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Abstract—As the world move beyond the 5G era, the 

emergence of 6G promises a significant integration with 

innovative communication paradigms and burgeoning 

technology trends, actualizing previously utopian concepts 

alongside increased technical complexities. Analytical models 

offer basic frameworks, but ML and AI now outperform them in 

solving complex problems, either by augmenting or supplanting 

model-based methodologies. The predominant focus of data-

driven wireless research is on discriminative AI (DAI), which 

necessitates extensive real-world datasets. In contrast to DAI, 

Generative AI (GenAI) refers to generative models (GMs) that 

can identify the fundamental data circulation, patterns, and 

characteristics of the incoming data. Given these attractive 

characteristics, GenAI can either substitute or augment DAI 

methodologies in multiple contexts. This comprehensive tutorial-

survey article begins with an overview of 6G and wireless 

intellectual ability by delineating potential 6G applications and 

services. The aspects presented in this paper support the internet 

of things integration with 6G networks with the support of the AI 

as intelligent systems. This review paper concentrates on 

fundamental wireless research domains, encompassing network 

optimization, organization, and management. It examines the 

foundational learning principles of DAI and its methodologies, 

the application of DAI in wireless networks, and the utilization of 

GMs in 6G networks. Due to its comprehensive nature, this 

paper will act as a crucial reference for researchers and 

professionals exploring this dynamic and promising field. 

Keywords—GenAI; 6G; generative models; intelligent systems; 

wireless communication 

I. INTRODUCTION 

The evolution of wireless networks has been characterized 
by significant innovations, with each generation introducing 
dramatic changes that redefine our interaction with digital 
environments. As we move beyond the 5G era, defined by 
remarkable data speeds and strong connectivity [1], a new vista 
emerges with the introduction of 6G. Although 5G was lauded 
for its massive machine-type communications (mMTC), ultra-
reliable low-latency communications (URLLC), and enhanced 

mobile broadband (eMBB), 6G transcends being a mere 
enhancement of its predecessor; it signifies a fundamental 
transformation aimed at redefining the principles of wireless 
connectivity. The anticipated 6G aspires not only to enhance 
key performance indicators (KPIs) but also to integrate with 
innovative communication paradigms and future technical 
pathways, actualizing previously utopian concepts [2]. 

6G represents a major step toward a more connected and 
intelligent future, not just an incremental upgrade. We 
highlight innovative technologies that pave the way for an era 
when communication transcends mere connectivity, enabling 
deeper, more meaningful, and intelligent interactions in an 
increasingly digital landscape. Exploring the potential 
technological advancements of 6G, semantic communications 
stand out as a fundamental element, striving to surpass 
traditional data transfer models by facilitating networks that 
understand and interpret content semantics, thereby ensuring 
communication that is not only ultra-fast but also contextually 
astute [3]. In the past decade, articles have highlighted the 
possibility of data-driven methodologies to supplement or 
replace model-based approaches. Analytical models provide 
foundational insights, while AI models use real-life datasets for 
exact adaptation to complicated situations. 

Most modern wireless data research relies on DAI models, 
which prioritize identifying distinctions between data types. 
Three fundamental learning paradigms are commonly used in 
DAI models, as shown in Fig. 1. These principles will be 
discussed in Section II. 

While these learning paradigms are versatile, obtaining 
large real-world training datasets can be costly in terms of 
money, effort, and computer resources. In addition to 
performing ML tasks (e.g., classification, regression, 
clustering, pattern search, dimensionality reduction). DAI 
models may struggle to interpret data and miss subtle 
patterns/states, presenting challenges in complex real-world 
scenarios. Unlike DAI, GenAI refers to GMs that can identify 
the distribution, patterns, and properties of incoming data [4]. 
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Fig. 1. Fundamental learning principles used in DAI.

After modelling the data distribution, GMs can produce 
new instances that are similar to the training data and 
examples. This is crucial in wireless domains where real-world 
data is limited, fragmentary, costly, and difficult to understand 
or grasp. It is essential for data augmentation, imputation, 
disentanglement, anomaly detection, and more. Despite the 
idea that GenAI is a new trend, our study of 120 technical 
articles highlights the extensive research across key wireless 
research pathways. GenAI gained attention after the release of 
big language model-based chatbots by tech heavyweights such 
as OpenAI's ChatGPT in Nov. 2022, Google's BARD in Mar. 
2023, and Microsoft's Bing Chat in Feb. 2023. These 
developments sparked attention in both the industrial and 
intellectual sectors. With renewed attention, GenAI-driven 
wireless communication and networking research is poised for 
growth. Our study is comprehensive and rich in material, 
making it a valuable reference for scholars and professionals in 
this important and growing field. 

GMs are gaining popularity in wireless telecommunication 
and networking. The research in [5] explores the benefits and 
drawbacks of using GMs for wireless channel modelling. 
Traditional channel modelling requires special skill and is 
technically demanding. To solve this problem, they developed 
a Generative Adversarial Network (GAN) technique to model 
wireless channels autonomously from raw data. GenAI for 
wireless networks is covered in [6], with an emphasis on three 
sample GMs: GANs, variational autoencoders (VAEs), and 
diffusion-based generative models (DGMs). A GenAI-based 
paradigm for wireless network management is developed, 
challenging established approaches, and promoting GM 
solutions. This case study optimizes contracts in mobile AI-
Generated Content (AIGC) services using DGMs. A recent 
assessment highlights the growth of mobile AIGC networks, 
emphasizing real-time, tailored services that prioritize user 
privacy. 

In response to DAI model issues in industrial IoT, [7] 
recommends GM adoption and examines current GMs for 
IIoT-related tasks such as anomaly detection, trust-boundary 
protection, network traffic prediction, and platform monitoring. 
According to [8], GANs have great potential for privacy and 
security due to their ability to produce realistic data. The 
authors analyze the merits, weaknesses, and future trajectories 
of GANs, addressing the lack of thorough surveys in this area. 
According to [9], GANs can be used for tasks such as spectrum 

sharing, anomaly detection, and security threat mitigation. The 
study highlights the benefits of GANs, including synthesising 
field data and recovering corrupted spectrum bits. GANs are 
rapidly being used in cybersecurity, particularly for jobs 
involving imbalanced datasets. The IoT applications hold 
potential for commercialization through the deployment of 6G 
communication networks. 

The lack of studies on reviewing the wireless 
communications, especially the 6G networks, in the Generative 
AI era is the main motivation for this study. For autonomy and 
context, we begin with 6G network and wireless intelligence 
foundations in Section I. Section II provides a brief 
introduction of 6G communications and networking trends, 
including their numerous uses and offerings. Considering that 
we established the context with the requisite background 
knowledge, GenAI for wireless networks’ optimization, 
organization, and administration is presented in Section III. 
Section IV outlines the strategic significance of GMs for 
emerging domains of 6G network research. Finally, the 
conclusion is shown in Section V. 

II. THE ROLE OF DISCRIMINATIVE AI IN 6G NETWORKS 

This section highlights developing trends in 6G 
communications and networking technology, followed by 
problems faced in achieving 6G implementation. Key concepts 
of DAI approaches are also covered. Here, we simply discuss 
how DAI approaches have been used to address key wireless 
network issues. This article explains use cases of DAI in 
wireless networks. The parts that are included in this section 
are illustrated in Fig. 2. 

 
Fig. 2. 6G wireless intelligence preliminaries. 

The emergence of 6G networks will revolutionize 
technology, introducing new applications and offerings beyond 
5G capabilities. 
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TABLE I.  COMPARISON OF SL, USL, AND RL 

 Supervised Learning Unsupervised Learning Reinforcement Learning 

Pros 

1. Effective for well-defined tasks 

with labelled data  

2. Good performance in classification 

and regression tasks 

1. Does not require labelled data - Can discover 

hidden patterns and structures in data  

2. Useful for data pre-processing, d imensionality 

reduction, and clustering 

1. Suitable for sequential decision-making 

problems 

2. Can learn from delayed feedback. 

3. Capable of dealing with dynamic 

environments 

Cons 

1. Requires labelled data - Prone to 

overfitting if not properly 

regularized 

2. May not generalize well to new 

tasks or domains 

1. No explicit  target labels, making evaluation 

challenging 

2. May require more complex models and training 

techniques 

1. Can be computationally expensive 

2. Requires exploration 

3. exploitation trade-off - Sensitive to 

reward function design 

Preferred 

1. When labelled data is available 

2. For tasks with clear input output 

relationships 

3. When the goal is prediction or 

classification 

1. When labelled data is scarce or unavailable. 

2. For tasks focused on discovering h idden 

patterns or relationships. 

3. When the goal is data analysis or pre -

processing 

1. When the problem involves sequential 

decision-making. 

2. In dynamic environments with delayed 

feedback. 

3. When the goal is to learn an optimal 

policy or strategy 
 

These innovations aim to establish an increasingly 
connected and productive world by integrating growing 
technologies. Terahertz (THz) communications, a fundamental 
element of 6G, offer ultra-high-speed data transfer and 
sophisticated sensing uses with better bandwidth and spatial 
accuracy than existing technologies. Ultra-Large Antenna 
Arrays (ULAA) and Near-Field Communications (NFC) offer 
more spatial multiplexing and reduced interference, but 
architecture and operational issues remain [10]. 

6G networks require semantic interaction, which shifts 
from data transfer to valuable knowledge sharing. Consider 
context, receiver knowledge, and data intent to improve 
network efficiency and intelligence. Optical Wireless 
Communications (OWC) [11], [12], [13] provides a spectrum-
rich replacement to RF communications, resistant to 
electromagnetic noise but affected by meteorological 
conditions and line-of-sight restrictions [14], [15], [16]. 
Parallel to this, 6G will apply AI to improve user experiences 
[17] in material recommendation, smart infrastructure [18], and 
wellness. 

Large-scale IoT installations and digital twins will benefit 
from 6G, enabling real-time synchronization and better 
decision-making across industries. 6G will enhance the 
metaverse by enabling adaptive and reactive engagements via 
digital twins, edge AI (EAI), and holographic 
telecommunications [19]. Even with technological 
breakthroughs, 6G networks confront considerable obstacles. 
Spectrum management is vital as the radio spectrum grows 
scarce and new frequency bands like THz require research. 
Meeting varied QoS needs requires advanced resource 
management and traffic methods. Flexible network 
architectures and protocols are necessary for 6G networks due 
to the diversity of devices, technology, and services. Scalability 
is crucial for managing the expanding number of connected 
devices and services. Energy efficiency is crucial for IoT 
deployments using battery-powered devices. Finally, 
comprehensive security and privacy protection are crucial as 
networks become more complicated and large. Successfully 

implementing and operating 6G networks requires addressing 
these problems, where AI/ML can play a crucial role. 

DAI techniques have improved significantly in complicated 
network settings by filling gaps in analytical methodologies. 
While their deployment relies on real-life data, it might be 
challenging in terms of time and expense. There are basic kinds 
of ML techniques: supervised learning, unsupervised learning, 
and reinforcement Learning, which includes generative 
models. Each ML class has unique techniques and strategies 
for various tasks. We analyze the pros and cons of different 
ML types in Table I and explain their suitable use based on 
situations and goals. The specific characteristics of each ML 
class offer advantageous solutions for various wireless network 
difficulties. Summarised as follows: 

1) Supervised Learning (SL): A dataset of input-output 

pairings, marked output, is used for training models. To 

generalize and predict unknown data, the model must learn a 

mapping from inputs to outputs. The SL is commonly used for 

classification and regression applications, including Support 

Vector Machine (SVM), decision trees, naive Bayes, k-

Nearest Neighbors (K-NN), and linear/ridge/lasso analysis. 

2) Unsupervised Learning (USL): Models learn from 

unlabelled datasets. The aim is to discover hidden patterns, 

structures, or correlations in the data. Some unsupervised 

learning tasks are: 

a) Clustering and pattern search: Use K-means and 

fuzzy C-means clustering. 

b) Dimensionality reduction: Analyses include Principal 
Component Analysis (PCA), t-stochastic neighbour 

embedding, and linear discriminant evaluation. 

3) Reinforcement Learning (RL): Using environmental 

interactions, agents learn to make decisions. While receiving 

rewards or penalties, the agent aims to learn a policy that 

maximizes cumulative return over time. RL functions 

differently from SL and USL by addressing sequential 

decision-making challenges and operating in delayed feedback 

environments. 
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Fig. 3. The use of DAI in wireless networks.

RL algorithms include Q-learning, state-action-reward-
state-action, Deep Q-Learning (DQN), Deep Deterministic 
Policy Gradient (DDPG), and Twin Delayed DDPG (TD3), 
arranged by development time. 

Deep neural networks (DNNs) [20] provide superior 
performance in generalization, prediction, and classification 
compared to classic ML techniques due to their capacity to 
learn complicated and hierarchical data representations. A 
DNN architecture typically includes an input layer, hidden 
layers, and an output layer. The input layer accepts raw data, 
whereas the output layer produces the final prediction or 
representation. Hidden layers change data, acquiring complex 
features and high abstraction levels as it flows through the 
network. include Feedforward Neural Networks (FNNs), 
Multilayer Perceptrons (MLPs), Convolutional Neural 
Networks (CNNs), Recurrent Neural Networks (RNNs), and 
Autoencoders (AEs). GMs and transformers are classified as 
DNNs/DL and will be elaborated in later parts. 

The intrinsic DL features eliminate manual feature 
engineering and enhance model performance across many 
tasks. DL models are made to scale with huge datasets and 
utilize modern hardware processing capability. DL models can 
learn end-to-end mappings from input data to desired output, 
simplifying the learning process and enabling smooth 
integration into multiple applications. Due to their fundamental 
properties, DL models are becoming a popular research tool for 
solving complex wireless communication and networking 
issues. Recently, wireless network performance has been 
improved using DAI models. Fig. 3 shows the usage of DAI in 
wireless networks that are explained in this section. 

The two SL and USL algorithms, especially DL, are 
capable of learning to estimate channel state information (CSI) 
and executing equalization. Precise Channel State Information 
estimation is essential for numerous activities, including 
beamforming, resource allocation, and link adaption. 
Conventional pilot-based methods may prove inefficient for 
intricate and non-linear channels in dynamic environments, 
whereas deep neural networks can be trained on previous data 
to properly forecast channel state information. 

DL algorithms can adjust beamforming parameters 
accordingly to CSI and other external parameters using 
archived and real-time data. To address CSI acquisition issues, 
pre-defined beamforming codebooks are used for initial access 
and data transfer [21]. Instead of relying on conventional 
codebooks, DL models could analyze huge quantities of data 
from an operational site to create adapted codebooks that 
accurately reflect the site's distinctive characteristics. Hybrid 
architectures manage hardware complexity with MIMO gain, 
allowing DL algorithms to optimize analog and digital 
beamforming weights, resulting in enhanced system 
performance and energy economy. 

RL agents can optimize spectrum assignments in 
unpredictable contexts, determining optimal communication 
bands with little interference and maximum use. RL enables 
smart radios to adjust parameters like transmit power, 
modulation initiatives, and coding rates to enhance 
communication performance and coexist with other radio 
systems in a joint spectrum. 

In wireless networks, ML may optimize resource 
allocation, power control, and network setup, enhancing radio 
asset administration and energy conservation [22]. DL models 
anticipate user behaviour and traffic sequences, while deep RL 
(DRL) methods aid in resource allocation decisions. In 
dynamic network systems, SL techniques can simulate power 
levels and performance measures, while RL methods can 
identify ideal power control rules. Fig. 4 shows a DRL hosted 
in a cloud where a DRL optimization procedure (DRL-OP) 
will be started on the cloud, requiring negotiation where the 
elements and the flow of the process are illustrated. 

SL helps detect and prevent eavesdropping and jamming 
attacks by recognizing and classifying hostile network events 
[23]. SL may enable RF signal fingerprinting for user 
authentication or geolocation by identifying unique properties. 
USL detects network breaches and abnormalities by identifying 
unexpected traffic patterns at an early stage, preventing cyber 
risks, network outages, and performance deterioration. 
Integrating SL and USL techniques improves wireless 
communication security, confidentiality, integrity, and overall 
security. 
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Fig. 4. The interactive DRL loops.

ML enhances handover handling by optimizing decision-
making and ensuring smooth connectivity and QoS for mobile 
users across different cells or access points [24]. Handover 
control can benefit from ML techniques for projection, 
decision-making, and optimization. Digital neural networks 
can forecast handovers by examining historical data, user 
movement patterns, and network conditions, enabling proactive 
handovers, lowering delays and increasing user experience. In 
contrast, DRL agents can improve handover decisions by 
considering user movement, signal strength, network load, and 
QoS needs, determining the optimal target cell or access point 
for every user. 

SL algorithms anticipate future traffic trends using marked 
training data, while USL algorithms detect underlying patterns 
and structures in network traffic data for prediction [25]. 
Network traffic forecasting can benefit from time series 
prediction methods developed for temporal data. By training on 
historical data with labeled congestion conditions, SL 
algorithms can forecast levels and take necessary actions to 
address the issue. USL methods, including clustering and 
dimensionality reduction, can uncover patterns, analyze 
congestion reasons, and develop mitigation strategies. 

USL approaches like clustering and anomaly detection can 
organize network elements with similar properties and find 
novel traffic trends or activities. This information aids in 
establishing effective routing tactics, optimizing load 
circulation, and preserving network performance under 
dynamic situations. However, RL enables network agents to 
learn from their surroundings and adjust routing and load 
balancing techniques gradually. RL algorithms enable network 

agents to maximize load distribution, identify optimal 
pathways, and make better judgments in dynamic settings like 
shifting traffic loads and connection capacity. Fig. 5 depicts a 
centralized DL-based load balancing model [26] for 
heterogeneous networks. Data from the network is sent into the 
DL model, which processes information and applies it to the 
network. 

 
Fig. 5. A DL-based centralized load balancing mechanism in a 

heterogeneous network. After feeding cell data into the DL model, the HO 

variables are determined based on its result. 
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Fig. 6. Various hot-spot user distribution cases. 

III. GENERATIVE AI FOR WIRELESS NETWORKS 

GMs demonstrate potential in tackling network 
optimization, organization, and resource management issues. 
GANs and other GMs can improve wireless network 
efficiency, mobile network slicing, and self-organization by 
producing artificial data and enhancing learning algorithms. 
This section shows how GMs effectively address resource 
allocation, network management, and performance 
optimization in various communication settings. GMs enhance 
RL/DRL agent learning by generating samples that 
demonstrate state-action value variation [27]. This reduces 
acquiring effects in nonstationary situations, minimizes action-
value exaggeration and underestimation, and improves network 
improvement. 

The work in [28] introduced a GAN-based Deep 
Distributional Q Network (GAN-DDQN) to tackle demand-
aware resource allotment in 5G network segmentation. The 
GAN-DDQN model creates action tests, reflecting state-action 
values, and addresses nonstationary learning difficulties. The 
authors offer a reward-clipping approach to address training 
instability. 

GMs can forecast user desires for resources, enabling 
efficient and adaptable network, computation, and storage 
control. Utilizing these estimates in dynamic service-oriented 
network slicing methods enhances resource provisioning and 
user experience (QoE). For allocation of resources forecasting 
in IoT usage, [29] introduced GANSlicing, a flexible service-
oriented software-defined mobile network slicing scheme. This 
strategy prioritizes efficiency and flexibility in resource 
allocation to enhance user experience. GANs are used in 
GANSlicing to estimate user resource needs, enabling efficient 
and flexible control of network, compute, and storage 
equipment. Furthermore, in [30], Shahid et al. propose the 
production of realistic IoT network traffic utilizing a 
combination of AEs and GANs to enhance network-based 
intrusion detection systems (NIDS) and assess their 
effectiveness. The authors train an autoencoder to acquire the 
latent representation of actual sequences of packet sizes, 
thereafter training a WGAN in the latent space to provide latent 
vectors that can be decoded into realistic sequences. The 
artificial bidirectional flows produced by this technology 
closely mimic the actual traffic generated by a Google Home 
Mini, effectively deceiving anomaly detectors into perceiving 
them as valid traffic. 

Recently, DL approaches have gained popularity for 
solving assignment issues. Additionally, VAE variations can be 
used to address linear sum allocation issues, a widely studied 
topic in wireless allocation of resources. A VAE variation can 
be used to tackle linear sum allocation issues, which are 
frequent in wireless resource allocation. This approach can 
replace the Hungarian algorithm and quickly and accurately 
solve huge cost matrices, as shown by simulation results in 
[31]. Fig. 6 shows the distribution of users in different 
scenarios where four NOMA users are positioned differently in 
each scenario. Users are scattered across the hot-spot region in 
Scenario 1, but before and after the center in Scenarios 2 and 3. 

To overcome data shortage and imbalance in SONs, GMs 
can generate realistic artificial data for training powerful ML 
algorithms as shown [32], the authors propose a new cell 
outage detection approach for SONs using GAN and Adaboost 
to solve imbalanced data. GAN pre-processes imbalanced data, 
creating synthetic data for the minority class, while Adaboost 
classifies the balanced dataset. This method accurately detects 
cell outages in cellular networks, surpassing existing 
classification algorithms' limits in imbalanced data. The 
approach improves classification performance significantly, as 
measured by metrics like ROC, precision, recall rate, and F-
value. Fig. 7 illustrates how the generator generates bogus 
samples from randomized noise samples. The discriminator 
determines if synthetic samples are authentic or not. If the 
discriminator finds synthetic samples more similar to real data, 
they are included in the minority group to create a fair dataset 
X ′. 

 

Fig. 7. Cell outage detection workflow using GAN and Adaboost [32]. 
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Fig. 8. Content of this section showing the technologies considered as the possibilities in the 6G for the GMs. 

 
Fig. 9. Example on wireless sensor and communication LLM applications.

To improve algorithm flexibility to network shifts like 
UAV movement trends or infrequent URLLC events, GMs can 
generate synthetic data that records the basic architecture of 
these patterns. According to study [33], WS-GAN is a weakly-
supervised GAN that uses additional data to predict wireless 
coverage using randomly distributed samples of received signal 
intensity. In contrast to standard methods like kNN or matrix 
finish, WS-GANs increase prediction effectiveness by 
including auxiliary information like terrain and building data, 
which greatly affects signal strength variation. In tests on an 
actual LTE dataset, WS-GAN demonstrated superior 
estimation accuracy and produced more practical wireless 
coverage maps compared to baseline approaches. In addition, 
[34] introduces a simpler approach for small cell coverage 
optimization utilizing GAN to obtain knowledge and transfer it 
to local SDN controllers. This approach focuses on creating 
effective GAN training for diverse topologies, even with 
insufficient data on network behavior and performance. 

GANs and VAEs show potential for network 
administration and optimization. From improved learning 
algorithms to assignment solutions, GMs provide a versatile 
and effective toolkit for network researchers and practitioners. 
In non-stationary situations, GMs excel at forecasting user 
resource needs, handling imbalanced and sparse data, and 
adjusting to dynamic network conditions. GMs enhance 
network adaptability, efficiency, and robustness. By generating 
synthetic data, GMs can enhance actual information for 
training ML algorithms, enhancing performance in tasks like 
resource allocation and outage detection. Additionally, GMs 
improve the reliability of RL/DRL algorithms in non-stationary 
situations, enabling them more suitable for real-world 
deployments. Combining GMs with existing technology could 
change next-generation networks. 

IV. THE ROLE OF GENERATIVE MODELS IN EMERGING 6G 

CAPABILITIES 

This section talks about emerging 6G capabilities included 
in the use of semantic communication, integrated sensing and 
communications (ISAC), mobile edge computing (MEC) and 
EAI for 6G networks, and Risky ML (RML) and reliable AI. 
Fig. 8 shows the content of this section. 

Semantic communication (SC) is set to be a fundamental 
innovation in the advancement of 6G networks. In contrast to 
conventional communication models that emphasize the 
delivery of unadulterated bits with minimal distortion or data 
loss, semantic communication seeks to convey "meaningful" 
information, taking into account elements such as setting, the 
receiver's prior knowledge, and the transmission's intended 
purpose. This sophisticated technique designates SM as an 
essential element of forthcoming 6G networks, anticipated to 
utilize GenAI for comprehending, interpreting, and responding 
to extensive heterogeneous data flows. 

Large Language Models (LLMs) are crucial in 
transforming the landscape of supply chains, ushering in an era 
of advanced, intelligent, and contextually aware data flows. 
LLMs are anticipated to provide as the foundation for 
developing self-governing, interacting AI agents that 
comprehend telecommunications language, ultimately guiding 
humanity towards collective intelligence, as opposed to the 
earlier notion of linked intelligence. Furthermore, LLMs can be 
developed as multimodal big models trained on 
telecommunications data and fine-tuned to execute various 
downstream tasks, thereby obviating the necessity for 
specialized models and facilitating the realization of artificial 
general intelligence (AGI)-enhanced wireless networks. LLMs 
can enhance wireless networks by providing predictability 
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features, hence facilitating enhanced and proactive localization, 
beamforming, power allocation, transition, and spectrum 
administration, even in hitherto unencountered network 
conditions, as shown in Fig. 9. Conversely, wireless networks 
can link many GenAI models using innovative communication 
methods at both semantic and effectiveness levels, facilitating 
expedited detecting, inference, and action while minimizing the 
usage of resources. 

With strong natural language comprehension potential, 
LLMs provide powerful database querying interfaces. Users 
can ask questions in normal language, and the system will 
understand and retrieve the desired data, instead of using 
structured searches. GANs are revolutionizing SM by 
producing more effective, flexible, and perceptive results. 
Additionally, GANs may simplify complex data into 
understandable visual illustrations, guaranteeing that the 
transmitted information is received and understood by the 
recipient. Using picture translations helps improve 
understanding and overcome the gap between raw data and 
actionable insights. 

DGMs offer a unique technique to SM, tackling data 
transport and interpretation difficulties. DGMs can improve 
signal quality, preserving valuable data even in unfavourable 
situations. This feature is crucial when signal loss may 
obfuscate the meaning of communicated data. DGMs enable 
variable-rate communication for dynamic communication. As 
data complexity varies, DGMs can adjust transmission rates to 
ensure efficient data transfer without overburdening 
communication links. This allows DGMs to convey semantic 
depth despite data complexity. 

ISAC brings new opportunities for network solutions by 
combining sensing and communication capabilities to react to 
shifts in the environment, resulting in improved effectiveness 
and intelligent processes. For ISAC, few factors can be 
considered important to discuss: 

1) Data augmentation: the task involves creating 

synthetic, compelling sensor data to enhance real-world data 

repositories and provide a solid foundation for training. GANs 

excel in creating realistic and accurate data, making them ideal 

for augmentation jobs. 

2) Anomaly detection: The objective is to identify data 

trends or spots that significantly depart from norms, ensuring 

fast notifications and system dependability. GANs have 

improved in identifying irregularities in sensor data spread. 

DGMs enhance anomaly identification by incorporating 

uncertainty quantification into their iterative approach. 

3) Resource optimization: This involves simulating 

network settings and predicting future states to allocate 

resources efficiently. GANs excel at simulating various 

network contexts, enabling efficient model training for 

resource optimization. FGM's standardizing flows, which 

accurately describe complex network state distributions, are 

essential tools for decision-making in this environment. 

4) Sensor/Data fusion: This responsibility involves 

combining data from several sensors to provide a 

comprehensive and accurate environment depiction. VAEs 

simplify complex tasks by reducing data into a simplified 

hidden space . Standardizing flows can improve this process 

by accurately simulating complex data patterns. 

5) Decision making: This job supports consecutive 

decision-making based on sensor and communication data. 

GTMs excel at handling large data sets, making them useful in 

sequential decision-making situations. LSTMs, designed for 

data patterns, are essential for situations requiring a strong 

temporal or sequential backdrop. 

MEC and EAI change 6G networks by decentralizing data 
execution. Standard models, relying on central servers or cloud 
computing, caused latency and inefficiencies, especially for 
time-sensitive operations or remote devices. Integrating 
compute and AI/ML capabilities at the network edge enables 
real-time data processing and decision-making for devices. 
This change is essential for meeting the needs of 6G and its 
various uses. GANs may reproduce real-world data through 
generated samples. GANs can enhance data at the edge in 
MEC contexts, particularly when significant datasets are 
unavailable for training or assessment. 

Bayesian VAE models may estimate ambiguity, making 
them essential for edge devices [35]. Serial data is essential for 
edge applications like VR and AR. LSTMs and GTMs 
efficiently evaluate patterns, enabling real-time improvements 
in AR encounters based on user motions and activities. Edge 
devices frequently face complex data distributions, particularly 
in multi-modal or multi-sensor settings. Standardizing Flows 
models complex distributions, enabling localized AI to 
comprehend and respond to nuanced input. In cases of noisy or 
uncertain edge data, DGMs can be crucial. Their repeated 
output refinement improves accuracy continuously, making it 
useful for advanced robotics with unpredictable environmental 
variations. 

RML studies how AI models can be deceived by 
particularly constructed inputs, leading to inaccurate 
predictions or classifications. Adversarial instances include 
modest, unnoticeable modifications to input data and 
manipulating model output, which may appear unmodified to 
humans. Studying AML is critical for understanding 
vulnerabilities and developing responses against prospective 
attacks. 

GANs can be used to create antagonistic samples that 
deceive classifiers. The producer in GANs can produce fake 
samples that mislead a target classifier into making incorrect 
conclusions [36]. Conversely, GMs are able to identify and 
counter aggressive attacks. In GAN training, the generator 
generates adversarial instances and the discriminator learns to 
differentiate between authentic and adversarial samples. With 
proper training, the discriminator can identify adversarial 
samples in real-world settings. 

AML handles adversarial assaults, enhancing AI system 
resilience and robustness. Although protections against 
adversarial attacks are being created, openness is needed to 
understand how they work and how the model processes data, 
which lies within trustworthy AI (TAI). Numerous frameworks 
have been suggested to direct the advancement of TAI, with 
the European Commission’s High-Level Expert Group on 
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Artificial Intelligence being one of the most notable entities to 
have formalized TAI as a theory cantered on seven pillars that 
encompass diverse aspects of AI ethics and durability. 

V. CONCLUSIONS 

As the age of 6G begins, the amalgamation of innovative 
communication paradigms and nascent innovations is swiftly 
revolutionizing wireless communications, with machine 
learning and artificial intelligence proving to be pivotal in 
tackling intricate difficulties. Although DAI prevails in the AI-
driven wireless scientific domain, the potential of GenAI to 
augment and enhance DAI methodologies is becoming 
increasingly apparent, particularly in contexts characterized by 
insufficient or partial data. This study offered insights into the 
principles of 6G and explored the critical function of GMs in 
diverse areas of wireless research. Moreover, by identifying 
potential problems and proposing effective techniques, we 
argue that our research offers scholars and industry 
professionals valuable insights, thereby positioning itself as a 
guide resource in this rapidly developing field. 
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