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Abstract—As the world move beyond the S5G era, the
emergence of 6G promises a significant integration with
innovative communication paradigms and burgeoning
technology trends, actualizing previously utopian concepts
alongside increased technical complexities. Analytical models
offer basic frameworks, but ML and Al now outperform them in
solving complex problems, either by augmenting or supplanting
model-based methodologies. The predominant focus of data-
driven wireless research is on discriminative AI (DAI), which
necessitates extensive real-world datasets. In contrast to DAL
Generative Al (GenAl) refers to generative models (GMs) that
can identify the fundamental data circulation, patterns, and
characteristics of the incoming data. Given these attractive
characteristics, GenAl can either substitute or augment DAI
methodologies in multiple contexts. This comprehensive tutorial-
survey article begins with an overview of 6G and wireless
intellectual ability by delineating potential 6G applications and
services. The aspects presented in this paper support the internet
of things integration with 6G networks with the support of the Al
as intelligent systems. This review paper concentrates on
fundamental wireless research domains, encompassing network
optimization, organization, and management. It examines the
foundational learning principles of DAI and its methodologies,
the application of DAI in wireless networks, and the utilization of
GMs in 6G networks. Due to its comprehensive nature, this
paper will act as a crucial reference for researchers and
professionals exploring this dynamic and promising field.
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wireless communication

I INTRODUCTION

The evolution of wireless networks has been characterized
by significant innovations, with each generation introducing
dramatic changes that redefine our interaction with digital
environments. As we move beyond the 5G era, defined by
remarkable data speeds and strong connectivity [1],a new vista
emerges with the introduction of 6G. Although 5G was lauded
for its massive machine-type communications (mMTC), ultra-
reliable low-latency communications (URLLC), and enhanced

*Corresponding author.

mobile broadband (eMBB), 6G transcends being a mere
enhancement of its predecessor; it signifies a fundamental
transformation aimed at redefining the principles of wireless
connectivity. The anticipated 6G aspires not only to enhance
key performance indicators (KPIs) but also to integrate with
innovative communication paradigms and future technical
pathways, actualizing previously utopian concepts [2].

6G represents a major step toward a more connected and
intelligent future, not just an incremental upgrade. We
highlight innovative technologies that pave the way for an era
when communication transcends mere connectivity, enabling
deeper, more meaningful, and intelligent interactions in an
increasingly digital landscape. Exploring the potential
technological advancements of 6G, semantic communications
stand out as a fundamental element, striving to surpass
traditional data transfer models by facilitating networks that
understand and interpret content semantics, thereby ensuring
communication that is not only ultra-fast but also contextually
astute [3]. In the past decade, articles have highlighted the
possibility of data-driven methodologies to supplement or
replace model-based approaches. Analytical models provide
foundational insights, while Al models use real-life datasets for
exact adaptation to complicated situations.

Most modern wireless data research relies on DAI models,
which prioritize identifying distinctions between data types.
Three fundamental learning paradigms are commonly used in
DAI models, as shown in Fig. 1. These principles will be
discussed in Section IL

While these learning paradigms are versatile, obtaining
large real-world training datasets can be costly in terms of
money, effort, and computer resources. In addition to
performing ML tasks (e.g., classification, regression,
clustering, pattern search, dimensionality reduction). DAI
models may struggle to interpret data and miss subtle
patterns/states, presenting challenges in complex real-world
scenarios. Unlike DAL GenAl refers to GMs that can identify
the distribution, patterns, and properties of incoming data [4].
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[ reinforcement Learning ]

techniques are trained using labeled data to
understand and predict the predefined
categories

seeks patterns in unlabeled data to identify
clusters or groups and subsequently applying
discriminative techniques to classify future
data points

centers on agents that seek optimal decisions
by distinguishing between a plethora of
actions depending on states and interaction
with the environment

Fig. 1. Fundamental leaming principles used in DAI.

After modelling the data distribution, GMs can produce
new instances that are similar to the training data and
examples. This is crucial in wireless domains where real-world
data is limited, fragmentary, costly, and difficult to understand
or grasp. It is essential for data augmentation, imputation,
disentanglement, anomaly detection, and more. Despite the
idea that GenAl is a new trend, our study of 120 technical
articles highlights the extensive research across key wireless
research pathways. GenAl gained attention after the release of
big language model-based chatbots by tech heavyweights such
as OpenAl's ChatGPT in Nov. 2022, Google's BARD in Mar.
2023, and Microsofts Bing Chat in Feb. 2023. These
developments sparked attention in both the industrial and
intellectual sectors. With renewed attention, GenAl-driven
wireless communication and networking research is poised for
growth. Our study is comprehensive and rich in material,
making it a valuable reference for scholars and professionals in
this important and growing field.

GMs are gaining popularity in wireless telecommunication
and networking. The research in [5] explores the benefits and
drawbacks of using GMs for wireless channel modelling.
Traditional channel modelling requires special skill and is
technically demanding. To solve this problem, they developed
a Generative Adversarial Network (GAN) technique to model
wireless channels autonomously from raw data. GenAl for
wireless networks is covered in [6], with an emphasis on three
sample GMs: GANSs, variational autoencoders (VAEs), and
diffusion-based generative models (DGMs). A GenAl-based
paradigm for wireless network management is developed,
challenging established approaches, and promoting GM
solutions. This case study optimizes contracts in mobile Al-
Generated Content (AIGC) services using DGMs. A recent
assessment highlights the growth of mobile AIGC networks,
emphasizing real-time, tailored services that prioritize user
privacy.

In response to DAI model issues in industrial IoT, [7]
recommends GM adoption and examines current GMs for
HoT-related tasks such as anomaly detection, trust-boundary
protection, network traffic prediction, and platform monitoring.
According to [8], GANs have great potential for privacy and
security due to their ability to produce realistic data. The
authors analyze the merits, weaknesses, and future trajectories
of GANSs, addressing the lack of thorough surveys in this area.
According to [9], GANs can be used for tasks such as spectrum

sharing, anomaly detection, and security threat mitigation. The
study highlights the benefits of GANS, including synthesising
field data and recovering corrupted spectrum bits. GANs are
rapidly being used in cybersecurity, particularly for jobs
involving imbalanced datasets. The IoT applications hold
potential for commercialization through the deployment of 6G
communication networks.

The lack of studies on reviewing the wireless
communications, especially the 6G networks, in the Generative
Al era is the main motivation for this study. For autonomy and
context, we begin with 6G network and wireless intelligence
foundations in Section 1. Section II provides a brief
introduction of 6G communications and networking trends,
including their numerous uses and offerings. Considering that
we established the context with the requisite background
knowledge, GenAl for wireless networks’ optimization,
organization, and administration is presented in Section III.
Section IV outlines the strategic significance of GMs for
emerging domains of 6G network research. Finally, the
conclusion is shown in Section V.

II. THE ROLE OF DISCRIMINATIVE Al IN 6G NETWORKS

This section highlights developing trends in 6G
communications and networking technology, followed by
problems faced in achieving 6G implementation. Key concepts
of DAI approaches are also covered. Here, we simply discuss
how DAI approaches have been used to address key wireless
network issues. This article explains use cases of DAI in
wireless networks. The parts that are included in this section
are illustrated in Fig. 2.

6G wireless intelligence
preliminaries

[ ] )

[ Emerging trends in 6G ] [ Overview of DAI ) [ DAI techniques ]

and challenges

Fig.2. 6G wireless intelligence preliminaries.
The emergence of 6G networks will revolutionize

technology, introducing new applications and offerings beyond
5@G capabilities.
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COMPARISON OF SL, USL, AND RL

Supervised Learning

Unsupervised Learning

Reinforcement Learning

1.  Effective for well-defined tasks | 1.

with labelled data
Pros . o
2. Good performance in classification | 2.

and regression tasks

Does not require labelled data - Can discover
hidden patterns and structures in data

Useful for data pre-processing, dimensionality
reduction, and clustering

1. Suitable for sequential decision-making
problems

2. Canleam from delayed feedback.

3. Capable of dealing with dynamic
environments

1. Requires labelled data - Prone to
overfitting if not  properly

Cons regularized

2.  May not generalize well to new
tasks or domains

challenging

techniques

1. No explicit target labels, making evaluation | 1.

2. May require more complex models and training | 3.

Can be computationally expensive

2. Requires exploration

exploitation trade-off - Sensitive to
reward function design

1. When labelled data is available 1.
2. For tasks with clear input output | 2.
Preferred relationships
3. When the goal is prediction or | 3.

classification processing

When labelled data is scarce or unavailable.
For tasks focused on discovering hidden
patterns or relationships.

When the goal is data analysis or pre-

1. When the problem involves sequential
decision-making.

2. In dynamic environments with delayed
feedback.

3. When the goal is to learn an optimal

policy or strategy

These innovations aim to establish an increasingly
connected and productive world by integrating growing
technologies. Terahertz (THz) communications, a fundamental
element of 6G, offer ultra-high-speed data transfer and
sophisticated sensing uses with better bandwidth and spatial
accuracy than existing technologies. Ultra-Large Antenna
Arrays (ULAA) and Near-Field Communications (NFC) offer
more spatial multiplexing and reduced interference, but
architecture and operational issues remain [10].

6G networks require semantic interaction, which shifts
from data transfer to valuable knowledge sharing. Consider
context, receiver knowledge, and data intent to improve
network efficiency and intelligence. Optical Wireless
Communications (OWC) [11], [12], [13] provides a spectrum-
rich replacement to RF communications, resistant to
electromagnetic noise but affected by meteorological
conditions and line-of-sight restrictions [14], [15], [16].
Parallel to this, 6G will apply Al to improve user experiences
[17] in material recommendation, smart infrastructure [18], and
wellness.

Large-scale IoT installations and digital twins will benefit
from 6G, enabling real-time synchronization and better
decision-making across industries. 6G will enhance the
metaverse by enabling adaptive and reactive engagements via
digital twins, edge Al (EAI), and holographic
telecommunications  [19]. Even  with  technological
breakthroughs, 6G networks confront considerable obstacles.
Spectrum management is vital as the radio spectrum grows
scarce and new frequency bands like THz require research.
Meeting varied QoS needs requires advanced resource
management and traffic methods. Flexible network
architectures and protocols are necessary for 6G networks due
to the diversity of devices, technology, and services. Scalability
is crucial for managing the expanding number of connected
devices and services. Energy efficiency is crucial for IoT
deployments using battery-powered devices. Finally,
comprehensive security and privacy protection are crucial as
networks become more complicated and large. Successfully

implementing and operating 6G networks requires addressing
these problems, where AI/ML can play a crucial role.

DAI techniques have improved significantly in complicated
network settings by filling gaps in analytical methodologies.
While their deployment relies on real-life data, it might be
challenging in terms of time and expense. There are basic kinds
of ML techniques: supervised learning, unsupervised leaming,
and reinforcement Learning, which includes generative
models. Each ML class has unique techniques and strategies
for various tasks. We analyze the pros and cons of different
ML types in Table Iand explain their suitable use based on
situations and goals. The specific characteristics of each ML
class offer advantageous solutions for various wireless network
difficulties. Summarised as follows:

1) Supervised Learning (SL): A dataset of input-output
pairings, marked output, is used for training models. To
generalize and predict unknown data, the model must learn a
mapping from inputs to outputs. The SL is commonly used for
classification and regression applications, including Support
Vector Machine (SVM), decision trees, naive Bayes, k-
Nearest Neighbors (K-NN), and linear/ridge/lasso analysis.

2) Unsupervised Learning (USL): Models leamn from
unlabelled datasets. The aim is to discover hidden patterns,
structures, or correlations in the data. Some unsupervised
learning tasks are:

a) Clustering and pattern search: Use K-means and
fuzzy C-means clustering.

b) Dimensionality reduction: Analyses include Principal
Component  Analysis (PCA), t-stochastic neighbour
embedding, and linear discriminant evaluation.

3) Reinforcement Learning (RL): Using environmental
interactions, agents learn to make decisions. While receiving
rewards or penalties, the agent aims to learn a policy that
maximizes cumulative return over time. RL functions
differently from SL and USL by addressing sequential
decision-making challenges and operating in delayed feedback
environments.
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Fig. 3. The use of DAI in wireless networks.

RL algorithms include Q-learning, state-action-reward-
state-action, Deep Q-Learning (DQN), Deep Deterministic
Policy Gradient (DDPG), and Twin Delayed DDPG (TD3),
arranged by development time.

Deep neural networks (DNNs) [20] provide superior
performance in generalization, prediction, and classification
compared to classic ML techniques due to their capacity to
learn complicated and hierarchical data representations. A
DNN architecture typically includes an input layer, hidden
layers, and an output layer. The input layer accepts raw data,
whereas the output layer produces the final prediction or
representation. Hidden layers change data, acquiring complex
features and high abstraction levels as it flows through the
network. include Feedforward Neural Networks (FNNs),
Multilayer Perceptrons (MLPs), Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), and
Autoencoders (AEs). GMs and transformers are classified as
DNNs/DL and will be elaborated in later parts.

The intrinsic DL features eliminate manual feature
engineering and enhance model performance across many
tasks. DL models are made to scale with huge datasets and
utilize modern hardware processing capability. DL models can
learn end-to-end mappings from input data to desired output,
simplifying the learning process and enabling smooth
integration into multiple applications. Due to their fundamental
properties, DL models are becoming a popular research tool for
solving complex wireless communication and networking
issues. Recently, wireless network performance has been
improved using DAI models. Fig. 3 shows the usage of DAl in
wireless networks that are explained in this section.

The two SL and USL algorithms, especially DL, are
capable of learning to estimate channel state information (CSI)
and executing equalization. Precise Channel State Information
estimation is essential for numerous activities, including
beamforming, resource allocation, and link adaption.
Conventional pilot-based methods may prove inefficient for
intricate and non-linear channels in dynamic environments,
whereas deep neural networks can be trained on previous data
to properly forecast channel state information.

DL algorithms can adjust beamforming parameters
accordingly to CSI and other external parameters using
archived and real-time data. To address CSI acquisition issues,
pre-defined beamforming codebooks are used for initial access
and data transfer [21]. Instead of relying on conventional
codebooks, DL models could analyze huge quantities of data
from an operational site to create adapted codebooks that
accurately reflect the site's distinctive characteristics. Hybrid
architectures manage hardware complexity with MIMO gain,
allowing DL algorithms to optimize analog and digital
beamforming weights, resulting in enhanced system
performance and energy economy.

RL agents can optimize spectrum assignments in
unpredictable contexts, determining optimal communication
bands with little interference and maximum use. RL enables
smart radios to adjust parameters like transmit power,
modulation initiatives, and coding rates to enhance
communication performance and coexist with other radio
systems in a joint spectrum.

In wireless networks, ML may optimize resource
allocation, power control, and network setup, enhancing radio
asset administration and energy conservation [22]. DL models
anticipate user behaviour and traffic sequences, while deep RL
(DRL) methods aid in resource allocation decisions. In
dynamic network systems, SL techniques can simulate power
levels and performance measures, while RL methods can
identify ideal power control rules. Fig. 4 shows a DRL hosted
in a cloud where a DRL optimization procedure (DRL-OP)
will be started on the cloud, requiring negotiation where the
elements and the flow of the process are illustrated.

SL helps detect and prevent eavesdropping and jamming
attacks by recognizing and classifying hostile network events
[23]. SL may enable RF signal fingerprinting for user
authentication or geolocation by identifying unique properties.
USL detects network breaches and abnormalities by identifying
unexpected traffic patterns at an early stage, preventing cyber
risks, network outages, and performance deterioration.
Integrating SL and USL techniques improves wireless
communication security, confidentiality, integrity, and overall
security.
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ML enhances handover handling by optimizing decision-
making and ensuring smooth connectivity and QoS for mobile
users across different cells or access points [24]. Handover
control can benefit from ML techniques for projection,
decision-making, and optimization. Digital neural networks
can forecast handovers by examining historical data, user
movement patterns, and network conditions, enabling proactive
handovers, lowering delays and increasing user experience. In
contrast, DRL agents can improve handover decisions by
considering user movement, signal strength, network load, and
QoS needs, determining the optimal target cell or access point
for every user.

SL algorithms anticipate future traffic trends using marked
training data, while USL algorithms detect underlying patterns
and structures in network traffic data for prediction [25].
Network traffic forecasting can benefit from time series
prediction methods developed for temporal data. By training on
historical data with labeled congestion conditions, SL
algorithms can forecast levels and take necessary actions to
address the issue. USL methods, including clustering and
dimensionality reduction, can uncover patterns, analyze
congestion reasons, and develop mitigation strategies.

USL approaches like clustering and anomaly detection can
organize network elements with similar properties and find
novel traffic trends or activities. This information aids in
establishing effective routing tactics, optimizing load
circulation, and preserving network performance under
dynamic situations. However, RL enables network agents to
learn from their surroundings and adjust routing and load
balancing techniques gradually. RL algorithms enable network

agents to maximize load distribution, identify optimal
pathways, and make better judgments in dynamic settings like
shifting traffic loads and connection capacity. Fig. 5 depicts a
centralized DL-based load balancing model [26] for
heterogeneous networks. Data from the network is sent into the
DL model, which processes information and applies it to the
network.

Qutput: Action

Local Data-

Local Sensing < 3
Driven Control

Data

Macro
BS

HetNet

Fig. 5. A DL-based centralized load balancing mechanism in a
heterogeneous network. After feeding cell data into the DL model, the HO
variables are determined based on its result.
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III.  GENERATIVE Al FOR WIRELESS NETWORKS

GMs demonstrate potential in tackling network
optimization, organization, and resource management issues.
GANs and other GMs can improve wireless network
efficiency, mobile network slicing, and self-organization by
producing artificial data and enhancing learning algorithms.
This section shows how GMs effectively address resource
allocation, network management, and performance
optimization in various communication settings. GMs enhance
RL/DRL agent leaming by generating samples that
demonstrate state-action value variation [27]. This reduces
acquiring effects in nonstationary situations, minimizes action-
value exaggeration and underestimation, and improves network
improvement.

The work in [28] introduced a GAN-based Deep
Distributional Q Network (GAN-DDQN) to tackle demand-
aware resource allotment in 5G network segmentation. The
GAN-DDQN model creates action tests, reflecting state-action
values, and addresses nonstationary learning difficulties. The
authors offer a reward-clipping approach to address training
instability.

GMs can forecast user desires for resources, enabling
efficient and adaptable network, computation, and storage
control. Utilizing these estimates in dynamic service-oriented
network slicing methods enhances resource provisioning and
user experience (QoE). For allocation of resources forecasting
in IoT usage, [29] introduced GANSlicing, a flexible service-
oriented software-defined mobile network slicing scheme. This
strategy prioritizes efficiency and flexibility in resource
allocation to enhance user experience. GANs are used in
GANSlicing to estimate user resource needs, enabling efficient
and flexible control of network, compute, and storage
equipment. Furthermore, in [30], Shahid et al. propose the
production of realistic IoT network traffic utilizing a
combination of AEs and GANs to enhance network-based
intrusion detection systems (NIDS) and assess their
effectiveness. The authors train an autoencoder to acquire the
latent representation of actual sequences of packet sizes,
thereafter training a WGAN in the latent space to provide latent
vectors that can be decoded into realistic sequences. The
artificial bidirectional flows produced by this technology
closely mimic the actual traffic generated by a Google Home
Mini, effectively deceiving anomaly detectors into perceiving
them as valid traffic.

Recently, DL approaches have gained popularity for
solving assignment issues. Additionally, VAE variations can be
used to address linear sum allocation issues, a widely studied
topic in wireless allocation of resources. A VAE variation can
be used to tackle linear sum allocation issues, which are
frequent in wireless resource allocation. This approach can
replace the Hungarian algorithm and quickly and accurately
solve huge cost matrices, as shown by simulation results in
[31]. Fig. 6 shows the distribution of users in different
scenarios where four NOMA users are positioned differently in
each scenario. Users are scattered across the hot-spot region in
Scenario 1, butbefore and after the center in Scenarios 2 and 3.

To overcome data shortage and imbalance in SONs, GMs
can generate realistic artificial data for training powerful ML
algorithms as shown [32], the authors propose a new cell
outage detection approach for SONs using GAN and Adaboost
to solve imbalanced data. GAN pre-processes imbalanced data,
creating synthetic data for the minority class, while Adaboost
classifies the balanced dataset. This method accurately detects
cell outages in cellular networks, surpassing existing
classification algorithms' limits in imbalanced data. The
approach improves classification performance significantly, as
measured by metrics like ROC, precision, recall rate, and F-
value. Fig. 7 illustrates how the generator generates bogus
samples from randomized noise samples. The discriminator
determines if synthetic samples are authentic or not. If the
discriminator finds synthetic samples more similar to real data,
they are included in the minority group to create a fair dataset
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Fig. 7. Cell outage detection workflow using GAN and Adaboost [32].
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Fig. 9. Example on wireless sensor and communication LLM applications.

To improve algorithm flexibility to network shifts like
UAV movement trends or infrequent URLLC events, GMs can
generate synthetic data that records the basic architecture of
these patterns. According to study [33], WS-GAN is a weakly-
supervised GAN that uses additional data to predict wireless
coverage using randomly distributed samples of received signal
intensity. In contrast to standard methods like kNN or matrix
finish, WS-GANs increase prediction effectiveness by
including auxiliary information like terrain and building data,
which greatly affects signal strength variation. In tests on an
actual LTE dataset, WS-GAN demonstrated superior
estimation accuracy and produced more practical wireless
coverage maps compared to baseline approaches. In addition,
[34] introduces a simpler approach for small cell coverage
optimization utilizing GAN to obtain knowledge and transfer it
to local SDN controllers. This approach focuses on creating
effective GAN training for diverse topologies, even with
insufficient data on network behavior and performance.

GANs and VAEs show potential for network
administration and optimization. From improved leaming
algorithms to assignment solutions, GMs provide a versatile
and effective toolkit for network researchers and practitioners.
In non-stationary situations, GMs excel at forecasting user
resource needs, handling imbalanced and sparse data, and
adjusting to dynamic network conditions. GMs enhance
network adaptability, efficiency, and robustness. By generating
synthetic data, GMs can enhance actual information for
training ML algorithms, enhancing performance in tasks like
resource allocation and outage detection. Additionally, GMs
improve the reliability of RL/DRL algorithms in non-stationary
situations, enabling them more suitable for real-world
deployments. Combining GMs with existing technology could
change next-generation networks.

IV. THEROLE OF GENERATIVE MODELS IN EMERGING 6G
CAPABILITIES

This section talks about emerging 6G capabilities included
in the use of semantic communication, integrated sensing and
communications (ISAC), mobile edge computing (MEC) and
EAI for 6G networks, and Risky ML (RML) and reliable Al
Fig. 8 shows the content of this section.

Semantic communication (SC) is set to be a fundamental
innovation in the advancement of 6G networks. In contrast to
conventional communication models that emphasize the
delivery of unadulterated bits with minimal distortion or data
loss, semantic communication seeks to convey "meaningful"
information, taking into account elements such as setting, the
receiver's prior knowledge, and the transmission's intended
purpose. This sophisticated technique designates SM as an
essential element of forthcoming 6G networks, anticipated to
utilize GenAl for comprehending, interpreting, and responding
to extensive heterogeneous data flows.

Large Language Models (LLMs) are crucial in
transforming the landscape of supply chains, ushering in an era
of advanced, intelligent, and contextually aware data flows.
LLMs are anticipated to provide as the foundation for
developing self-governing, interacting Al agents that
comprehend telecommunications language, ultimately guiding
humanity towards collective intelligence, as opposed to the
earlier notion of linked intelligence. Furthermore, LLMs can be
developed as multimodal big models trained on
telecommunications data and fine-tuned to execute various
downstream tasks, thereby obviating the necessity for
specialized models and facilitating the realization of artificial
general intelligence (AGI)-enhanced wireless networks. LLMs
can enhance wireless networks by providing predictability
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features, hence facilitating enhanced and proactive localization,
beamforming, power allocation, transition, and spectrum
administration, even in hitherto unencountered network
conditions, as shown in Fig. 9. Conversely, wireless networks
can link many GenAl models using innovative communication
methods at both semantic and effectiveness levels, facilitating
expedited detecting, inference, and action while minimizing the
usage of resources.

With strong natural language comprehension potential,
LLMs provide powerful database querying interfaces. Users
can ask questions in normal language, and the system will
understand and retrieve the desired data, instead of using
structured searches. GANs are revolutionizing SM by
producing more effective, flexible, and perceptive results.
Additionally, GANs may simplify complex data into
understandable visual illustrations, guaranteeing that the
transmitted information is received and understood by the
recipient. Using picture translations helps improve
understanding and overcome the gap between raw data and
actionable insights.

DGMs offer a unique technique to SM, tackling data
transport and interpretation difficulties. DGMs can improve
signal quality, preserving valuable data even in unfavourable
situations. This feature is crucial when signal loss may
obfuscate the meaning of communicated data. DGMs enable
variable-rate communication for dynamic communication. As
data complexity varies, DGMs can adjust transmission rates to
ensure efficient data transfer without overburdening
communication links. This allows DGMs to convey semantic
depth despite data complexity.

ISAC brings new opportunities for network solutions by
combining sensing and communication capabilities to react to
shifts in the environment, resulting in improved effectiveness
and intelligent processes. For ISAC, few factors can be
considered important to discuss:

1) Data augmentation: the task involves creating
synthetic, compelling sensor data to enhance real-world data
repositories and provide a solid foundation for training. GANs
excel in creating realistic and accurate data, making them ideal
for augmentation jobs.

2) Anomaly detection: The objective is to identify data
trends or spots that significantly depart from norms, ensuring
fast notifications and system dependability. GANs have
improved in identifying irregularities in sensor data spread.
DGMs enhance anomaly identification by incorporating
uncertainty quantification into their iterative approach.

3) Resource optimization: This involves simulating
network settings and predicting future states to allocate
resources efficiently. GANs excel at simulating various
network contexts, enabling efficient model training for
resource optimization. FGM's standardizing flows, which
accurately describe complex network state distributions, are
essential tools for decision-making in this environment.

4) Sensor/Data  fusion: This responsibility involves
combining data from several sensors to provide a
comprehensive and accurate environment depiction. VAEs
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simplify complex tasks by reducing data into a simplified
hidden space . Standardizing flows can improve this process
by accurately simulating complex data patterns.

5) Decision making: This job supports consecutive
decision-making based on sensor and communication data.
GTMs excel at handling large data sets, making them useful in
sequential decision-making situations. LSTMs, designed for
data patterns, are essential for situations requiring a strong
temporal or sequential backdrop.

MEC and EAI change 6G networks by decentralizing data
execution. Standard models, relying on central servers or cloud
computing, caused latency and inefficiencies, especially for
time-sensitive operations or remote devices. Integrating
compute and AI/ML capabilities at the network edge enables
real-time data processing and decision-making for devices.
This change is essential for meeting the needs of 6G and its
various uses. GANs may reproduce real-world data through
generated samples. GANs can enhance data at the edge in
MEC contexts, particularly when significant datasets are
unavailable for training or assessment.

Bayesian VAE models may estimate ambiguity, making
them essential for edge devices [35]. Serial data is essential for
edge applications like VR and AR. LSTMs and GTMs
efficiently evaluate patterns, enabling real-time improvements
in AR encounters based on user motions and activities. Edge
devices frequently face complex data distributions, particularly
in multi-modal or multi-sensor settings. Standardizing Flows
models complex distributions, enabling localized Al to
comprehend and respond to nuanced input. In cases of noisy or
uncertain edge data, DGMs can be crucial. Their repeated
output refinement improves accuracy continuously, making it
useful for advanced robotics with unpredictable environmental
variations.

RML studies how Al models can be deceived by
particularly  constructed inputs, leading to inaccurate
predictions or classifications. Adversarial instances include
modest, unnoticeable modifications to input data and
manipulating model output, which may appear unmodified to
humans. Studying AML 1is critical for understanding
vulnerabilities and developing responses against prospective
attacks.

GANs can be used to create antagonistic samples that
deceive classifiers. The producer in GANs can produce fake
samples that mislead a target classifier into making incorrect
conclusions [36]. Conversely, GMs are able to identify and
counter aggressive attacks. In GAN training, the generator
generates adversarial instances and the discriminator leamns to
differentiate between authentic and adversarial samples. With
proper training, the discriminator can identify adversarial
samples in real-world settings.

AML handles adversarial assaults, enhancing Al system
resilience and robustness. Although protections against
adversarial attacks are being created, openness is needed to
understand how they work and how the model processes data,
which lies within trustworthy Al (TAI). Numerous frameworks
have been suggested to direct the advancement of TAI, with
the European Commission’s High-Level Expert Group on
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Artificial Intelligence being one of the most notable entities to
have formalized TAI as a theory cantered on seven pillars that
encompass diverse aspects of Al ethics and durability.

V. CONCLUSIONS

As the age of 6G begins, the amalgamation of innovative
communication paradigms and nascent innovations is swiftly
revolutionizing wireless communications, with machine
learning and artificial intelligence proving to be pivotal in
tackling intricate difficulties. Although DAI prevails in the Al-
driven wireless scientific domain, the potential of GenAl to
augment and enhance DAI methodologies is becoming
increasingly apparent, particularly in contexts characterized by
insufficient or partial data. This study offered insights into the
principles of 6G and explored the critical function of GMs in
diverse areas of wireless research. Moreover, by identifying
potential problems and proposing effective techniques, we
argue that our research offers scholars and industry
professionals valuable insights, thereby positioning itself as a
guide resource in this rapidly developing field.

ACKNOWLEDGMENT

The authors would like to express their gratitude to
UNITAR International University for supporting this research.

REFERENCES

[1] M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless
Networks: A Comprehensive Survey,” IEEE Communications Surveys
& Tutorials, vol. 18, mno. 3, pp. 1617-1655, 2016, doi:
10.1109/COMST.2016.2532458.

[2] C.-X. Wang et al, “On the Road to 6G: Visions, Requirements, Key
Technologies, and Testbeds,” IEEE Communications Surveys &
Tutorials, vol. 25, no. 2, pp. 905-974, 2023, doi
10.1109/COMST.2023.3249835.

[3] X. Luo, H.-H. Chen, and Q. Guo, “Semantic Communications:
Overview, Open Issues, and Future Research Directions,” IEEE Wirel
Commun, vol 29, no. 1, pp. 210-219, 2022, doi
10.1109/MWC.101.2100269.

[4] 1.J. Goodfellow et al, “Generative Adversarial Nets,” 2014. [Online].
Available: http://www.github.com/goodfeli/adversarial

[S1 Y. Yang, Y. Li, W. Zhang, F. Qin, P. Zhu, and C.-X. Wang,
“Generative-Adversarial-Network-Based Wireless Channel Modeling:
Challenges and Opportunities,” IEEE Communications Magazine, vol.
57,n0.3, pp.22-27,2019,doi: 10.1109/MCOM.2019.1800635.

[6] Y.Liu etal, “Deep Generative Model and Its Applications in Efficient
Wireless Network Management: A Tutorial and Case Study,” IEEE
Wirel Commun, vol 31, no. 4, pp. 199-207, 2024, doi:
10.1109/MWC.009.2300165.

[71 S. De, M. Bermudez-Edo, H. Xu, and Z. Cai, “Deep Generative Models
in the Industrial Internet of Things: A Survey,” IEEE Trans Industr
Inform, vol. 18, mno. 9, pp. 5728-5737, 2022, doi:
10.1109/TI1.2022.3155656.

[8] Z. Cai, Z. Xiong, H. Xu, P. Wang, W. Li, and Y. Pan, “Generative
Adversarial Networks: A Survey Toward Private and Secure
Applications,” Jul. 31,2022, Association for Computing Machinery. doi:
10.1145/3459992.

[9] E. Ayanoglu, K. Davaslioglu, and Y. E. Sagduyu, “Machine Learning in
NextG Networks via Generative Adversarial Networks,” IEEE Trans
Cogn Commun Netw, vol. 8, no. 2, pp. 480-501, 2022, doi:
10.1109/TCCN.2022.3153004.

[10] J. Yang, Y. Zeng, S. Jin, C.-K. Wen, and P. Xu, “Communication and
Localization With Extremely Large Lens Antenna Array,” IEEE Trans
Wirel Commun, vol. 20, no. 5, pp. 3031-3048, 2021, doi:
10.1109/TWC.2020.3046766.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

Vol. 16, No. 12, 2025

M. Dehghani Soltani, X. Wu, M. Safari, and H. Haas, “Bidirectional
User Throughput Maximization Based on Feedback Reduction in LiFi
Networks,” IEEE Transactions on Communications, vol. 66, no. 7, pp.
3172-3186, Jul. 2018, doi: 10.1109/TCOMM.2018.2809435.

M. D. Soltani, A. A. Purwita, Z. Zeng, H. Haas, and M. Safari,
“Modeling the random orientation of mobile devices: Measurement,
analysis and LiFi Use Case,” IEEE Transactions on Communications,
vol. 67, mno. 3, pp. 2157-2172, Mar. 2019, doi
10.1109/TCOMM.2018.2882213.

S. S. Murad, S. Yussof, W. Hashim, and R. Badeel, “Card-Flipping
Decision-Making Technique for Handover Skipping and Access Point
Assignment: A Novel Approach for Hybrid LiFi Networks,” IEEE
Access, pp. 1-1,2024, doi: 10.1109/ACCESS.2024.3473938.

R. Badeel, S. K. Subramaniam, A. Muhammed, and Z. M. Hanapi, “A
Multicriteria Decision-Making Framework for Access Point Selection in
Hybrid LiF/WiFi Networks Using Integrated AHP-VIKOR
Technique,” Sensors, vol. 23, no. 3, p. 1312, 2023, doi
10.3390/s23031312.

M. A. Arfaoui et al, “Invoking Deep Leaming for Joint Estimation of
Indoor LiFi User Position and Orientation,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 9, pp. 2890-2905, Sep. 2021,
doi: 10.1109/JSAC.2021.3064637.

X. Wu, M. D. Soltani, L. Zhou, M. Safari, and H. Haas, “Hybrid LiFi
and WiFi Networks: A Survey,” Apr. 01, 2021, Institute of Electrical
and Electronics Engineers Inc. doi: 10.1109/COMST.2021.3058296.

S. A. Mohammed et al., “Supporting Global Communications of 6G
Networks Using Al, Digital Twin, Hybrid and Integrated Networks, and
Cloud: Features, Challenges, and Recommendations,” Telecom, vol. 6,
no.2,p. 35, May 2025, doi: 10.3390/telecom6020035.

S. S. Murad, S. Yussof, B. A. M. Oraibi, R. Badeel, B. Badeel, and A.
H. Alamoodi, “A Vehicle Social Distancing Management System Based
on LiFi During COVID Pandemic: Real-time Monitoring for Smart
Buildings,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3461359.

K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge Attificial Intelligence for
6G: Vision, Enabling Technologies, and Applications,” IEEE Journal on
Selected Areas in Communications, vol. 40, no. 1, pp. 5-36, 2022, doi:
10.1109/JSAC.2021.3126076.

A. Ali et al, “Blockchain-Powered Healthcare Systems: Enhancing
Scalability and Security with Hybrid Deep Learning,” Sensors, vol. 23,
no. 18, Sep. 2023, doi: 10.3390/s23187740.

M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi, “A Tutorial
on Beam Management for 3GPP NR at mmWave Frequencies,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 173-196,2019,
doi: 10.1109/COMST.2018.2869411.

Z. Du, Y. Deng, W. Guo, A. Nallanathan, and Q. Wu, “Green Deep
Reinforcement Learning for Radio Resource Management: Architecture,
Algorithm Compression, and Challenges,” IEEE Vehicular Technology
Magazine, vol. 16, no. 1, pp. 29-39, 2021, doi:
10.1109/MVT.2020.3015184.

A. K. Kamboj, P. Jindal, and P. Verma, “Machine learning-based
physical layer security: techniques, open challenges, and applications,”
Wireless Networks, vol. 27, no. 8, pp. 5351-5383, 2021, doi:
10.1007/s11276-021-02781-1.

S. Sonmez, 1. Shayea, S. A. Khan, and A. Alhammadi, “Handover
Management for Next-Generation Wireless Networks: A Brief
Overview,” in 2020 IEEE Microwave Theory and Techniques in
Wireless Communications (MTTW), IEEE, 2020, pp. 35-40. doi:
10.1109/MTTW51045.2020.9245065.

W. Jiang, “Cellular traffic prediction with machine learning: A survey,”
Expert Syst Appl, vol. 201, Sep. 2022, doi:
10.1016/j.eswa.2022.117163.

Y. Xu, W. Xu, Z. Wang, J. Lin, and S. Cui, “Load Balancing for
Ultradense Networks: A Deep Reinforcement Learning-Based
Approach,” IEEE Internet Things J, vol. 6, no. 6, pp. 9399-9412, Dec.
2019, doi: 10.1109/J10T.2019.2935010.

Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “GAN-Powered Deep
Distributional Reinforcement Leaming for Resource Management in
Network Slicing,” IEEE Journal on Selected Areas in Communications,

971 |Page

www.ijacsa.thesai.org



[28
[29

[30

31

[32

]
]

[}

—

—

(IJACSA) International Journal of Advanced Computer Science and Applications,

vol. 38, no. 2, pp. 334-349, Feb. 2020, doi:

10.1109/JSAC.2019.2959185.
R. L. Z. Z. H. Z. and X. C. Yuxiu Hua, 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2019.

J. Z. Ruichun Gu, Ganslicing: A gan-based software defined mobile
network slicing scheme for iot applications. IEEE, 2019.

M. R. Shahid, G. Blanc, H. Jmila, Z. Zhang, and H. Debar, “Generative
Deep Leaming for Internet of Things Network Traffic Generation,” in
Proceedings of IEEE Pacific Rim International Symposium on
Dependable Computing, PRDC, IEEE Computer Society, Dec. 2020, pp.
70-79. doi: 10.1109/PRDC50213.2020.00018.

J. Z. H. K. W. B. M. E. Ahmed B.Zaky, “Generative Neural Network
Based Spectrum Sharing Using Linear Sum Assignment Problems,”
2019.

T. Zhang, K. Zhu, and D. Niyato, “A Generative Adversarial Learning-
Based Approach for Cell Outage Detection in Self-Organizing Cellular
Networks,” IEEE Wireless Communications Letters, vol. 9, no. 2, pp.
171-174, Feb. 2020, doi: 10.1109/LWC.2019.2947041.

[33]

[34

[}

[35]

[36]

Vol. 16, No. 12, 2025

H. W. M. Z. Zhuo Li, “Weakly-Supervised Generative Adversarial Nets
with Auxiliary Information for Wireless Coverage Estimation,”
Proceedings of the 27th ACM International Conference on Information
and Knowledge Management , pp. 1851-1854,2018.

T. Maksymyuk, J. Gazda, A. Luntovskyy, and M. Klymash, “Artificial
Intelligence based 5G Coverage Design and optimization using Deep
Generative Adversarial Neural Networks,” in 2018 International
Conference on Information and Telecommunication Technologies and
Radio Electronics (UkrMiCo), IEEE, 2018, pp. 1-4. doi
10.1109/UkrMiC043733.2018.9047611.

A. Ahmadi, O. Semiari, M. Bennis, and M. Debbah, “Variational
Autoencoders for Reliability Optimization in Multi-Access Edge
Computing Networks,” in 2022 IEEE Wireless Communications and
Networking Conference (WCNC), IEEE, Apr. 2022, pp. 752-757. doi:
10.1109/WCNC51071.2022.9771710.

J. Chen, H. Zheng, H. Xiong, S. Shen, and M. Su, “MAG-GAN:
Massive attack generator via GAN,” Inf Sci (N Y), vol. 536, pp. 67-90,
Oct. 2020, doi: 10.1016/j.in5.2020.04.019.

972 |Page

www.ijacsa.thesai.org



