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Abstract—Effective prioritization of software requirements is 

essential for reducing project risks, optimizing resource 

allocation, and ensuring timely delivery. Conventional approaches 

such as Analytic Hierarchy Process (AHP) and MoSCoW often 

suffer from subjectivity, inefficiency, and poor scalability, making 

them unsuitable for large-scale projects. Although machine 

learning (ML) based methods improve scalability, they frequently 

overlook critical contextual factors such as risk, urgency, 

implementation effort, and inter-requirement dependencies. To 

address this gap, this study proposes a new machine learning 

based context aware software requirements prioritization system. 

In the proposed system, a pre-trained RoBERTa model and an 

ordinal neural regression model are employed to infer contextual 

features including technical risk, complexity, urgency, business 

value, implementation effort, requirement stability, stakeholder 

criticality, security sensitivity, and inter-requirement 

dependencies directly from requirement statements. These 

inferred features are then used as inputs to a supervised multiple 

regression model (XGBoost), which generates continuous priority 

scores for each requirement, with higher scores reflecting higher 

implementation priority. To ensure transparency, SHAP-based 

feature attribution is applied for feature importance analysis, and 

a feedback integration mechanism allows stakeholders to 

iteratively refine prioritization outcomes, thus in-turn retraining 

the core prioritization model. Empirical validation against three 

domain experts across five projects from different application 

domains demonstrates strong alignment, with Spearman rank 

correlations between 0.6 and 0.75, Mean Absolute Error (MAE) 

around 0.10, and Top 5 Match Rates up to 0.80. The results 

confirm that the proposed system provides a scalable, explainable, 

and context aware requirements prioritization mechanism 

suitable for real-world software engineering projects. 
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I. INTRODUCTION 

Contemporary software projects exhibit increasing 
complexity as application priorities shift during development 
and as requirements interact through technical and 
organizational dependencies [1]. In such environments, the 
ordering of requirements functions as a determinant of system 
risk, resource contention, and delivery reliability; inappropriate 
ordering propagates bottlenecks, extends schedules, and can 
precipitate project failure. Practice often adopts structured 

techniques such as Analytic Hierarchy Process, MoSCoW, and 
case-based ranking to introduce discipline into decision making; 
however, these techniques depend heavily on judgments elicited 
from experts at specific points in time and require substantial 
manual effort, which constrains reproducibility and scalability 
when the requirement set is large or volatile [1]. Related work 
on interactive optimization for the Next Release Problem also 
shows how optimization and learning can be combined for 
release planning [2]. A further limitation is the absence of a 
formal representation of project specific context. Urgency, 
failure risk, technical constraints, and operational dependencies 
are frequently handled implicitly or retrospectively, producing 
priority lists that appear consistent during elicitation yet diverge 
from the evolving state of the project [3]. Structured 
prioritization has also been reviewed at the use-case level, 
extending the evidence base beyond requirements lists [4]. 
Recent systematic literature reviews (SLRs) consolidate more 
than one hundred and forty requirements prioritization 
techniques from 2000 to 2021, highlighting that both traditional 
approaches (AHP, MoSCoW, numerical assignment) and 
modern AI-based methods (fuzzy logic, genetic algorithms, 
machine learning) still face persistent challenges in scalability, 
stakeholder coordination, dependency handling, and automation 
[3][5][6][32]. Thus, there is an evident need for development of 
scalable, empirically validated ML models that support can 
real-world prioritization workflows. 

Within such contexts, machine learning models for 
requirements prioritization offer a scalable and objective 
alternative by analyzing historical data together with project 
specific contextual information to automate prioritization [7] 
[30]. This approach reduces continuous reliance on expert 
intervention, thereby lowering subjectivity and improving the 
consistency of decisions. In practice, machine learning methods 
have been shown to increase efficiency while decreasing manual 
effort in prioritization tasks [7][8][9]. Recent machine learning 
surveys on requirements prioritization identify scalable, data-
driven approaches including case-based ranking, classification-
based methods, clustering algorithms (k-means, Fuzzy C-
Means), and semi-automated frameworks such as SRP Tackle, 
which demonstrate strong performance on large-scale 
requirement sets while reducing expert elicitation burden 
[9][10]. Additionally, several works now incorporate semi-
automated and interactive mechanisms where stakeholders 
provide feedback to refine prioritization outcomes, partially 
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addressing human-in-the-loop and iterative refinement 
challenges [2][9][10] [11] [31]. 

Although machine learning approaches improve scalability 
and objectivity relative to manual methods, a persistent gap is 
their limited treatment of context [5]. Automated models 
frequently omit the intent and contextual cues embedded in 
requirements statements. When project-specific factors such as 
urgency, risk, complexity, resource needs and availability, and 
dependencies are not represented, the resulting priority order 
may diverge from project goals and constraints. For example, 
selecting a low-risk item with no dependencies ahead of a high 
risk, mission critical item can increase cost and delay delivery. 
In such cases, the prioritization output no longer serves the 
project's objectives and weakens the value of the process. At the 
same time, several recent strands of research address parts of this 
gap: 1) Natural language processing (NLP) in requirements 
engineering uses deep language models and dependency parsing 
to extract requirement attributes, risk indicators, and structural 
properties directly from textual requirements, enabling more 
precise feature engineering [12] [13] [14]; 2) Dependency-aware 
prioritization techniques such as DRank and CDBR explicitly 
model and exploit requirement dependency graphs, using graph-
based ranking, execute-before-after relationships, and 
collaborative filtering to propagate priority signals across 
dependent items [9][11][15][16]. 3) Recent machine learning 
surveys document growing adoption of supervised 
classification, clustering, ranking algorithms, and swarm 
optimization approaches that incorporate dependencies, though 
often in isolation and not jointly optimized [5][9] and 4) 
Explainability and interpretability methods are increasingly 
discussed as essential for understanding and validating AI-based 
prioritization decisions, though their application to requirements 
prioritization pipelines remains limited [5][9][17]. However, 
these approaches typically address specific factors or 
mechanisms (e.g., dependency graphs alone, or NLP for 
classification only) and often require substantial elicitation 
effort, manual configuration, or separate treatment of contextual 
signals, leaving room for more integrated, end-to-end 
frameworks that jointly infer multiple contextual features from 
requirement text, model dependencies explicitly, and provide 
explainability through a unified prioritization pipeline. 

This study addresses these limitations through the following 
objectives: 

• Design and implement a context aware machine learning 
model that prioritizes software requirements from their 
descriptions and contextual features, including risk, 
urgency, and dependencies. In contrast to prior 
dependency-aware approaches (such as DRank and 
CDBR) that focus primarily on explicit dependency 
matrices or pairwise comparisons, and to NLP studies 
that target isolated feature extraction or classification 
[9][11][12][15], the proposed model infers a broader 
integrated set of contextual variables including technical 
risk, complexity, urgency, implementation effort, 
stability, stakeholder criticality, security sensitivity, and 
inter-requirement dependencies directly from 
requirement text and combines them within a unified 
regression framework. 

• Apply natural language processing techniques, using 
RoBERTa for risk estimation and dependency analysis, 
and an ordinal neural regression model for other 
contextual features such as complexity, urgency, 
implementation effort, stability, stakeholder criticality, 
security sensitivity, and business value [12][18]. This 
design builds on recent advances in using deep NLP 
models and interpretable machine learning for 
requirements classification, attribute extraction, and 
dependency identification [12][13][14][19][20], while 
extending them beyond isolated classification tasks to 
multi-feature context inference optimized specifically 
for downstream prioritization. 

• Use a supervised multiple regression model (XGBoost) 
to generate continuous priority scores. Regression-based 
integration of contextual features aligns with recent 
automated prioritization frameworks and machine 
learning surveys that recommend ensemble methods for 
requirements ranking [9][21]; however, in this work the 
regressor operates over features that are explicitly 
inferred from requirement text via NLP and evaluated for 
importance through explainability analysis, rather than 
relying solely on manually annotated attributes or any 
ad-hoc feature engineering process. 

• Establish a mechanism to collect and integrate 
stakeholder feedback, including revised priority scores 
and contextual feature values, to update the training data 
and improve model adaptability and accuracy over time. 
This feedback-driven retraining mechanism is consistent 
with semi-automated and human-in-the-loop 
prioritization techniques reported in recent literature 
[9][10] and aligns with the push toward interactive ML 
in requirements engineering; however, this work 
uniquely applies the feedback loop to an explicitly 
context-aware, explainability-informed feature space 
shaped by SHAP-based feature selection during design 
time, enabling both transparency and iterative 
refinement. 

This study contributes the following to requirements 
engineering: 

• Context aware framework: A scalable and automated 
requirements prioritization system that integrates 
machine learning and natural language processing to 
infer contextual features from requirement statements, 
providing a foundation for informed and efficient 
prioritization [21]. Semi-automated techniques reported 
in prior work also motivate the integration of human 
feedback into prioritization pipelines [10]. By jointly 
modeling textual features, inferred contextual signals 
(risk, complexity, effort, stability, security, stakeholder 
importance), inferred dependencies, and learned 
dependencies within a single end-to-end pipeline, the 
framework addresses research gaps identified in recent 
SLRs and complements existing context-aware, 
dependency-aware, and ML-based RP approaches, 
thereby clarifying the boundary between earlier 
techniques and this present work [5][6][9][11][15]. 
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• Contextual feature inference: Use of RoBERTa for risk 
estimation and dependency analysis, together with an 
ordinal neural regression model for additional contextual 
features, and integration of these values into a unified 
prioritization pipeline [19]. Unlike prior NLP-based 
efforts in requirements engineering that focus mainly on 
requirement classification, non-functional requirement 
type detection, or structural complexity assessment 
[12][13][14], the feature inference layer here is explicitly 
optimized via supervised learning to feed a downstream 
prioritization regressor, enabling true end-to-end 
learning from requirement text to priority scores without 
intermediate manual steps. 

• Regression-based integration: Combination of inferred 
and annotated contextual features within a supervised 
multiple regression model (XGBoost) to produce 
continuous priority scores and improve predictive 
performance [20] . This extends earlier regression and 
optimization-based prioritization models by 
incorporating explainability-informed feature selection 
(via SHAP) and text-derived dependency signals, which 
recent surveys indicate have not yet been jointly 
exploited in existing AI-based and machine learning-
based RP studies [5][9][15][21]. 

• Design time SHAP feature selection: Application of 
Shapley Additive Explanations once during model 
design to select influential features for the final training 
dataset, ensuring consistent training and retraining while 
excluding SHAP from the runtime pipeline [17]. SHAP 
and related explainability methods are increasingly used 
to analyze and interpret complex ML models in various 
domains [17], and their application to model 
development (feature selection, model debugging) is 
well established; however, their use to deliberately shape 
the feature space of a requirements prioritization pipeline 
selecting only the most impactful features informed by 
explanations remains underexplored in the requirements 
engineering literature, particularly in conjunction with 
NLP-based contextual feature inference. 

• Feedback driven retraining: A mechanism for 
stakeholders to review and adjust prioritization outputs; 
the collected feedback updates the training data using the 
same SHAP selected feature set to improve adaptability 
and maintain accuracy over time [12]. This human-in-
the-loop mechanism complements existing interactive 
and semi-automated approaches such as SRP Tackle 
(which uses semi-automation to reduce expert burden), 
DRank (which resolves conflicts via dependency 
propagation), CDBR (which integrates stakeholder and 
developer preferences with dependency-based 
optimization), and interactive genetic algorithms 
discussed in recent surveys [9][10][11][15], by 
embedding explicit human feedback directly into the 
retraining cycle of a context-aware, explainability-
informed model and enabling stakeholders to influence 
the feature importance profile over time. 

• Empirical validation: The system is evaluated with 
multiple domain experts across diverse projects, showing 

reduced manual workload and improved alignment of 
priorities with risk mitigation and resource allocation 
objectives [16]. The evaluation design aligns with 
recommendations from recent AI-based and machine 
learning SLRs on requirements prioritization, which 
emphasize the importance of empirical assessment 
across diverse projects, evaluation of scalability with 
large requirement sets, validation of dependency 
handling, and measurement of stakeholder satisfaction 
and usability in realistic industrial settings [5][6][9]. 

The remainder of the paper is organized as follows. Section 
II presents the methodology: requirement data preparation, 
contextual feature inference with RoBERTa and ordinal neural 
regression, SHAP feature selection, and development of the core 
regression prioritization model. Section III describes the system 
design and implementation, including the architecture, 
integration of contextual feature estimators, dependency 
analysis, backend services, and the user interface. Section IV 
reports empirical validation with expert evaluation and 
performance analysis using mean absolute error, Spearman rank 
correlation, and Top 5 match rate. Discussion is given in Section 
V. Section VI concludes with a summary of contributions and 
directions for future work aimed at improving scalability, 
adaptability, and applicability in practice. 

II. METHODOLOGY 

This study employs a structured methodology with five 
sequential phases to develop and evaluate a context aware, 
machine learning based requirements prioritization system. The 
complete workflow is shown in Fig. 1. 

A. Phase 1: Requirement Data Preparation 

Requirement statements were collected from publicly 
available Software Requirements Specification (SRS) 
documents of multiple open-source projects. The documents 
were processed to construct a dataset for training and testing the 
prioritization models. Preprocessing included tokenization, 
vectorization, lemmatization, removal of special characters, and 
lowercasing. These steps standardize the text and prepare it for 
use in the natural language processing and machine learning 
models employed in subsequent phases of the study [22]. 

B. Phase 2: Contextual Feature Estimation 

Each contextual feature was modeled with a dedicated 
machine learning pipeline appropriate to its data type and 
structure. The training data consisted of requirement statements 
from open-source SRS documents, which were annotated for 
contextual feature values and binary dependency [16]. The 
accompanying table summarizes the specification and 
characteristics of the estimation and inference models. Coupling 
preferences with dependency information has been shown to 
improve prioritization quality in semi-automated and 
dependency aware settings [11] [16] [23]. SHAP (Shapley 
Additive Explanations) was then applied to a subset of the 
labeled data to identify the features with the greatest influence 
on the output of the core prioritization model; a basic random 
forest regressor was used only for this SHAP analysis step [24]. 
The most influential features were selected and fixed for training 
the prioritization model. Finally, all trained inference models, 
together with configuration files, tokenizers, and vectorizers, 
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were saved for use by the backend API of the core prioritization 
system. 

 
Fig. 1. Methodology workflow diagram. 

C. Phase 3: Requirements Prioritization Model 

The requirement prioritization pipeline begins by estimating 
contextual features from requirement statements using the 
inference models developed in Phase 2. Next, the expert labeled 
training data are augmented to create the initial training set for 
the core prioritization model. Augmentation injects small 
Gaussian noise into sentence embeddings derived from the 
requirement text, as well as into priority scores and contextual 
feature values scaled from 0 to 1, while preserving the original 
dependency labels to maintain structural consistency. A subset 
of the augmented data is then used to train multiple supervised 
regression models, including Random Forest, Gradient Boosting 
Regressor, Support Vector Regressor, and XGBoost Regressor. 
Model performance is evaluated with fivefold cross validation 
using Root Mean Squared Error, Mean Bias Error, Mean 
Absolute Error, Mean Bias Ratio, and the coefficient of 
determination R2 as metrics. Across these comparisons, the 
XGBoost Regressor shows the strongest accuracy and 
generalization [25]. 

After selecting XGBoost as the core prioritization model, 
hyperparameter tuning was conducted using two strategies: 
randomized search cross validation and Bayesian optimization 
[26]. The search covered learning rate, maximum tree depth, 
number of estimators, L1 and L2 regularization strengths, and 
subsampling ratio [29]. In comparison, Bayesian optimization 
produced lower root mean squared error and higher overall 

performance while exploring the search space more efficiently 
[26]. The final XGBoost model, trained on the selected feature 
set with the best parameters from Bayesian optimization, was 
exported together with the TF IDF vectorizer. These 
components were integrated into the backend application 
programming interface of the prioritization system, which 
prioritizes new software requirements. The main stakeholder 
interactions are illustrated within the use case diagram shown 
within Fig. 2. 

 
Fig. 2. Use case diagram (core priorization). 

D. Phase 4: Model Validation and Interpretability 

After tuning and finalizing the core prioritization model, an 
empirical study is conducted to assess its applicability in real 
settings. The model’s predicted priority scores and ordering are 
compared with the judgments of three domain experts on a new 
set of requirement statements and project contexts. Performance 
is measured using Spearman rank correlation, Top 5 match rate, 
and mean absolute error. Two evaluation modes are used. In the 
end-to-end automated mode, the inference models estimate 
contextual feature values and binary dependencies. In the 
manual mode, domain experts provide contextual feature and 
dependency values after reviewing the project contexts. The 
results provide quantitative evidence of the applicability and 
effectiveness of the machine learning based prioritization 
system and address the study objective of reducing subjectivity 
and improving scalability in requirements prioritization [5][9]. 

E. Phase 5: System Deployment 

The system is deployed with Fast API to provide backend 
services and programmatic access to the core prioritization 
models through HTTP endpoints. A user interface enables 
nontechnical users to submit requirement statements and view 
the resulting priority scores and ordering. 

III. IMPLEMENTATION 

A. Data Acquisition and Preparation 

The first step is the search and collection of software 
requirement statements from Software Requirements 
Specification (SRS) documents associated with open source or 
declassified projects. To support contextual diversity and 
generalizability of the machine learning models, SRS 
documents were drawn from a range of project domains, 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

977 | P a g e  
www.ijacsa.thesai.org 

including telecommunication, healthcare, finance, and 
education. 

After extracting the requirement statements, a domain expert 
manually annotated contextual feature values for each statement 
in the context of its source project. The features included 
technical implementation risk, complexity, urgency, stability 
across the project lifecycle, implementation effort, security 
sensitivity, and stakeholder criticality. Prior work has used NLP 
to assess structural properties and complexity of requirements, 
supporting the inclusion of such signals in our feature set [14]. 
Each feature was rated on a five-point ordinal scale from 1 
(lowest) to 5 (highest) with respect to the corresponding SRS. In 
addition, inter requirement dependencies were annotated within 
each project using a binary label (dependent or independent) 
based on structural relationships observed in the SRS. Graph-
based representations capture inter-sentence dependencies 
relevant to inferring such links [27]. These annotations 
constitute the ground truth for training the contextual feature 
inference models and the core requirements prioritization model 
used in this study. 

Before training the machine learning models, the 
requirement text was preprocessed to standardize format by 
lowercasing, removing special characters, and normalizing 
whitespace. The semantic content of the statements was 
preserved without paraphrasing to remain consistent with the 
expert annotations. Contextual feature values were normalized 
to the interval [0,1] (for example, 2 maps to 0.4). Requirement 
statements were then vectorized with the all-mpnet-base-v2 
Sentence Transformer, yielding 768 dimensional embeddings 
that capture the meaning and nuances of each statement. 

To address the sparsity of expert labeled training data and to 
improve the robustness of the contextual feature estimators, the 
dependency detector, and the core prioritization model, a 
controlled data augmentation procedure is applied. The 
procedure injects Gaussian noise into the sentence embeddings 
and the normalized contextual feature values while leaving the 
dependency labels unchanged to preserve logical correctness. 
This emulates minor contextual and semantic variations that 
arise in practice [28]. Gaussian noise is applied to each input 
element, including normalized feature values and the 768-
dimensional embedding that represents each requirement 
statement, using the formula given below. 

              𝑥𝑗 =  𝑥 +  𝜀, 𝜀 ∼  𝑁(𝜇, 𝜎2)                     () 

x: Original data point (scalar or vector). 

x^j: jth augmented sample generated from x. 

ε: Additive Gaussian noise. 

μ: Mean of the Gaussian noise (often 0). 

σ: Standard deviation of the Gaussian noise; the variance is 
σ^2. 

Here, gaussian noise is sampled from the probability density 
function given below: 

The Gaussian probability density function specifies the 
distribution of the noise introduced during data augmentation 
and enables controlled simulation of stochastic fluctuations 

around a chosen mean. This supports more robust estimation of 
contextual features and dependencies and improves the 
generalizability of the core prioritization model. The augmented 
samples were then combined with the original expert labeled 
data to form a more comprehensive and balanced training set. 
Finally, the target variable Priority Score was perturbed with 
Gaussian noise using a separate standard deviation 𝜎 priority 
and then clipped to the interval [0.5,1.0] to keep augmented 
labels within realistic scoring ranges. 

B. SHAP Analysis for Contextual Feature Evaluation 

To examine the effect of contextual features on the output of 
the core prioritization model, Shapley Additive Explanations 
(SHAP) are used to decompose each prediction into additive 
contributions from individual features. SHAP supports global 
and local interpretation, which allows quantification of feature 
importance, assessment of average directional effects, and 
inspection of instance level behavior for each contextual feature 
[24]. The following subsections present visualizations of the 
SHAP analysis performed on the initial augmented training data 
with a basic random forest regressor. 

Fig. 2 ranks the features by their mean absolute SHAP value, 
which reflects overall influence on the model output irrespective 
of sign. For each feature, the mean of the absolute Shapley 
values is computed across all test instances, providing an 
aggregate measure of the extent to which the feature moves 
predictions away from the base value. Requirements stability 
shows the highest mean absolute SHAP value (0.035), 
indicating the strongest contribution to the predicted priority 
scores. Complexity (0.028) and urgency (0.020) follow, 
suggesting that anticipated implementation difficulty and time 
sensitivity also have substantial impact. Implementation effort 
(0.018) and stakeholder criticality (0.016) form a middle group 
with moderate effects. Business value, security sensitivity, and 
technical risk have lower values (0.010 to 0.012), indicating less 
consistent contributions across the dataset. 

 

Fig. 3. Outcome of SHAP analysis. 

This observation raises the possibility of under 
representation or collinearity with other features. Whereas the 
previous figure reports the absolute magnitude of feature 
importance, the current Fig. 3 presents signed mean SHAP 
values, which indicate whether a feature increases or decreases 
the predicted priority on average. The signed mean is obtained 
by averaging the raw Shapley values, including their signs, 
across all samples in the training data. In this analysis, 
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requirements stability shows a small negative mean 
(approximately −0.0010), indicating that higher stability is 
associated with lower predicted priority. These average 
directional effects of each contextual feature on the predicted 
priority scores are illustrated in Fig. 4. 

 
Fig. 4. Average Directional Effects (SHAP analysis). 

This pattern is consistent with the local rationale that stable 
requirements are less urgent and can be deferred without 
jeopardizing schedules or increasing the risk of implementation 
failure. Security sensitivity (approximately −0.0007) and 
business value (approximately −0.0005) also show negative 
means, suggesting that highly valuable or sensitive items may 
be deprioritized relative to volatile tasks, possibly reflecting a 
trade off with complexity or risk. In contrast, technical risk 
exhibits a positive mean effect (approximately +0.0005), 
indicating that riskier requirements tend to receive higher 
priority, which aligns with a mitigation first strategy that 
addresses components prone to failure early in the lifecycle. 
Urgency, stakeholder criticality, and complexity show positive 
average contributions (approximately +0.0004 to +0.0008), 
reinforcing their influence in increasing the priority score. Taken 
together, the directional analysis indicates an implicit policy to 
defer stable, even high value, requirements while advancing 
urgent, complex, or risky items. Based on the SHAP analysis, 
requirements stability, complexity, and urgency are retained for 
their strong mean absolute contributions, and technical risk, 
implementation effort, and stakeholder criticality are included 
for their consistent directional effects, which capture risk 
mitigation, resource demand and allocation, and stakeholder 
influence in prioritization. This feature subset is expected to 
preserve predictive accuracy, improve interpretability, and 
reduce the risk of overfitting. 

C. Model Evaluation and Metrics 

The dataset refined through augmentation was used to train 
four machine learning models: Random Forest, Gradient 
Boosting, XGBoost, and a multilayer perceptron. Model 
performance was assessed with K fold cross validation using 
root mean square error (RMSE), mean bias error (MBE), mean 
absolute error (MAE), mean bias ratio (MBR), and the 
coefficient of determination 𝑅2. Brief descriptions of these 
metrics are provided in Table I. The corresponding formulas are 
presented below. 

TABLE I.  MODEL EVALUATION METRICS 

Model Evaluation Metrics 

Evaluation 

Metrics 
Description 

Root Mean 

Square Error 

The Root Mean Square Error metric measures the 

average magnitude of error (net difference) between the 

actual values (within the training subset of data) and 

predicted values (actual values predicted by the 

regression learning models).  This approach typically 

penalizes larger errors (difference in prediction) more 

than smaller errors due to the squaring operation before 

averaging. So, lower root means square error signifies 

better model accuracy as it quantifies comparatively 

lower prediction error. 

Mean Bias Error 

The Mean Bias Error actually measures the average 
difference between the actual and predicted values, 

which takes a bit different approach than RMSE where 
more focus is given only on measuring magnitude 78 of 

prediction error, whereas MBE also takes signs of the 

absolute difference into consideration. Considering the 
sign of the difference in predicted and actual values, 

MBE signifies positive and negative biases in 
prediction. This approach aids in identifying systemic 

bias, where positive MBE indicates model is under 
predicting (model output lower than actual values) and 

negative MBE indicates the model is over predicting 

(model output higher than actual values) than the actual 

values 

Mean Absolute 

Error 

The mean absolute error (MAE) is a popular metric 
for evaluation of regression models, which measures the 

average magnitude of the prediction error without 
considering the direction. This approach of evaluating 

only the net difference in predictive error, makes MAE 
a more direct and explainable error metric, which neither 

allows errors to cancel out like MBE. 

Mean Bias Ratio 

This evaluation metric like the MBE is also focused 

on evaluation of the bias (over and under prediction) 
within a model’s prediction. However, MBR focuses on 

determining whether a model systematically over 

predicts or under predicts outcomes. Similarly, a  
positive mean bias ratio signifies that the model 

underestimates values and a negative mean bias ratio 
signifies that the model overestimates values. So, mean 

bias ratio closer to zero signifies overall lower or 

minimal bias in predictions made by model. 

R2 (R-squared 

coefficient of 

determination) 

The R2 is a metric that quantifies how well the 
regression learning model explains the variability of the 

actual data (.i.e. How well does the regression model’s 
prediction match the actual data). If the model predicts 

perfectly, the numerator (sum of squa red errors) 

becomes zero, then . But if the model can’t explain 
variance well, the numerator will be larger making it 

closer to zero or even negative in some cases 

R-squared coefficient of determination 

  𝑅2 =  1 −
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖− ȳ)2𝑛
𝑖=1

                               () 

Mean Bias Ratio 

𝑀𝐵𝑅 =
∑ (𝑦𝑖 − ŷ𝑖)𝑛

𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

                                      () 

Mean Absolute Error 

𝑀𝐴𝐸 =  (
1

𝑛
) ∑ |𝑦𝑖 −  ŷ𝑖|

𝑛
𝑖=1                          () 
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The evaluation results of the model after K - cross fold 
validation using the above-mentioned metrics are illustrated 
within the graphs provided within Fig. 4, 5 and 6 where Fig. 4, 
Fig. 5 and Fig. 6 refer to average directional effects (SHAP 
Analysis), Test RMSE, and Test MBE respectively. 

 
Fig. 5. Test RMSE. 

 
Fig. 6. Test MBE. 

Mean Bias Error 

𝑀𝐵𝐸 =  (
1

𝑛
) ∑ (ŷ𝑖 − 𝑦𝑖)

𝑛
𝑖=1                        () 

Root Mean Square Error 
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The results show that XGBoost outperformed the other 
models. It achieved the lowest root mean square error (0.0718), 
the highest coefficient of determination 𝑅2 (0.7991), and near 
zero bias (MBE = −0.0011, MBR = −0.0013). Light GBM and 
k nearest neighbors were the next best models but with slightly 
lower accuracy and consistency. Linear regression performed 
poorly, with higher error and a negative 𝑅2, indicating that it did 
not capture the structure of the data. Plots comparing the models 
across all metrics corroborate these findings. Test RMSE, cross 
validation RMSE, 𝑅2, MBE, and MBR were all lowest or closest 
to ideal for XGBoost, supporting its better generalization, 
stability, and low bias. The cross‑validation RMSE values for 
the candidate models are reported in Fig. 7 and distribution of 
test mean bias ratio in Fig. 8. 

 
Fig. 7. Cross-Validation RMSE (Train). 

 
Fig. 8. Test Mean Bias Ratio (MBR). 

 
Fig. 9. Coefficient of determination (R2). 

Furthermore, the corresponding coefficients of 
determination for the evaluated models are presented in Fig. 9. 
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D. Hyperparameter Tuning Process 

After selecting XGBoost as the best performing model, we 
refined it through hyperparameter tuning using two techniques: 
randomized search cross-validation and Bayesian optimization. 
Both procedures were implemented and evaluated using the 
study’s core metrics, and the tuned configurations were 
compared on the same validation protocol. The results of the two 
hyperparameter tuning approaches for XGBoost are as follows: 

TABLE II.  HYPERPARAMETER PROCESS 

Outcome of Hyperparameter Tunning 

Method Best RMSE Best R2 Best MBE 

Bayesian Optimization 0.074881 0.781547 0.000841 

Randomized Search 0.078633 0.759108 –0.002580 

The model tuned with Bayesian optimization produced a 
lower root mean square error (0.07488 versus 0.07863), a higher 
coefficient of determination 𝑅2 (0.78155 versus 0.75911), and a 
mean bias error closer to zero and positive (0.00084 versus 
−0.00258), indicating lower and more balanced bias. The tuning 
results are summarized in Table II. These results support 
Bayesian optimization as the preferred hyperparameter tuning 
strategy for the XGBoost model used for contextual 
requirements prioritization. The tuned model was then retrained 
on the full training set, excluding the portion reserved for 
evaluation, and both the final model and the TF IDF vectorizer 
were saved for deployment within the prioritization system. 

E. Implementation and Validation of Core Prioritization 

Model 

The system architecture consists of a ReactJS frontend and a 
Fast API backend. Fast API is used to implement RESTful 
endpoints with asynchronous request handling and data 
validation. The endpoints support requirement submission, 
prioritization, editing of contextual features, dependency 
analysis, and retrieval of prioritization results. The frontend 
provides modular components for user interaction and 
communicates with the backend through HTTP POST and GET 
requests. The High-Level overview of the prioritization model’s 
architecture is shown in Fig. 10 and details of API endpoints are 
summarized in Table III. 

 
Fig. 10. Prioritization model architecture. 

TABLE III.  API ENDPOINTS DESCRIPTION 

API endpoints description 

Endpoint Purpose Method Input Output 

/estimate_risk Estimate technical risk Post Requirement text Risk level (1–5) 

/estimate_dependency Estimate binary Post Requirement pair 0 or 1 

/estimate_complexity dependency Post Requirement text Score (1–5) 

/estimate_urgency Estimate implementation complexity Post Requirement text Score (1–5) 

/estimate_stability Estimate urgency Post Requirement text Score (1–5) 

/estimate_effort Estimate requirement stability Post Requirement text Score (1–5) 

/estimate_security Estimate implementation effort Post Requirement text Score (1–5) 

/estimate_criticality Estimate security sensitivity Post Requirement text Score (1–5) 

/prioritize Predict final requirement priority Post 
Requirement text embeddings, Contextual features and 

dependency values within JSON format. 
Priority score (0–1) 

 

IV. RESULTS 

This section reports the results of expert-based validation of 
the core prioritization model, an XGBoost model optimized with 
Bayesian optimization. Performance is summarized for five 
projects from different domains and compared with the 
judgments of three domain experts. The analysis focuses on 
alignment between the model and the experts using three 
metrics: Spearman rank correlation, Top 5 match rate, and mean 
absolute error. 

Fig. 11 summarizes mean absolute error results across 
projects and experts. Excluding three specified instances, 
namely Expert 1 in Project 5 with MAE 0.07, Expert 2 in Project 

4 with MAE 0.06, and Expert 3 in Project 3 with MAE 0.07, the 
model maintains low error across the remaining evaluations, 
with MAE values between 0.06 and 0.11 and an average near 
0.10. The agreement is strongest in logistics, where Project 2 
shows MAE 0.06 for all experts, and in telecommunications, 
where Project 1 reports MAE 0.08 for Expert 1, 0.07 for Expert 
2, and 0.11 for Expert 3. Minor variations, such as the higher 
MAE of 0.11 for Expert 3 in Project 1, indicate deviations in 
some project contexts. 

Fig. 12 reports Spearman rank correlation outcomes. Across 
projects, the model shows consistent ranking agreement, with 
average Spearman rank correlation between 0.6 and 0.7. The 
strongest agreement is observed with Expert 2, particularly in 
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healthcare (Project 5) and logistics (Project 2), where Spearman 
rank correlation reaches 0.75 and 0.70 respectively. 

 
Fig. 11. Mean Absolute Error (MAE) values. 

 
Fig. 12. Spearman rank correlation outcomes. 

 
Fig. 13. Top 5 match rate values. 

Fig. 13 presents Top 5 match rate values, with average Top 
5 match rate between 0.5 and 0.55. In Project 5, the Top 5 match 
rate attains 0.80 for Expert 2, indicating close agreement on the 
highest-priority items. In Project 3, Spearman rank correlation is 

0.60 for Experts 1 and 2 and the Top 5 match rate is 0.60 for 
both. 

Additional results include Project 4 with Spearman rank 
correlation 0.60 for Expert 1 and 0.40 for Expert 3, and Top 5 
match rates of 0.40 and 0.60 respectively. In Project 4, mean 
absolute error is 0.07 for Expert 1 and 0.09 for Expert 3. In 
Project 1, MAE is 0.08 for Expert 1, 0.07 for Expert 2, and 0.11 
for Expert 3. In Project 5, MAE is 0.08 for Experts 2 and 3. The 
absence of measurements for Expert 3 in Project 3 limits a 
complete assessment for that project. 

V. DISCUSSION 

The results indicate that the model can align closely with 
expert judgments in domains where requirements are well 
defined and evaluation criteria are relatively consistent. The 
strongest agreement with Expert 2 in healthcare and logistics 
suggests that the inferred contextual representation supports 
reliable prioritization in such settings, including for critical non-
functional requirements. 

Performance varies across domains, particularly in e-
commerce (Project 4) and smart city (Project 3), where 
agreement is weaker for some experts. This variability is 
consistent with domains that exhibit stronger context 
dependence and greater divergence in expert preferences, which 
can reduce rank agreement even when absolute score differences 
remain small. The missing Expert 3 measurements in Project 3 
further limits the interpretation of results for that domain. 

This study has several limitations that should be considered 
when interpreting the findings. First, the datasets were derived 
primarily from open-source Software Requirements 
Specification documents, which may not fully represent 
industrial requirements practices, particularly in regulated or 
safety critical environments. Second, contextual feature values 
and dependency labels were annotated by a limited number of 
domain experts, and expert judgments can vary across projects 
and domains. This variability may influence both the learned 
mapping between contextual features and priority scores and the 
observed agreement metrics. Third, the approach infers 
contextual features from requirement statements, and the 
inference quality depends on the clarity and completeness of the 
textual descriptions. Requirements that are underspecified, 
ambiguous, or strongly dependent on external project context 
can reduce inference accuracy and, in turn, affect prioritization 
performance. Fourth, although cross validation and held out 
expert evaluation were used, the training data remains limited in 
scale. Data augmentation improves robustness, but it cannot 
substitute for broader real-world coverage, and generalization to 
unseen domains may require additional calibration. Finally, the 
system evaluates agreement against expert prioritizations rather 
than measuring downstream project outcomes. Therefore, the 
reported improvements reflect alignment with expert judgment 
and do not directly quantify impacts on delivery time, defect 
reduction, or operational risk. 

Overall, the findings support robustness in critical domains 
while indicating the need for targeted improvements to address 
inconsistencies in subjective or complex project contexts. In 
practice, the model can reduce manual effort and provide 
decision support in resource constrained settings, but it should 
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be used to assist expert decision making rather than replace 
expert judgment, particularly in domains with high subjectivity. 

A. Comparison with Existing Approaches 

Existing machine learning based requirements prioritization 
techniques report improved scalability and reduced elicitation 
effort, but often without rich contextual features or explicit 
dependency handling [5] [9]. Semi-automated models such as 
SRP Tackle achieve high prioritization accuracy on large 
requirement sets but focus mainly on multi criteria scoring and 
clustering, with limited attention to fine grained dependency and 
risk signals [10]. Dependency aware approaches like DRank and 
CDBR show that incorporating requirement graphs and 
execution order improves prioritization quality, yet they 
typically rely on manually specified dependencies and do not 
infer contextual attributes directly from requirement text 
[11][16][23]. 

Within this landscape, the proposed model attains Spearman 
rank correlations between 0.6 and 0.75, Top 5 match rates up to 
0.80, and mean absolute errors around 0.10 across diverse 
domains, which is consistent with or better than performance 
ranges reported for recent ML based RP methods when 
evaluated against expert judgments [7] [9]. The main added 
value lies in jointly modeling contextual factors such as stability, 
urgency, risk, and stakeholder criticality, inferring dependencies 
from SRS text, and providing SHAP based explanations, which 
extend prior dependency awareness and semi-automated 
frameworks while maintaining competitive predictive accuracy 
[5] [16] [24]. 

B. Limitations and Threats to Validity 

The empirical evaluation is based on requirement statements 
drawn from publicly available or declassified SRS documents 
across a limited set of domains, including telecommunications, 
healthcare, finance, and education. This dataset may not fully 
represent industrial projects with different documentation styles, 
regulatory constraints, or safety critical requirements, which 
restricts the generalizability of the findings to other contexts. In 
addition, the number of projects and requirements per project is 
modest compared with large scale industrial portfolios, so 
scalability to very large backlogs remain to be confirmed 
empirically. 

The expert-based validation involves three domain experts 
whose judgments reflect individual preferences, experience, and 
familiarity with specific domains. While multiple experts and 
projects were used to mitigate individual bias, differences in 
their rankings, particularly in e-commerce and smart city 
domains, indicate that part of the observed disagreement arises 
from variability in human judgments rather than model error 
alone. The study also focuses on Spearman rank correlation, 
mean absolute error, and Top 5 match rate as evaluation metrics, 
which capture ordering and score alignment but do not fully 
reflect all project level outcomes such as business value 
realization, downstream defect reduction, or stakeholder 
satisfaction. 

From a modeling perspective, there is a risk of overfitting or 
tuning bias because the XGBoost model and its hyperparameters 
were selected based on cross validation performance on an 
augmented dataset. Although K fold cross validation and data 

augmentation were used to improve robustness, the same family 
of metrics guides both model selection and evaluation, which 
may overestimate performance relative to unseen industrial data. 
Furthermore, the contextual feature estimators and dependency 
detectors are trained on annotations produced within this study, 
so systematic biases or inconsistencies in the labeling process 
could propagate into the final prioritization outputs. 

VI. CONCLUSION AND FUTURE WORK 

This research developed a context-aware requirements 
prioritization framework using machine learning, centered on an 
XGBoost regression model optimized with Bayesian 
optimization. The system automates and improves prioritization 
by integrating contextual factors such as technical risk, urgency, 
complexity, requirement stability, implementation effort, 
security sensitivity, stakeholder criticality, business value, and 
inter-requirement dependencies, which are inferred from 
requirement statements in SRS documents or provided through 
user input. In doing so, the framework addresses limitations of 
traditional approaches such as Analytic Hierarchy Process and 
MoSCoW that are sensitive to subjectivity, scale poorly, and 
depend heavily on expert availability. 

The methodology combines fine-tuned RoBERTa models 
for risk and dependency estimation with sentence transformer 
embeddings and Coral Ordinal models for complexity and 
related features. At design time, a feature selection step is 
performed using the Shapley Additive Explanations (SHAP) 
process to retain the most influential contextual variables for 
consistent training and retraining, thereby enhancing 
interpretability and transparency. Empirical evaluation across 
five projects with three domain experts demonstrates consistent 
alignment between model outputs and expert prioritizations, as 
reflected by Spearman rank correlation, Top 5 match rate, and 
low mean absolute error across projects. 

In practice, the system supports prioritization in dynamic 
development settings by enabling iterative refinement through 
stakeholder feedback and by providing structured prioritization 
outputs that can assist decision-making. The approach is 
intended to support expert judgment by producing an initial 
ordering and exposing the contextual basis of priority scores 
rather than replacing expert decision-making. 

Despite the contributions of this study, the evaluation 
remains limited to open‑source and declassified SRS 
documents, a modest number of projects, and expert validation 
in selected domains. Future work will expand the annotated 
training data with larger industrial case studies to increase 
stakeholder and domain diversity, refine contextual inference 
using more advanced natural language processing techniques, 
and strengthen dependency modeling for complex requirement 
networks. Additional evaluation criteria will be incorporated to 
improve external validity and assess downstream project 
outcomes such as delivery efficiency and risk reduction. 
Continued attention to interpretability, transparency, and ethical 
scaling is essential for deployment in sensitive domains such as 
healthcare and other mission‑critical systems. Overall, this 
research contributes to machine learning‑assisted software 
engineering by providing a practical and scalable foundation for 
context‑aware requirements prioritization and management. 
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