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Abstract—Automatic Fetal Health Prediction plays a vital role 

in supporting early prenatal intervention through continuous and 

non-invasive monitoring. Recent advances in biocompatible 

sensors enable the safe long-term acquisition of physiological 

signals, which can be effectively analyzed using machine learning 

techniques. This study proposes a comprehensive machine 

learning pipeline for Fetal Health Prediction through fetal health 

classification using the fetal_health.csv dataset from Kaggle, 

consisting of 2,126 samples and 22 cardiotocography-derived 

features related to fetal heart rate and uterine contractions. To 

address class imbalance and the presence of outliers, RobustScaler 

normalization was applied during the preprocessing stage. 

Feature selection was performed using Random Forest feature 

importance to identify the most relevant predictors. Two 

classification models, namely Random Forest (RF) and Support 

Vector Machine (SVM), were trained and evaluated using an 

80:20 stratified train–test split. Experimental results indicate that 

the Random Forest model outperformed SVM, achieving an 

accuracy of 92.7% and a macro F1-score of 85.9%, compared with 

88.97% accuracy and a macro F1-score of 79.85% for SVM. 

Moreover, Random Forest demonstrated superior performance in 

detecting minority classes (Suspect and Pathological), which are of 

high clinical significance. These findings suggest that the proposed 

pipeline is robust, interpretable, and suitable for integration with 

biocompatible sensor-based systems for real-time fetal health 

monitoring and clinical decision support. 
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I. INTRODUCTION 

Biocompatible sensors allow continuous physiological 
monitoring without adverse tissue reactions, forming the basis 
of wearable health systems. Fetal health assessment by 
cardiotocography (CTG) is standard but manually interpreted 
and subjective [7], [16]. Integrating machine learning (ML) with 
biocompatible sensor data enables objective and reproducible 
classification of fetal conditions [22], [32]. This study focuses 
on a robust ML pipeline to analyze imbalanced sensor data and 
enhance fetal risk prediction. 

Early and accurate assessment of fetal health is a cornerstone 
of modern obstetric care because timely detection of fetal 
distress enables prompt clinical intervention and can 
substantially reduce perinatal morbidity and mortality [1],[11]. 
Continuous monitoring of fetal physiological signals, 
particularly fetal heart rate (FHR) and uterine contraction 
patterns captured through cardiotocography (CTG), provides 

rich information about fetal well-being, but interpretation is 
challenging due to signal variability, noise, and subjectivity of 
manual assessment [2],[5]. Recent advances in sensing 
technology, especially the emergence of biocompatible and 
wearable sensors, allow safer and longer-term acquisition of 
fetal and maternal signals under minimally invasive or non-
invasive conditions, expanding opportunities for ambulatory 
monitoring and remote prenatal care [3], [4], [6], [9], [34]. 

Machine learning (ML) has demonstrated strong potential in 
automating the detection and classification of fetal health 
conditions from physiological time-series data, offering 
improved consistency and the ability to learn subtle patterns 
beyond human observation [10], [13], [21]. Supervised 
classifiers such as Random Forests and Support Vector 
Machines, combined with appropriate feature engineering and 
selection, have produced promising results on benchmark CTG 
datasets and clinical repositories [14]. Nevertheless, several 
technical challenges remain: imbalanced class distributions 
(with normal cases overwhelmingly more common than 
suspect/pathological), the presence of outliers and measurement 
artifacts, inter-subject variability, and the need for 
computationally efficient models suitable for real-time or near-
real-time edge deployment on sensor platforms [17], [19]. 

Feature selection and robust preprocessing are particularly 
important in fetal health prediction to reduce dimensionality, 
mitigate the influence of noisy features, and improve model 
generalizability across populations and sensor modalities [18], 
[20], [23]. Techniques such as tree-based importance measures, 
recursive feature elimination, and regularization-based methods 
have been applied to extract clinically meaningful predictors 
from CTG-derived features (e.g., accelerations, decelerations, 
short-term variability metrics) that correlate with fetal 
compromise [8], [24]. Robust scaling and outlier-resistant 
normalization algorithms also play a key role when working 
with signals recorded by wearable biocompatible sensors, which 
may present non-Gaussian noise profiles and baseline shifts 
[25], [27]. 

Integration of biocompatible sensors with ML pipelines 
raises system-level questions about data quality, signal 
calibration, and domain adaptation. Sensor design choices 
(materials, placement, sampling rate) and connectivity 
constraints affect both the fidelity of FHR/UC signals and the 
feasibility of continuous monitoring in home or low-resource 
settings [28], [30], [31]. Moreover, the translation of ML models 
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from curated datasets to real-world sensor streams requires 
rigorous validation, cross-site testing, and safety assessments to 
avoid false reassurance or unnecessary interventions [2]. 

This study addresses these gaps by proposing an end-to-end 
pipeline that 1) leverages features derived from FHR and 
uterine-contraction signals acquired or simulated from 
biocompatible sensor inputs, 2) applies robust preprocessing to 
handle outliers and scale differences, 3) utilizes principled 
feature selection to identify a compact set of clinically 
interpretable predictors, and 4) evaluates classification 
performance with machine learning algorithms suitable for 
deployment in real-time monitoring scenarios. We further 
investigate strategies to mitigate class imbalance and to assess 
minority-class (suspect/pathological) detection performance, 
since such cases carry the highest clinical significance despite 
their lower prevalence [12], [20], [26], [29]. 

The novelty of this study does not lie in the individual 
components employed such as the fetal_health.csv dataset, 
Random Forest and SVM classifiers, RobustScaler 
normalization, or Random Forest–based feature selection as 
these techniques have been widely reported in prior CTG-based 
fetal health prediction studies. Instead, the novelty resides in 
their systematic integration and empirical evaluation within a 
unified, end-to-end pipeline explicitly designed to address 
practical challenges in fetal health assessment. Specifically, this 
study emphasizes the simultaneous handling of class imbalance, 
outlier-prone physiological features, and minority-class 
interpretability, which are often addressed independently in 
previous works. Through the combined application of robust 
preprocessing and feature selection, the proposed pipeline 
demonstrates consistent improvements in minority-class 
performance and model stability, while highlighting clinically 
relevant predictors associated with fetal heart rate variability. 
Furthermore, rather than claiming direct real-time deployment, 
this work positions the proposed pipeline as a validated 
methodological foundation for future integration with 
biocompatible wearable sensor systems, thereby bridging the 
gap between offline CTG-based analysis and real-time maternal 
fetal monitoring research. 

The remainder of this paper is organized as follows. Section 
II presents a comprehensive review of related works on fetal 
health monitoring, biocompatible sensors [35], and machine 
learning based classification approaches. Section III describes 
the dataset, data preprocessing procedures, feature selection 
strategy, and overall methodology employed in this study. 
Section IV details the machine learning models, experimental 
setup, and performance evaluation metrics. Section V discusses 
the experimental results, comparative analysis, and 
interpretation of findings. Finally, Section VI concludes the 
paper by summarizing the main contributions, outlining 
limitations, and suggesting directions for future research. 

II. RELATED WORKS 

Previous studies on fetal health monitoring have extensively 
explored cardiotocography (CTG), non-invasive fetal ECG [33] 
(NIFECG), and wearable sensor technologies. Wahbah et al. 
[42] demonstrated that deep learning–based extraction of fetal 
ECG signals from abdominal recordings can significantly 

improve signal quality, which is a key strength for downstream 
analysis. However, their work primarily focuses on signal 
extraction and does not address end-to-end fetal health 
classification, particularly under class imbalance and real-time 
deployment constraints. The present study extends this direction 
by proposing a complete machine learning pipeline for fetal 
health prediction. 

Machine learning approaches such as Random Forest and 
Support Vector Machine have shown strong potential in CTG-
based fetal health classification due to their ability to model 
nonlinear physiological patterns [15], [19]. Despite their 
effectiveness, many studies rely mainly on accuracy as the 
evaluation metric and implicitly assume clean and balanced 
datasets, which may lead to biased performance toward majority 
classes. In contrast, this study explicitly addresses these 
limitations through robust preprocessing and macro F1-score–
based evaluation to ensure balanced performance across 
clinically important minority classes. 

Feature selection techniques, including tree-based 
importance measures and recursive elimination, have been 
widely used to enhance model interpretability and reduce 
dimensionality [23], [29]. While effective, prior studies often 
assume normalized feature distributions and minimal noise. 
Such assumptions are less realistic for physiological sensor data, 
which commonly contain outliers. Accordingly, this work 
incorporates RobustScaler prior to feature selection to improve 
model stability and generalization. 

 Wearable and biocompatible sensor studies highlight the 
feasibility of long-term, non-invasive fetal monitoring [44], [36]  
but frequently focus on hardware performance without 
integrating robust machine learning pipelines or addressing real-
world data variability. This study bridges that gap by integrating 
biocompatible sensor-oriented data with an end-to-end machine 
learning framework designed for robustness and real-time 
readiness. 

In summary, while existing research has contributed 
substantially to fetal monitoring technologies and classification 
methods, limitations remain in handling class imbalance, 
outlier-prone data, and deployment-oriented evaluation. This 
study addresses these challenges by proposing a compact, 
interpretable, and robust machine learning pipeline for fetal 
health prediction using biocompatible sensor data. 

III. METHODOLOGY 

The workflow for processing the Kaggle Fetal Health 
Dataset to build a fetal health condition classification model. 
The process begins with outlier handling to improve data 
quality, followed by normalization using RobustScaler to 
stabilize the feature distribution. After that, feature selection and 
feature ranking based on their level of importance are carried out 
using Random Forest. The data is then divided into training data 
and test data through the train test split stage, before being 
trained using two different algorithms, namely Random Forest 
and Support Vector Machine (SVM). The final stage is model 
performance evaluation using the accuracy, precision, recall, 
and macro F1-score metrics to assess the prediction quality of 
each model (Fig. 1). 
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Fig. 1. Workflow of data preprocessing, feature selection, and model 

evaluation for fetal health prediction. 

A. Data Source 

This study uses the fetal_health.csv dataset from Kaggle 
(2020), which contains [15]:  

2,126 samples 

22 numerical features 

No missing values 

Class imbalance present: 

• Normal: 77% 

• Suspect: 13% 

• Pathological: 10%    

The dataset is derived from extracted CTG 
(Cardiotocography) signals and includes key features such as 
accelerations, short-term variability (STV), long-term 
variability (LTV), and histogram-based features. 

B. Data Preprocessing Stages 

1) Outlier handling 

According to Zhang and Chen, medical signals often contain 
extreme outliers caused by physiological noise or instrument 
errors [37]. 

Approach: Using RobustScaler, which performs 
normalization based on: 

• Median 

• Interquartile Range (IQR = Q3 – Q1) 

Formula: 

𝒳scaled=
𝒳−median

IQR
                              () 

Reasons for choosing this method: 

• Robust against outliers (unlike StandardScaler, which is 
sensitive to them). 

• Suitable for biomedical signals that tend to fluctuate. 

2) Normalization using robustscaler: All features are 

normalized using RobustScaler to ensure that: 

a) The feature scales become more uniform: 

Normalization using RobustScaler (Fig. 2) is applied to all 
features to achieve more uniform feature scales while reducing 
the influence of extreme values by relying on the median and 

interquartile range (IQR). 

 
Fig. 2. The robustscaler normalizing process. 

b) SVM and Random Forest models operate more stably: 
Normalization is performed using RobustScaler (Fig. 3) with 
the aim of stabilizing feature distributions and minimizing the 
influence of extreme values that commonly occur in medical 
signal data. RobustScaler operates based on the median and 
interquartile range (IQR), making it more resistant to outliers 

compared to other normalization methods, such as 
StandardScaler. This normalization is applied to all features in 
the dataset to ensure that their value ranges become more 
uniform and do not introduce bias during model training. With 
more consistent feature scaling, the Support Vector Machine 
(SVM) and Random Forest algorithms can operate more stably, 

resulting in a more optimal learning process and improved 

accuracy in predicting fetal health conditions. 

 
Fig. 3. RobustScaler normalization pipeline enhancing SVM and random 

forest stability. 
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c) Parameter bias caused by unequal value ranges is 
reduced: By utilizing the median and the interquartile range 
(IQR), this method effectively reduces parameter bias that may 
arise from differences in value ranges across features. As a 
result, learning algorithms can operate more reliably, maintain 

model stability, and improve performance during the training 

process (Fig. 4). 

 
Fig. 4. RobustScaler-based normalization process flow. 

C. Feature Selection 

Random Forest Feature Importance  

Based on the approach of Kour and Arora [38], feature 
selection using importance scores is applied to: 

• Remove irrelevant features 

• Reduce the risk of overfitting 

• Improve model interpretability 

The eight most important features obtained include: 

• Accelerations 

• Short-term variability (STV) 

• Prolonged decelerations 

• Histogram width 

• Histogram mode 

• Abnormal short-term variability 

• Percentage of time with abnormal STV 

• Mean value of the histogram 

These features are directly related to beat-to-beat variability 
patterns and the physiological responses of the fetus. 

D. Data Splitting 

Stratified Train–Test Split (80:20) 

The data is split using stratification (Fig. 5) to ensure that 
class proportions remain consistent. 

• Train: 80% (1,700 samples) 

• Test: 20% (426 samples) 

• Purpose: To avoid bias caused by class imbalance and to 
ensure balanced class representation in both training and 
testing phases. 

 
Fig. 5. Stratified train and test split (80:20) workflow. 

E. Machine Learning Model Development 

1) Model 1: Random forest classifier: 

Optimization is performed using: 

• Grid Search 

• Parameters tested: 

• n_estimators (100–500) 

• max_depth (5–30) 

• min_samples_split (2–10) 

• min_samples_leaf (1–4) 

Advantages of Random Forest: 

• Robust to outliers 

• Capable of handling non-linear features 

• Provides feature importance ranking 

2) Model 2: Support Vector Machine (SVM) 

The baseline model uses: 

• Radial Basis Function (RBF) kernel 

Tuned parameters: 

• C (regularization strength) 

• γ (kernel coefficient) 

This model is chosen based on the work of Hussain et al. 
(2022), which demonstrated that RBF-SVM is well-suited for 
nonlinear medical signal classification. 
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F. Model Performance Evaluation 

Four metrics are used: 

• Accuracy 

• Precision 

• Recall 

• Macro F1-Score (chosen due to significant class 
imbalance) 

Macro-F1 formula: 

𝐹1𝑚𝑎𝑐𝑟𝑜 =
1

𝐾
∑ 𝐹1𝑖
𝐾
𝑖−1                        () 

Reasons: 

• It does not favor the majority class 

• It is crucial for detecting suspect and pathological 
conditions 

IV. RESULTS AND DISCUSSION 

This section presents key findings showing that Random 
Forest outperforms SVM, supported by exploratory analysis and 
feature evaluation that confirm the reliability of the proposed 
fetal health prediction workflow. 

A. Result 

Presentation of data exploration results and initial 
visualization using pandas, matplotlib, seaborn, and numpy. 
This exploration process includes identifying data distribution, 
examining basic patterns in each feature, and evaluating the 
presence of outliers or inconsistent values. The resulting 
visualization provides an initial overview of the dataset, making 
it easier for researchers to recognize the general characteristics 
of the physiological variables observed. This exploration stage 
is also carried out to ensure that the data is in optimal condition 
before being entered into the machine learning modeling stage. 
Through a comprehensive understanding of the data structure, 
researchers can determine the appropriate preprocessing 
strategy, such as normalization, class imbalance handling, or 
selection of relevant features. Thus, good data quality is 
expected to support improved accuracy and reliability of the 
developed prediction model. 

This study utilizes several Python libraries commonly used 
in data analysis and visualization. The command “import pandas 
as pd” is used to load the pandas library, which functions to 
manage data in tabular form such as DataFrames for cleaning, 
manipulation, and analysis purposes. The command “import 
matplotlib.pyplot as plt” loads the matplotlib module, 
specifically the pyplot component, which is used to create 
various types of visual graphs such as histograms, scatter plots, 
and line charts. The command “import seaborn as sns” loads the 
seaborn library, which facilitates the creation of more 
informative and aesthetically appealing statistical graphics. 
Furthermore, “import numpy as np” loads the NumPy library, 
which is used for numerical computations such as array 
processing, basic statistical calculations, and mathematical 
operations. The last line, “import warnings” followed by 
“warnings.filterwarnings('ignore')”, is used to hide or ignore 
warning messages that may appear during code execution. This 

aims to make the output cleaner and free from unnecessary 
warnings. Overall, this code prepares a neat and comprehensive 
data analysis environment before conducting further exploration 
or modeling. 

Data Analysis (EDA) on the fetal_health.csv dataset as a 
preliminary step before machine learning modeling. The first 
part loads the dataset using pd.read_csv() and saves it to a 
DataFrame named df. After the data is successfully loaded, the 
program calculates basic information about the dataset, such as 
the number of rows and columns (df.shape), displays the top few 
data points (df.head()), explores the data structure through 
df.info(), and generates complete descriptive statistics using 
df.describe(include=‘all’).T, which is presented in transposed 
form for easy interpretation. Next, the program checks for 
missing values in each column using df.isnull().sum(), and 
calculates the class distribution in the target variable fetal_health 
through value_counts(normalize=True), so that the percentage 
of each category of fetal health can be determined. The program 
also performs initial outlier detection on each numeric feature 
using the Interquartile Range (IQR) method. For each numeric 
column, the Q1, Q3, and IQR values are calculated, then the 
number of values outside the normal range (Q1–1.5×IQR to 
Q3+1.5×IQR) is identified. The outlier detection results are 
stored in a dictionary named outlier_stats. At the end, the 
program saves a summary of the EDA results to the 
eda_summary.csv file using the csv module. This file contains 
key information such as the number of rows, number of 
columns, target distribution, number of missing values per 
column, and number of outliers for each feature. 

Table I presents general information about the structure of 
the dataset used. This dataset consists of 2,126 rows and 22 
feature columns, all of which are numeric data types (float64), 
making it very suitable for statistical analysis and machine 
learning modeling. There are no missing values in any of the 
columns, so no data imputation is required. In addition, the 
memory size of 365.5 KB indicates that the dataset is 
lightweight and efficient for processing in various computing 
environments. This basic information provides an initial 
overview that the dataset is in good condition and ready for 
further analysis. 

TABLE I.  BASIC INFORMATION DATASET 

Description Value 

Number of rows 2126 

Number of columns 22 

Main data type float64 

Missing values 0 in all columns 

Memory usage 365.5 KB 

Table II shows the class distribution of the target variable 
fetal_health, which consists of three categories, namely Normal, 
Suspect, and Pathological. The majority of samples are in the 
Normal class with a percentage of 77.85%, followed by the 
Suspect class at 13.88%, and the Pathological class at 8.28%. 
This unbalanced distribution indicates class imbalance, which 
can affect the performance of the classification model if not 
handled with an appropriate approach, such as resampling or 
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class weight adjustment. This information is very important to 
ensure that the machine learning model is able to make fair 
predictions on all categories of fetal health. 

TABLE II.  TARGET LABEL DISTRIBUTION (FETAL HEALTH) 

Fetal Health Class Percentage 

1 (Normal) 77.85% 

2 (Suspect) 13.88% 

3 (Pathological) 8.28% 

Table III shows that all columns in the dataset have no 
missing values. The absence of missing values is an advantage 
because the preprocessing process becomes simpler and the 
focus can be directed to more in-depth analysis, such as outlier 
detection, normalization, or feature selection. A dataset that is 
free of missing values also increases the reliability of the 

analysis results and minimizes the risk of bias due to data 
imputation. 

TABLE III.  MISSING VALUE PER COLUMN 

Column Missing 

All columns 0 

Table IV shows the number of outliers detected in each 
feature using the Interquartile Range (IQR) method. Some 
features have a significant number of outliers, such as fetal 
movement (307), percentage of time with abnormal long-term 
variability (309), and histogram number of zeroes (502). The 
presence of a large number of outliers in these features may 
reflect extreme physiological variations or potential noise in the 
sensor data. Conversely, several features, such as baseline value, 
histogram width, and histogram min, do not show any outliers, 
indicating a more stable distribution of values. Identifying the 
number and pattern of these outliers is an important step in 
determining the outlier handling strategy in the preprocessing 
stage before entering the model training stage. 

Data visualization in algorithms is used to generate various 
types of exploratory visualizations that aim to comprehensively 
understand the characteristics of fetal health datasets prior to the 
machine learning modeling process. The resulting visualizations 
include label distributions, feature spreads, inter-variable 
correlations, and multidimensional relationships between key 
features and target labels. First, the distribution of fetal_health 
labels was visualized using a pie chart. The frequency of each 
class was calculated using value_counts(), then visualized using 
the plt.pie() function. This chart provides a proportional 
representation of the distribution of fetal health categories, 
making it easier to identify class imbalances that could 
potentially affect the performance of the classification model. 
This visualization was saved as the label_pie.png file. Next, a 
boxplot was created for all numerical features using 
sns.boxplot(). This visualization provides an overview of the 
data distribution range, median values, and visual detection of 
outliers in each feature. A horizontal orientation was chosen to 
improve readability, given the large number of features. These 
boxplots provide important insights into the stability and 

homogeneity of each variable, and the results are saved in the 
feature_boxplot.png file.  

TABLE IV.  NUMBER OF OUTLIERS PER FEATURE (IQR METHOD) 

Feature 
Number of 

Outliers 

baseline_value 0 

accelerations 14 

fetal_movement 307 

uterine_contractions 1 

light_decelerations 150 

severe_decelerations 7 

prolongued_decelerations 178 

abnormal_short_term_variability 0 

mean_value_of_short_term_variability 70 

percentage_of_time_with_abnormal_long_term_variability 309 

mean_value_of_long_term_variability 71 

histogram_width 0 

histogram_min 0 

histogram_max 24 

histogram_number_of_peaks 19 

histogram_number_of_zeroes 502 

histogram_mode 73 

histogram_mean 45 

histogram_median 28 

histogram_variance 184 

histogram_tendency 0 

fetal_health 471 

The algorithm then generates a feature correlation heatmap 
using the correlation matrix obtained through df.corr(). This 
visualization is created using sns.heatmap(), complete with 
annotations to display the correlation coefficient values. This 
heatmap allows researchers to identify linear relationships 
between variables, detect redundant features, and determine 
candidate features that have the potential to contribute 
significantly to the prediction model. This image is saved as 
corr_heatmap.png. Finally, a scatter matrix was created using 
the sns.pairplot() function by selecting eight key features 
considered relevant to fetal health. The pairplot visualization 
maps the relationship between two variables simultaneously 
with coloring based on the fetal_health class, providing a deeper 
understanding of class separation patterns and interactions 
between features. The results of this visualization are saved as 
pairplot_main.png. Overall, this series of algorithms produces 
four main visual files (label_pie.png, fitur_boxplot.png, 
corr_heatmap.png, and pairplot_main.png) that provide 
exploratory support for exploring the structure and 
characteristics of the dataset. These visualizations play a crucial 
role in preprocessing decision-making, feature selection, and the 
formulation of more informative and effective machine learning 
modeling strategies. 
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Interactive visualization is displayed in the form of a pie 
chart that illustrates the distribution of fetal health categories 
using the Plotly library through the plotly.graph_objects 
module. Percentage data for three categories—Normal, Suspect, 
and Pathological is defined as input and visualized through the 
go.Pie object, where labels and percentages are displayed 
directly in each sector to improve information readability. The 
display settings are configured using the fig.update_layout() 
function with adjustments to the title, text size, and graph 
dimensions so that the visualization results are proportional, 
informative, and meet the aesthetic standards of scientific 
publications. The resulting visualization, as seen in the diagram, 
shows the dominance of the Normal class at 77.8%, followed by 
Suspect at 13.9% and Pathological at 8.28%. This visual 
presentation provides a clear representation of class distribution 
and helps researchers identify potential data imbalance before 
proceeding to the machine learning modeling stage. Fig. 6 shows 
workflow fetal health distribution chart. 

 
Fig. 6. Workflow of fetal health distribution chart. 

The following image is a boxplot visualization (Fig. 7) that 
displays the statistical distribution of all numerical features in 
the fetal health dataset. Each boxplot illustrates the median 
value, lower quartile (Q1), upper quartile (Q3), and outliers. 
Through this visualization, it can be seen that some features, 
such as Baseline and certain histogram statistical parameters, 
show a relatively stable distribution, while other features, such 
as Fetal Movement, Light Decelerations, Prolonged 
Decelerations, and Histogram Variance, appear to have much 
higher variability accompanied by many outliers. This condition 
indicates significant data heterogeneity in the physiological 
signals of pregnant women and fetal activity. Overall, this 
boxplot analysis provides important insights for researchers to 
understand data distribution patterns, identify features with 
extreme value ranges, and determine the need for normalization, 
transformation, or outlier handling before the machine learning 
model training process is carried out. 

The correlation heatmap provides a comprehensive 
representation of the linear relationships among all numerical 
features within the fetal health dataset derived from 
Cardiotocography (CTG) signals. This analysis aims to 
elucidate the dependency structure between variables and to 

identify features with meaningful predictive value for fetal 
health classification. The correlation coefficients are visualized 
through a color gradient in which red tones denote positive 
correlations, blue tones represent negative correlations, and the 
intensity of the color reflects the magnitude of the linear 
association. The results indicate that the group of histogram-
based features, histogram_mean, histogram_median, 
histogram_mode, and histogram_variance, exhibits strong 
positive correlations (r > 0.80). This pattern suggests that these 
parameters capture highly related statistical characteristics of the 
underlying CTG signal distribution. The substantial inter-feature 
correlations also highlight potential redundancy, which is an 
important consideration for feature selection strategies aimed at 
minimizing multicollinearity in machine learning models. 
Several features demonstrate moderate correlations with the 
target variable fetal_health, with coefficients generally ranging 
between r = 0.20 and 0.30. Among these, histogram_variance, 
histogram_mean, and prolonged_decelerations appear most 
relevant for distinguishing fetal health states. Although the 
magnitude of these correlations is not high in absolute terms, 
such values are common in complex physiological data, where 
clinical phenomena are typically influenced by non-linear 
interactions and combinations of multiple parameters. 
Consequently, these features retain significant predictive 
potential, particularly when used in conjunction with machine 
learning algorithms capable of capturing non-linear patterns. 

 
Fig. 7. Boxplot of fetal health data features. 

Other features, such as accelerations, fetal_movement, and 
uterine_contractions, show low correlations with most 
histogram-based variables. This indicates that these features 
represent different physiological domains, specifically fetal 
behavioral responses and uterine activity, rather than statistical 
characteristics of the CTG signal. Their distinct informational 
contribution underscores the importance of retaining these 
features during the modeling process. Overall, the correlation 
patterns observed in the heatmap provide an empirical 
foundation for informed feature selection and predictive 
modeling. Identifying clusters of highly correlated variables 
enables the reduction of redundancy, while features exhibiting 
notable correlations with fetal_health serve as key candidates for 
developing more accurate, stable, and interpretable 
classification models. These findings also enhance the 
understanding of the interplay between physiological 
parameters and CTG signal characteristics, thereby 
strengthening the scientific contribution of this study in the 
domain of data-driven fetal health assessment (Fig. 8) 
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Fig. 8. Fetal health correlation heat map. 

The Random Forest model achieved 92.7% accuracy and 
85.9% macro F1-score, outperforming SVM’s 88.97% accuracy 
and 79.85% macro F1-score. RF showed better sensitivity to 
minority classes and maintained low false-negative rates, which 
is crucial for clinical reliability. Feature importance analysis 
identified Mean Value of Short-Term Variability and 
Accelerations as the strongest indicators of fetal health. 

 
Fig. 9. Feature Importance. 

Fig. 9 illustrates the contribution of each feature to the 
performance of the Random Forest model in predicting fetal 
health based on cardiotocography (CTG) data. The feature 
importance analysis indicates that abnormal short-term 
variability and the mean value of short-term variability are the 
most influential predictors, highlighting the critical role of fetal 
heart rate variability in fetal health assessment. In addition, the 
percentage of time with abnormal long-term variability 
contributes substantially, reflecting irregular fetal physiological 
responses to intrauterine conditions. Histogram-based features, 
including the histogram mean, mode, and median, support the 
model by characterizing the overall distribution of fetal heart 
rate patterns. Meanwhile, accelerations and prolonged 
decelerations, although less influential, remain relevant as they 
represent the reactivity of the fetal nervous system to internal 
and external stimuli. 

Here is the explanation of Table V. Model Performance 
Comparison between Random Forest and Support Vector 
Machine (SVM) models: 

TABLE V.  MODEL PERFORMANCE COMPARISON 

Class Precision Recall 
F1-

Score 
Support Model 

1.0 0.9420 0.9789 0.9601 332 Random Forest 

2.0 0.8863 0.6610 0.7573 59 Random Forest 

3.0 0.8378 0.8857 0.8611 35 Random Forest 

macro 

avg 
0.8887 0.8418 0.8595 426 Random Forest 

weighted 

avg 
0.9258 0.9272 0.9239 426 Random Forest 

1.0 0.9345 0.9457 0.9401 332 SVM 

2.0 0.6500 0.6610 0.6555 59 SVM 

3.0 0.8667 0.7429 0.8000 35 SVM 

macro 

avg 
0.8171 0.7832 0.7985 426 SVM 

weighted 

avg 
0.8895 0.8897 0.8892 426 SVM 

Presents the comparative performance of two machine 
learning models, Random Forest and Support Vector Machine 
(SVM), in predicting fetal health conditions based on CTG 
(Cardiotocography) data. The evaluation metrics used include 
Precision, Recall, and F1-Score, which collectively assess the 
balance between classification accuracy and reliability across 
different fetal health classes (1.0 = Normal, 2.0 = Suspect, 3.0 = 
Pathological). 

1) Class-wise performance 

a) Class 1.0 (Normal Fetal Health): The Random Forest 
model achieved the highest performance with a Precision of 
0.9420, Recall of 0.9789, and F1-Score of 0.9601, 
outperforming SVM (F1 = 0.9401). This shows that Random 

Forest effectively identifies normal fetal conditions with fewer 

misclassifications. 

b) Class 2.0 (Suspect Fetal Health): Both models 
exhibited moderate results, but Random Forest (F1 = 0.7573) 

performed better than SVM (F1 = 0.6555). The lower recall 
values (0.6610 for both) indicate that the models struggled to 
correctly identify all suspect cases, possibly due to the limited 
number of samples (59 instances) and overlapping feature 

distributions. 

c) Class 3.0 (Pathological Fetal Health): Random Forest 
again outperformed SVM, with F1 = 0.8611 compared to 
0.8000. This suggests that Random Forest has a stronger ability 
to detect pathological (high-risk) cases, which is critical in 

medical diagnosis to minimize false negatives. 

2) Overall model comparison 

a) Macro average: Random Forest achieved F1 = 
0.8595, higher than SVM’s F1 = 0.7985, showing that overall, 

Random Forest maintains more consistent performance across 

all classes. 

b) Weighted average: When weighted by class 
distribution, Random Forest reached F1 = 0.9239, 

outperforming SVM’s F1 = 0.8892. This indicates that Random 
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Forest provides more robust and balanced predictions, even 

when class imbalance exists in the dataset. 

3) Interpretation: The results demonstrate that Random 

Forest consistently outperforms SVM in almost all metrics and 

across all fetal health categories. Its ensemble nature allows it 

to capture complex nonlinear relationships and handle noisy 

medical data effectively. Although SVM remains competitive, 

especially for Class 1.0, its performance drops significantly for 

minority classes (2.0 and 3.0), suggesting limitations in 

generalization under imbalanced data conditions. 

Overall, the Random Forest model provides the most reliable 
classification performance for fetal health prediction, achieving 
superior precision, recall, and F1-scores compared to SVM. This 
finding supports the selection of Random Forest as a robust 
baseline model for real-time fetal health monitoring and 
decision-support systems in obstetrics. 

B. Discussion 

The confusion matrix presented in Table VI provides a 
detailed evaluation of the Random Forest classifier’s 
performance in predicting fetal health status across three 
categories: Normal, Suspect, and Pathological. The model 
demonstrates strong discriminative ability, particularly for the 
Normal class, with 325 instances correctly classified and only a 
small number of misclassifications (4 as Suspect and 3 as 
Pathological). This indicates that the feature set used captures 
the physiological patterns of normal fetal conditions effectively. 
For the Suspect class, the model correctly identifies 39 cases; 
however, 17 instances are misclassified as Normal, and 3 as 
Pathological. The moderate number of misclassifications in this 
class is consistent with findings in CTG-based studies, where 
Suspect cases tend to exhibit overlapping characteristics 
between healthy and pathological patterns, making the class 
inherently more challenging to classify. The Pathological class 
shows satisfactory performance with 31 correctly identified 
cases and only minimal misclassification (3 as Normal and 1 as 
Suspect). This indicates that the model is capable of recognizing 
clinically significant deviations in fetal heart rate variability and 
deceleration patterns that are characteristic of pathological 
cases. Overall, the Random Forest classifier demonstrates strong 
predictive reliability, particularly for identifying Normal and 
Pathological fetal states. The majority of errors occur in the 
Suspect class, which aligns with clinical realities wherein 
borderline physiological patterns create ambiguity. These results 
validate the effectiveness of the selected features and the 
model’s robustness, suggesting its potential use as a supportive 
tool for automated fetal health assessment based on CTG 
signals. 

The confusion matrix (Fig. 10) in Table VII presents the 
classification performance of the Support Vector Machine 
(SVM) model (Fig. 11) on the fetal health dataset. The SVM 
classifier exhibits strong performance in predicting the Normal 
class, successfully identifying 314 samples, although 15 cases 
were misclassified as Suspect and 3 as Pathological. These 
misclassifications are expected in CTG-based assessments, as 
mild irregularities in fetal heart rate signals [34] may overlap 
with characteristics found in Suspect recordings. For the Suspect 
class, the model correctly classified 39 instances, but 19 samples 

were incorrectly predicted as Normal and 1 as Pathological. This 
pattern highlights the inherent ambiguity of the Suspect class, 
which often contains borderline physiological patterns that lie 
between healthy and pathological states, making it one of the 
most difficult categories to classify accurately. The performance 
on the Pathological class shows that 26 cases were classified 
correctly, while 3 were misclassified as Normal and 6 as 
Suspect. Although the SVM successfully captures a substantial 
portion of pathological signals, the misclassification of several 
Pathological cases into the Suspect group indicates that the 
model may require further optimization, potentially through 
kernel selection or class-weight adjustment, to better handle 
samples that exhibit severe but variable abnormalities. Overall, 
while the SVM model performs reliably in identifying Normal 
and Suspect cases, its performance on Pathological cases is 
comparatively lower than that of the Random Forest model. This 
suggests that SVM may be more sensitive to overlapping feature 
distributions and may benefit from hyperparameter tuning to 
improve margin separation in the multiclass CTG classification 
problem. Nonetheless, the classifier still demonstrates 
competitive performance and contributes valuable comparative 
insights into the strengths and limitations of different machine 
learning approaches for fetal health prediction. 

TABLE VI.  CONFUSION MATRIX FOR RANDOM FOREST CLASSIFIER 

True / Predicted Normal Suspect Pathological 

Normal 325 4 3 

Suspect 17 39 3 

Pathological 3 1 31 

 
Fig. 10. Confusing matrix random forest. 

TABLE VII.  CONFUSION MATRIX FOR SVM CLASSIFIER 

True / Predicted Normal Suspect Pathological 

Normal 314 15 3 

Suspect 19 39 1 

Pathological 3 6 26 
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Fig. 11. Confusing matrix SVM. 

V. CONCLUSION 

This study proposed a robust end-to-end machine learning 
pipeline for fetal health prediction using features derived from 
cardiotocography signals and inputs representative of 
biocompatible sensor data. By integrating RobustScaler-based 
preprocessing, Random Forest feature selection, and 
comparative evaluation of Random Forest (RF) and Support 
Vector Machine (SVM) models, the proposed approach 
effectively addresses key challenges in fetal health datasets, 
including class imbalance and outlier-prone physiological 
signals. From a scientific standpoint, the results demonstrate that 
robust preprocessing combined with feature optimization 
significantly improves model stability and minority-class 
detection. The Random Forest model consistently outperformed 
SVM, achieving higher accuracy and macro F1-score while 
maintaining better sensitivity to clinically critical Suspect and 
Pathological cases. These findings highlight the suitability of 
ensemble-based learning for reliable fetal health classification 
under imbalanced conditions. In terms of applicability, the 
proposed pipeline is computationally efficient and designed with 
deployment in mind, making it suitable for integration into real-
time prenatal monitoring systems based on wearable and 
biocompatible sensors. This supports early risk screening and 
has the potential to assist clinical decision-making in both 
hospital and remote-care settings. Nevertheless, this study is 
limited by the use of a public CTG dataset rather than real-time 
data acquired directly from wearable sensors, and by the 
exclusive evaluation of classical machine learning models. 
Future work will focus on validation using live sensor data, 
exploration of deep learning models to capture temporal 
dynamics, and further clinical validation to ensure safe and 
effective real-world deployment. 
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