more reliably, maintain
model stability, and improve performance during the training
process (Fig. 4).

Medical
Signal Data

RobustScaler

Median
Interquartile
Range

I Normalized
il Features

@

Fig. 4. RobustScaler-based normalization process flow.
C. Feature Selection

Random Forest Feature Importance

Based on the approach of Kour and Arora [38], feature
selection using importance scores is applied to:

e Remove irrelevant features

e Reduce the risk of overfitting

e Improve model interpretability

The eight most important features obtained include:
e Accelerations

o Short-term variability (STV)

e Prolonged decelerations

e Histogram width

e Histogram mode

e Abnormal short-term variability

e Percentage of time with abnormal STV
e Mean value of the histogram

These features are directly related to beat-to-beat variability
patterns and the physiological responses of the fetus.

D. Data Splitting
Stratified Train—Test Split (80:20)

The data is split using stratification (Fig. 5) to ensure that
class proportions remain consistent.

e Train: 80% (1,700 samples)
o Test: 20% (426 samples)

Vol. 16, No. 12, 2025

e Purpose: To avoid bias caused by class imbalance and to
ensure balanced class representation in both training and
testing phases.

Stratified Train—Test
Split (80:20)
The data is split using stratification

to ensure that class proportions
remain consistent.

Train:

80% (1,700 samples)
Test:

20% (426 samples)

Purpose:

« To avoid bias caused by
class imbalance

« To ensure balanced class
representation in both
training and testing
phases

Fig. 5. Stratified train and test split (80:20) workflow.

E. Machine Learning Model Development

1) Model 1: Random forest classifier:
Optimization is performed using:

e QGrid Search

e Parameters tested:

e n_estimators (100-500)

e max_depth (5-30)

o min_samples_split (2—10)

o min_samples leaf (1-4)

Advantages of Random Forest:

e Robust to outliers

e (apable of handling non-linear features
e Provides feature importance ranking

2) Model 2: Support Vector Machine (SVM)
The baseline model uses:

e Radial Basis Function (RBF) kernel
Tuned parameters:

e C (regularization strength)

e v (kernel coefficient)

This model is chosen based on the work of Hussain et al.

(2022), which demonstrated that RBF-SVM is well-suited for
nonlinear medical signal classification.
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F. Model Performance Evaluation
Four metrics are used:

e Accuracy
e Precision
e Recall

e Macro F1-Score (chosen due to significant class
imbalance)

Macro-F1 formula:

1
Flmacro = EZ{(—lFli (2)

Reasons:

e It does not favor the majority class

e It is crucial for detecting suspect and pathological
conditions

IV. RESULTS AND DISCUSSION

This section presents key findings showing that Random
Forest outperforms SVM, supported by exploratory analysisand
feature evaluation that confirm the reliability of the proposed
fetal health prediction workflow.

A. Result

Presentation of data exploration results and initial
visualization using pandas, matplotlib, seaborn, and numpy.
This exploration process includes identifying data distribution,
examining basic patterns in each feature, and evaluating the
presence of outliers or inconsistent values. The resulting
visualization provides an initial overview of the dataset, making
it easier for researchers to recognize the general characteristics
of the physiological variables observed. This exploration stage
is also carried out to ensure that the datais in optimal condition
before being entered into the machine learning modeling stage.
Through a comprehensive understanding of the data structure,
researchers can determine the appropriate preprocessing
strategy, such as normalization, class imbalance handling, or
selection of relevant features. Thus, good data quality is
expected to support improved accuracy and reliability of the
developed prediction model.

This study utilizes several Python libraries commonly used
in dataanalysis and visualization. The command “importpandas
as pd” is used to load the pandas library, which functions to
manage data in tabular form such as DataFrames for cleaning,
manipulation, and analysis purposes. The command “import
matplotlib.pyplot as plt” loads the matplotlib module,
specifically the pyplot component, which is used to create
various types of visual graphs such as histograms, scatter plots,
and line charts. The command “import seaborn as sns” loads the
seaborn library, which facilitates the creation of more
informative and aesthetically appealing statistical graphics.
Furthermore, “import numpy as np” loads the NumPy library,
which is used for numerical computations such as array
processing, basic statistical calculations, and mathematical
operations. The last line, “import warnings” followed by
“warnings.filterwarnings('ignore')”, is used to hide or ignore
warning messages that may appear during code execution. This
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aims to make the output cleaner and free from unnecessary
warnings. Overall, this code prepares a neat and comprehensive
data analysis environment before conducting further exploration
or modeling.

Data Analysis (EDA) on the fetal health.csv dataset as a
preliminary step before machine learning modeling. The first
part loads the dataset using pd.read _csv() and saves it to a
DataFrame named df. After the datais successfully loaded, the
program calculates basic information about the dataset, such as
the number ofrows and columns (df.shape), displays the top few
data points (df.head()), explores the data structure through
df.info(), and generates complete descriptive statistics using
df.describe(include=‘all’).T, which is presented in transposed
form for easy interpretation. Next, the program checks for
missing values in each column using df.isnull().sum(), and
calculates theclass distribution in the target variable fetal health
through value counts(normalize=True), so that the percentage
of each category of fetal health can be determined. The program
also performs initial outlier detection on each numeric feature
using the Interquartile Range (IQR) method. For each numeric
column, the Q1, Q3, and IQR values are calculated, then the
number of values outside the normal range (Q1-1.5xIQR to
Q3+1.5xIQR) is identified. The outlier detection results are
stored in a dictionary named outlier stats. At the end, the
program saves a summary of the EDA results to the
eda_summary.csv file using the csv module. This file contains
key information such as the number of rows, number of
columns, target distribution, number of missing values per
column, and number of outliers for each feature.

Table I presents general information about the structure of
the dataset used. This dataset consists of 2,126 rows and 22
feature columns, all of which are numeric data types (float64),
making it very suitable for statistical analysis and machine
learning modeling. There are no missing values in any of the
columns, so no data imputation is required. In addition, the
memory size of 365.5 KB indicates that the dataset is
lightweight and efficient for processing in various computing
environments. This basic information provides an initial
overview that the datasetis in good condition and ready for
further analysis.

TABLEI. BASIC INFORMATION DATASET
Description Value
Number of rows 2126
Number of columns 22

Main data type float64

Missing values 0 in all columns

Memory usage 365.5KB

Table Il shows the class distribution of the target variable
fetal health, which consists of three categories,namely Normal,
Suspect, and Pathological. The majority of samples are in the
Normal class with a percentage of 77.85%, followed by the
Suspect class at 13.88%, and the Pathological class at 8.28%.
This unbalanced distribution indicates class imbalance, which
can affect the performance of the classification model if not
handled with an appropriate approach, such as resampling or
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class weight adjustment. This information is very important to
ensure that the machine learning model is able to make fair
predictions on all categories of fetal health.

Vol. 16, No. 12, 2025

homogeneity of each variable, and the results are saved in the
feature_boxplot.png file.

TABLEIV. NUMBER OF OUTLIERS PER FEATURE (IQR METHOD)
TABLEII. TARGET LABEL DISTRIBUTION (FETAL HEALTH)
Number of
Feature Qutliers
Fetal Health Class Percentage u
baseline value 0
1 (Normal) 77.85%
accelerations 14
2 (Suspect) 13.88%
- fetal movement 307
3 (Pathological) 8.28%
uterine_contractions 1
' T.able III shows that all columgs in the dgtaset have no light_decelerations 150
missing values. The absence of missing values is an advantage -
. . severe decelerations 7
because the preprocessing process becomes simpler and the
focus can be directed to more in-depth analysis, such as outlier prolongued_decelerations 178
detection, normalization, or feature selection. A datasetthat is abnormal short_term_variability 0
free of missing Value§ glsp increases the réhablhty of the mean,_value_of short_term_variability 2
analysis results and minimizes the risk of bias due to data P - 0 - 00
: : percentage_of time_with_abnormal_long term_varability
imputation.
mean_value of long term variability 71
TABLEIIl.  MISSING VALUE PER COLUMN histogram_width 0
Column Missing histogram_min 0
All columns 0 histogram_max 24
Table IV shows the number of outliers detected in each histogram_number of peaks 1
feature using the Interquartile Range (IQR) method. Some histogram_number_of_zeroes 502
features have a significant number of outliers, such as fetal histogram_mode 73
movement (307), percentage of time with abnormal long-term " "
variability (309), and histogram number of zeroes (502). The stogram_mean
presence of a large number of outliers in these features may histogram_median 28
reflect extreme physiological variations or potential noise in the histogram_variance 184
sensordata. Conversely, several features, suchas baseline value, -
histogram width, and histogram min, do not show any outliers, histogram_tendency 0
indicating a more stable distribution of values. Identifying the fetal_health 471

number and pattern of these outliers is an important step in
determining the outlier handling strategy in the preprocessing
stage before entering the model training stage.

Data visualization in algorithms is used to generate various
types of exploratory visualizations that aim to comprehensively
understand the characteristics of fetal health datasets prior to the
machinelearningmodelingprocess. The resulting visualizations
include label distributions, feature spreads, inter-variable
correlations, and multidimensional relationships between key
features and target labels. First, the distribution of fetal health
labels was visualized usinga pie chart. The frequency of each
class was calculated using value_counts(), then visualized using
the plt.pie() function. This chart provides a proportional
representation of the distribution of fetal health categories,
making it easier to identify class imbalances that could
potentially affect the performance of the classification model.
This visualization was saved as the label pie.png file. Next, a
boxplot was created for all numerical features using
sns.boxplot(). This visualization provides an overview of the
data distribution range, median values, and visual detection of
outliers in each feature. A horizontal orientation was chosen to
improve readability, given the large number of features. These
boxplots provide important insights into the stability and

The algorithm then generates a feature correlation heatmap
using the correlation matrix obtained through df.corr(). This
visualization is created using sns.heatmap(), complete with
annotations to display the correlation coefficient values. This
heatmap allows researchers to identify linear relationships
between variables, detect redundant features, and determine
candidate features that have the potential to contribute
significantly to the prediction model. This image is saved as
corr_heatmap.png. Finally, a scatter matrix was created using
the sns.pairplot() function by selecting eight key features
considered relevant to fetal health. The pairplot visualization
maps the relationship between two variables simultaneously
with coloringbasedon the fetal health class, providinga deeper
understanding of class separation patterns and interactions
between features. The results of this visualization are saved as
pairplot main.png. Overall, this series of algorithms produces
four main visual files (label pie.png, fitur boxplotpng,
corr_heatmap.png, and pairplot main.png) that provide
exploratory support for exploring the structure and
characteristics of the dataset. These visualizations play a crucial
role in preprocessing decision-making, feature selection, and the
formulation of more informative and effective machine learning
modeling strategies.
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Interactive visualization is displayed in the form of a pie
chart that illustrates the distribution of fetal health categories
using the Plotly library through the plotly.graph objects
module. Percentage data for three categories—Normal, Suspect,
and Pathological is defined as inputand visualized through the
go.Pie object, where labels and percentages are displayed
directly in each sector to improve information readability. The
display settings are configured using the fig.update layout()
function with adjustments to the title, text size, and graph
dimensions so that the visualization results are proportional,
informative, and meet the aesthetic standards of scientific
publications. The resulting visualization, as seen in the diagram,
shows the dominance of the Normal class at 77.8%, followed by
Suspect at 13.9% and Pathological at 8.28%. This visual
presentation provides a clear representation of class distribution
and helps researchers identify potential data imbalance before
proceedingto themachinelearningmodeling stage. Fig. 6 shows
workflow fetal health distribution chart.

B Normal
B Suspect
W Pathological

Fig. 6. Workflow of fetal health distribution chart.

The followingimage is a boxplot visualization (Fig. 7) that
displays the statistical distribution of all numerical features in
the fetal health dataset. Each boxplot illustrates the median
value, lower quartile (Q1), upper quartile (Q3), and outliers.
Through this visualization, it can be seen that some features,
such as Baseline and certain histogram statistical parameters,
show a relatively stable distribution, while other features, such
as Fetal Movement, Light Decelerations, Prolonged
Decelerations, and Histogram Variance, appear to have much
higher variability accompanied by many outliers. This condition
indicates significant data heterogeneity in the physiological
signals of pregnant women and fetal activity. Overall, this
boxplot analysis provides important insights for researchers to
understand data distribution patterns, identify features with
extreme value ranges, and determine the need for normalization,
transformation, or outlier handling before the machine learning
model training process is carried out.

The correlation heatmap provides a comprehensive
representation of the linear relationships among all numerical
features within the fetal health dataset derived from
Cardiotocography (CTG) signals. This analysis aims to
elucidate the dependency structure between variables and to
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identify features with meaningful predictive value for fetal
health classification. The correlation coefficients are visualized
through a color gradient in which red tones denote positive
correlations, blue tones represent negative correlations, and the
intensity of the color reflects the magnitude of the linear
association. The results indicate that the group of histogram-
based features, histogram mean, histogram median,
histogram_mode, and histogram_variance, exhibits strong
positive correlations (r > 0.80). This pattern suggests that these
parameterscapturehighlyrelated statistical characteristics of the
underlying CTG signal distribution. The substantial inter-feature
correlations also highlight potential redundancy, which is an
important consideration for feature selection strategies aimed at
minimizing multicollinearity in machine learning models.
Several features demonstrate moderate correlations with the
target variable fetal health, with coefficients generally ranging
betweenr = 0.20 and 0.30. Among these, histogram_variance,
histogram_mean, and prolonged decelerations appear most
relevant for distinguishing fetal health states. Although the
magnitude of these correlations is not high in absolute terms,
such values are common in complex physiological data, where
clinical phenomena are typically influenced by non-linear
interactions and combinations of multiple parameters.
Consequently, these features retain significant predictive
potential, particularly when used in conjunction with machine
learning algorithms capable of capturing non-linear patterns.
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Fig. 7. Boxplot of fetal health data features.

Other features, such as accelerations, fetal movement, and
uterine_contractions, show low correlations with most
histogram-based variables. This indicates that these features
represent different physiological domains, specifically fetal
behavioral responses and uterine activity, rather than statistical
characteristics of the CTG signal. Their distinct informational
contribution underscores the importance of retaining these
features during the modeling process. Overall, the correlation
patterns observed in the heatmap provide an empirical
foundation for informed feature selection and predictive
modeling. Identifying clusters of highly correlated variables
enables thereduction of redundancy, while features exhibiting
notable correlations with fetal health serve as key candidates for
developing more accurate, stable, and interpretable
classification models. These findings also enhance the
understanding of the interplay between physiological
parameters and CTG signal characteristics, thereby
strengthening the scientific contribution of this study in the
domain of data-driven fetal health assessment (Fig. 8)
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Fig. 8. Fetal health correlation heat map.

The Random Forest model achieved 92.7% accuracy and
85.9% macro F1-score, outperforming SVM’s 88.97% accuracy
and 79.85% macro F1-score. RF showed better sensitivity to
minority classes and maintained low false-negative rates, which
is crucial for clinical reliability. Feature importance analysis
identified Mean Value of Short-Term Variability and
Accelerations as the strongest indicators of fetal health.

Feature Importance - Random Forest
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Fig.9. Feature Importance.

Fig. 9 illustrates the contribution of each feature to the
performance of the Random Forest model in predicting fetal
health based on cardiotocography (CTG) data. The feature
importance analysis indicates that abnormal short-term
variability and the mean value of short-term variability are the
most influential predictors, highlighting the critical role of fetal
heart rate variability in fetal health assessment. In addition, the
percentage of time with abnormal long-term variability
contributes substantially, reflecting irregular fetal physiological
responses to intrauterine conditions. Histogram-based features,
including the histogram mean, mode, and median, support the
model by characterizing the overall distribution of fetal heart
rate patterns. Meanwhile, accelerations and prolonged
decelerations, although less influential, remain relevant as they
represent the reactivity of the fetal nervous system to internal
and external stimuli.
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Here is the explanation of Table V. Model Performance
Comparison between Random Forest and Support Vector
Machine (SVM) models:

TABLE V. MODEL PERFORMANCE COMPARISON
Class Precision | Recall SFI_ Support Model
core

1.0 09420 | 0.9789 | 0.9601 | 332 Random Forest
2.0 0.8863 0.6610 | 0.7573 | 59 Random Forest
3.0 08378 | 0.8857 | 0.8611 | 35 Random Forest
;“V"‘g“" 0.8887 0.8418 | 0.8595 | 426 Random Forest
;”figghted 0.9258 09272 | 09239 | 426 Random Forest
1.0 0.9345 0.9457 | 0.9401 | 332 SVM
2.0 06500 | 0.6610 | 0.6555 | 59 SVM
3.0 08667 | 0.7429 | 0.8000 | 35 SVM
:if‘gcr" 0.8171 0.7832 | 0.7985 | 426 SVM
:Vj;ghted 0.8895 0.8897 | 0.8892 | 426 SVM

Presents the comparative performance of two machine
learning models, Random Forestand Support Vector Machine
(SVM), in predicting fetal health conditions based on CTG
(Cardiotocography) data. The evaluation metrics used include
Precision, Recall, and F1-Score, which collectively assess the
balance between classification accuracy and reliability across
different fetal health classes (1.0=Normal, 2.0 = Suspect, 3.0=
Pathological).

1) Class-wise performance

a) Class 1.0 (Normal Fetal Health): The Random Forest
model achieved the highest performance with a Precision of
0.9420, Recall of 0.9789, and F1-Score of 0.9601,
outperforming SVM (F1 = 0.9401). This shows that Random
Forest effectively identifies normal fetal conditions with fewer
misclassifications.

b) Class 2.0 (Suspect Fetal Health): Both models
exhibited moderate results, but Random Forest (F1 = 0.7573)
performed better than SVM (F1 = 0.6555). The lower recall
values (0.6610 for both) indicate that the models struggled to
correctly identify all suspect cases, possibly due to the limited
number of samples (59 instances) and overlapping feature
distributions.

c) Class 3.0 (Pathological Fetal Health): Random Forest
again outperformed SVM, with F1 = 0.8611 compared to
0.8000. This suggests that Random Forest has a stronger ability
to detect pathological (high-risk) cases, which is critical in
medical diagnosis to minimize false negatives.

2) Overall model comparison

a) Macro average: Random Forest achieved F1 =
0.8595, higher than SVM’s F1 = 0.7985, showing that overall,
Random Forest maintains more consistent performance across
all classes.

b) Weighted average: When weighted by class
distribution, Random Forest reached F1 = 0.9239,
outperformingSVM’s F1 =0.8892. This indicates that Random
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Forest provides more robust and balanced predictions, even
when class imbalance exists in the dataset.

3) Interpretation: The results demonstrate that Random
Forest consistently outperforms SVM in almost all metrics and
across all fetal health categories. Its ensemble nature allows it
to capture complex nonlinear relationships and handle noisy
medical data effectively. Although SVM remains competitive,
especially for Class 1.0, its performance drops significantly for
minority classes (2.0 and 3.0), suggesting limitations in
generalization under imbalanced data conditions.

Overall, the Random Forestmodel provides the most reliable
classification performance for fetal health prediction, achieving
superior precision, recall,and F1 -scores compared to SVM. This
finding supports the selection of Random Forest as a robust
baseline model for real-time fetal health monitoring and
decision-support systems in obstetrics.

B. Discussion

The confusion matrix presented in Table VI provides a
detailed evaluation of the Random Forest classifier’s
performance in predicting fetal health status across three
categories: Normal, Suspect, and Pathological. The model
demonstrates strong discriminative ability, particularly for the
Normal class, with 325 instances correctly classified and only a
small number of misclassifications (4 as Suspect and 3 as
Pathological). This indicates that the feature set used captures
the physiological patterns of normal fetal conditions effectively.
For the Suspect class, the model correctly identifies 39 cases;
however, 17 instances are misclassified as Normal, and 3 as
Pathological. The moderate number of misclassifications in this
class is consistent with findings in CTG-based studies, where
Suspect cases tend to exhibit overlapping characteristics
between healthy and pathological patterns, making the class
inherently more challenging to classify. The Pathological class
shows satisfactory performance with 31 correctly identified
cases and only minimal misclassification (3 as Normal and 1 as
Suspect). This indicates that the model is capable of recognizing
clinically significant deviations in fetal heart rate variability and
deceleration patterns that are characteristic of pathological
cases. Overall,the Random Forest classifier demonstrates strong
predictive reliability, particularly for identifying Normal and
Pathological fetal states. The majority of errors occur in the
Suspect class, which aligns with clinical realities wherein
borderline physiological patterns create ambiguity. Theseresults
validate the effectiveness of the selected features and the
model’srobustness, suggesting its potential use as a supportive
tool for automated fetal health assessment based on CTG
signals.

The confusion matrix (Fig. 10) in Table VII presents the
classification performance of the Support Vector Machine
(SVM) model (Fig. 11) on the fetal health dataset. The SVM
classifier exhibits strong performance in predicting the Normal
class, successfully identifying 314 samples, although 15 cases
were misclassified as Suspect and 3 as Pathological. These
misclassifications are expected in CTG-based assessments, as
mild irregularities in fetal heart rate signals [34] may overlap
with characteristics found in Suspect recordings. For the Suspect
class,the model correctly classified 39 instances, but 19 samples
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were incorrectly predictedas Normal and 1 as Pathological. This
pattern highlights the inherent ambiguity of the Suspect class,
which often contains borderline physiological patterns that lie
between healthy and pathological states, making it one of the
mostdifficult categories to classify accurately. The performance
on the Pathological class shows that 26 cases were classified
correctly, while 3 were misclassified as Normal and 6 as
Suspect. Although the SVM successfully captures a substantial
portion of pathological signals, the misclassification of several
Pathological cases into the Suspect group indicates that the
model may require further optimization, potentially through
kernel selection or class-weight adjustment, to better handle
samples that exhibit severe but variable abnormalities. Overall,
while the SVM model performs reliably in identifying Normal
and Suspect cases, its performance on Pathological cases is
comparatively lower than that of the Random Forest model. This
suggests that SVM may be more sensitive to overlapping feature
distributions and may benefit from hyperparameter tuning to
improve margin separation in the multiclass CTG classification
problem. Nonetheless, the classifier still demonstrates
competitive performance and contributes valuable comparative
insights into the strengths and limitations of different machine
learning approaches for fetal health prediction.

TABLE VI.  CONFUSION MATRIX FOR RANDOM FOREST CLASSIFIER
True / Predicted Normal Suspect Pathological
Normal 325 4 3
Suspect 17 39 3
Pathological 3 1 31
Confusion Matrix - Random Forest
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Fig. 10. Confusing matrix random forest.
TABLE VII. CONFUSION MATRIX FOR SVM CLASSIFIER
True / Predicted Normal Suspect Pathological
Normal 314 15 3
Suspect 19 39 1
Pathological 3 6 26
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Fig. 11. Confusing matrix SVM.

V. CONCLUSION

This study proposed a robust end-to-end machine learning
pipeline for fetal health prediction using features derived from
cardiotocography signals and inputs representative of
biocompatible sensor data. By integrating RobustScaler-based
preprocessing, Random Forest feature selection, and
comparative evaluation of Random Forest (RF) and Support
Vector Machine (SVM) models, the proposed approach
effectively addresses key challenges in fetal health datasets,
including class imbalance and outlier-prone physiological
signals. Froma scientific standpoint, the results demonstrate that
robust preprocessing combined with feature optimization
significantly improves model stability and minority-class
detection. The Random Forest model consistently outperformed
SVM, achieving higher accuracy and macro F1-score while
maintaining better sensitivity to clinically critical Suspect and
Pathological cases. These findings highlight the suitability of
ensemble-based learning for reliable fetal health classification
under imbalanced conditions. In terms of applicability, the
proposedpipeline is computationally efficient and designed with
deployment in mind, making it suitable for integration into real-
time prenatal monitoring systems based on wearable and
biocompatible sensors. This supports early risk screening and
has the potential to assist clinical decision-making in both
hospital and remote-care settings. Nevertheless, this study is
limited by the use of a public CTG dataset rather than real-time
data acquired directly from wearable sensors, and by the
exclusive evaluation of classical machine learning models.
Future work will focus on validation using live sensor data,
exploration of deep learning models to capture temporal
dynamics, and further clinical validation to ensure safe and
effective real-world deployment.
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