
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

973 | P a g e
www.ijacsa.thesai.org

Context-Aware Requirements Prioritization Using

Integrated Regression Learning with Ordinal Neural

Modeling and Roberta

Prasis Poudel1, Noraini Che Pa2*, Abdikadir Yusuf Mohamed3

Department of Information System and Software-Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia, 43300 Malaysia1, 2

Faculty of Graduate Studies and Research, Somali National University, Mogadishu, Somalia 3

Abstract—Effective prioritization of software requirements is

essential for reducing project risks, optimizing resource

allocation, and ensuring timely delivery. Conventional approaches

such as Analytic Hierarchy Process (AHP) and MoSCoW often

suffer from subjectivity, inefficiency, and poor scalability, making

them unsuitable for large-scale projects. Although machine

learning (ML) based methods improve scalability, they frequently

overlook critical contextual factors such as risk, urgency,

implementation effort, and inter-requirement dependencies. To

address this gap, this study proposes a new machine learning

based context aware software requirements prioritization system.

In the proposed system, a pre-trained RoBERTa model and an

ordinal neural regression model are employed to infer contextual

features including technical risk, complexity, urgency, business

value, implementation effort, requirement stability, stakeholder

criticality, security sensitivity, and inter-requirement

dependencies directly from requirement statements. These

inferred features are then used as inputs to a supervised multiple

regression model (XGBoost), which generates continuous priority

scores for each requirement, with higher scores reflecting higher

implementation priority. To ensure transparency, SHAP-based

feature attribution is applied for feature importance analysis, and

a feedback integration mechanism allows stakeholders to

iteratively refine prioritization outcomes, thus in-turn retraining

the core prioritization model. Empirical validation against three

domain experts across five projects from different application

domains demonstrates strong alignment, with Spearman rank

correlations between 0.6 and 0.75, Mean Absolute Error (MAE)

around 0.10, and Top 5 Match Rates up to 0.80. The results

confirm that the proposed system provides a scalable, explainable,

and context aware requirements prioritization mechanism

suitable for real-world software engineering projects.

Keywords—Requirements prioritization; context-aware

prioritization; machine learning; natural language processing;

ordinal regression; dependency analysis; Explainable AI

I. INTRODUCTION

Contemporary software projects exhibit increasing
complexity as application priorities shift during development
and as requirements interact through technical and
organizational dependencies [1]. In such environments, the
ordering of requirements functions as a determinant of system
risk, resource contention, and delivery reliability; inappropriate
ordering propagates bottlenecks, extends schedules, and can
precipitate project failure. Practice often adopts structured

techniques such as Analytic Hierarchy Process, MoSCoW, and
case-based ranking to introduce discipline into decision making;
however, these techniques depend heavily on judgments elicited
from experts at specific points in time and require substantial
manual effort, which constrains reproducibility and scalability
when the requirement set is large or volatile [1]. Related work
on interactive optimization for the Next Release Problem also
shows how optimization and learning can be combined for
release planning [2]. A further limitation is the absence of a
formal representation of project specific context. Urgency,
failure risk, technical constraints, and operational dependencies
are frequently handled implicitly or retrospectively, producing
priority lists that appear consistent during elicitation yet diverge
from the evolving state of the project [3]. Structured
prioritization has also been reviewed at the use-case level,
extending the evidence base beyond requirements lists [4].
Recent systematic literature reviews (SLRs) consolidate more
than one hundred and forty requirements prioritization
techniques from 2000 to 2021, highlighting that both traditional
approaches (AHP, MoSCoW, numerical assignment) and
modern AI-based methods (fuzzy logic, genetic algorithms,
machine learning) still face persistent challenges in scalability,
stakeholder coordination, dependency handling, and automation
[3][5][6][32]. Thus, there is an evident need for development of
scalable, empirically validated ML models that support can
real-world prioritization workflows.

Within such contexts, machine learning models for
requirements prioritization offer a scalable and objective
alternative by analyzing historical data together with project
specific contextual information to automate prioritization [7]
[30]. This approach reduces continuous reliance on expert
intervention, thereby lowering subjectivity and improving the
consistency of decisions. In practice, machine learning methods
have been shown to increase efficiency while decreasing manual
effort in prioritization tasks [7][8][9]. Recent machine learning
surveys on requirements prioritization identify scalable, data-
driven approaches including case-based ranking, classification-
based methods, clustering algorithms (k-means, Fuzzy C-
Means), and semi-automated frameworks such as SRP Tackle,
which demonstrate strong performance on large-scale
requirement sets while reducing expert elicitation burden
[9][10]. Additionally, several works now incorporate semi-
automated and interactive mechanisms where stakeholders
provide feedback to refine prioritization outcomes, partially

*Corresponding author.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

974 | P a g e
www.ijacsa.thesai.org

addressing human-in-the-loop and iterative refinement
challenges [2][9][10] [11] [31].

Although machine learning approaches improve scalability
and objectivity relative to manual methods, a persistent gap is
their limited treatment of context [5]. Automated models
frequently omit the intent and contextual cues embedded in
requirements statements. When project-specific factors such as
urgency, risk, complexity, resource needs and availability, and
dependencies are not represented, the resulting priority order
may diverge from project goals and constraints. For example,
selecting a low-risk item with no dependencies ahead of a high
risk, mission critical item can increase cost and delay delivery.
In such cases, the prioritization output no longer serves the
project's objectives and weakens the value of the process. At the
same time, several recent strands of research address parts of this
gap: 1) Natural language processing (NLP) in requirements
engineering uses deep language models and dependency parsing
to extract requirement attributes, risk indicators, and structural
properties directly from textual requirements, enabling more
precise feature engineering [12] [13] [14]; 2) Dependency-aware
prioritization techniques such as DRank and CDBR explicitly
model and exploit requirement dependency graphs, using graph-
based ranking, execute-before-after relationships, and
collaborative filtering to propagate priority signals across
dependent items [9][11][15][16]. 3) Recent machine learning
surveys document growing adoption of supervised
classification, clustering, ranking algorithms, and swarm
optimization approaches that incorporate dependencies, though
often in isolation and not jointly optimized [5][9] and 4)
Explainability and interpretability methods are increasingly
discussed as essential for understanding and validating AI-based
prioritization decisions, though their application to requirements
prioritization pipelines remains limited [5][9][17]. However,
these approaches typically address specific factors or
mechanisms (e.g., dependency graphs alone, or NLP for
classification only) and often require substantial elicitation
effort, manual configuration, or separate treatment of contextual
signals, leaving room for more integrated, end-to-end
frameworks that jointly infer multiple contextual features from
requirement text, model dependencies explicitly, and provide
explainability through a unified prioritization pipeline.

This study addresses these limitations through the following
objectives:

• Design and implement a context aware machine learning
model that prioritizes software requirements from their
descriptions and contextual features, including risk,
urgency, and dependencies. In contrast to prior
dependency-aware approaches (such as DRank and
CDBR) that focus primarily on explicit dependency
matrices or pairwise comparisons, and to NLP studies
that target isolated feature extraction or classification
[9][11][12][15], the proposed model infers a broader
integrated set of contextual variables including technical
risk, complexity, urgency, implementation effort,
stability, stakeholder criticality, security sensitivity, and
inter-requirement dependencies directly from
requirement text and combines them within a unified
regression framework.

• Apply natural language processing techniques, using
RoBERTa for risk estimation and dependency analysis,
and an ordinal neural regression model for other
contextual features such as complexity, urgency,
implementation effort, stability, stakeholder criticality,
security sensitivity, and business value [12][18]. This
design builds on recent advances in using deep NLP
models and interpretable machine learning for
requirements classification, attribute extraction, and
dependency identification [12][13][14][19][20], while
extending them beyond isolated classification tasks to
multi-feature context inference optimized specifically
for downstream prioritization.

• Use a supervised multiple regression model (XGBoost)
to generate continuous priority scores. Regression-based
integration of contextual features aligns with recent
automated prioritization frameworks and machine
learning surveys that recommend ensemble methods for
requirements ranking [9][21]; however, in this work the
regressor operates over features that are explicitly
inferred from requirement text via NLP and evaluated for
importance through explainability analysis, rather than
relying solely on manually annotated attributes or any
ad-hoc feature engineering process.

• Establish a mechanism to collect and integrate
stakeholder feedback, including revised priority scores
and contextual feature values, to update the training data
and improve model adaptability and accuracy over time.
This feedback-driven retraining mechanism is consistent
with semi-automated and human-in-the-loop
prioritization techniques reported in recent literature
[9][10] and aligns with the push toward interactive ML
in requirements engineering; however, this work
uniquely applies the feedback loop to an explicitly
context-aware, explainability-informed feature space
shaped by SHAP-based feature selection during design
time, enabling both transparency and iterative
refinement.

This study contributes the following to requirements
engineering:

• Context aware framework: A scalable and automated
requirements prioritization system that integrates
machine learning and natural language processing to
infer contextual features from requirement statements,
providing a foundation for informed and efficient
prioritization [21]. Semi-automated techniques reported
in prior work also motivate the integration of human
feedback into prioritization pipelines [10]. By jointly
modeling textual features, inferred contextual signals
(risk, complexity, effort, stability, security, stakeholder
importance), inferred dependencies, and learned
dependencies within a single end-to-end pipeline, the
framework addresses research gaps identified in recent
SLRs and complements existing context-aware,
dependency-aware, and ML-based RP approaches,
thereby clarifying the boundary between earlier
techniques and this present work [5][6][9][11][15].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

975 | P a g e
www.ijacsa.thesai.org

• Contextual feature inference: Use of RoBERTa for risk
estimation and dependency analysis, together with an
ordinal neural regression model for additional contextual
features, and integration of these values into a unified
prioritization pipeline [19]. Unlike prior NLP-based
efforts in requirements engineering that focus mainly on
requirement classification, non-functional requirement
type detection, or structural complexity assessment
[12][13][14], the feature inference layer here is explicitly
optimized via supervised learning to feed a downstream
prioritization regressor, enabling true end-to-end
learning from requirement text to priority scores without
intermediate manual steps.

• Regression-based integration: Combination of inferred
and annotated contextual features within a supervised
multiple regression model (XGBoost) to produce
continuous priority scores and improve predictive
performance [20] . This extends earlier regression and
optimization-based prioritization models by
incorporating explainability-informed feature selection
(via SHAP) and text-derived dependency signals, which
recent surveys indicate have not yet been jointly
exploited in existing AI-based and machine learning-
based RP studies [5][9][15][21].

• Design time SHAP feature selection: Application of
Shapley Additive Explanations once during model
design to select influential features for the final training
dataset, ensuring consistent training and retraining while
excluding SHAP from the runtime pipeline [17]. SHAP
and related explainability methods are increasingly used
to analyze and interpret complex ML models in various
domains [17], and their application to model
development (feature selection, model debugging) is
well established; however, their use to deliberately shape
the feature space of a requirements prioritization pipeline
selecting only the most impactful features informed by
explanations remains underexplored in the requirements
engineering literature, particularly in conjunction with
NLP-based contextual feature inference.

• Feedback driven retraining: A mechanism for
stakeholders to review and adjust prioritization outputs;
the collected feedback updates the training data using the
same SHAP selected feature set to improve adaptability
and maintain accuracy over time [12]. This human-in-
the-loop mechanism complements existing interactive
and semi-automated approaches such as SRP Tackle
(which uses semi-automation to reduce expert burden),
DRank (which resolves conflicts via dependency
propagation), CDBR (which integrates stakeholder and
developer preferences with dependency-based
optimization), and interactive genetic algorithms
discussed in recent surveys [9][10][11][15], by
embedding explicit human feedback directly into the
retraining cycle of a context-aware, explainability-
informed model and enabling stakeholders to influence
the feature importance profile over time.

• Empirical validation: The system is evaluated with
multiple domain experts across diverse projects, showing

reduced manual workload and improved alignment of
priorities with risk mitigation and resource allocation
objectives [16]. The evaluation design aligns with
recommendations from recent AI-based and machine
learning SLRs on requirements prioritization, which
emphasize the importance of empirical assessment
across diverse projects, evaluation of scalability with
large requirement sets, validation of dependency
handling, and measurement of stakeholder satisfaction
and usability in realistic industrial settings [5][6][9].

The remainder of the paper is organized as follows. Section
II presents the methodology: requirement data preparation,
contextual feature inference with RoBERTa and ordinal neural
regression, SHAP feature selection, and development of the core
regression prioritization model. Section III describes the system
design and implementation, including the architecture,
integration of contextual feature estimators, dependency
analysis, backend services, and the user interface. Section IV
reports empirical validation with expert evaluation and
performance analysis using mean absolute error, Spearman rank
correlation, and Top 5 match rate. Discussion is given in Section
V. Section VI concludes with a summary of contributions and
directions for future work aimed at improving scalability,
adaptability, and applicability in practice.

II. METHODOLOGY

This study employs a structured methodology with five
sequential phases to develop and evaluate a context aware,
machine learning based requirements prioritization system. The
complete workflow is shown in Fig. 1.

A. Phase 1: Requirement Data Preparation

Requirement statements were collected from publicly
available Software Requirements Specification (SRS)
documents of multiple open-source projects. The documents
were processed to construct a dataset for training and testing the
prioritization models. Preprocessing included tokenization,
vectorization, lemmatization, removal of special characters, and
lowercasing. These steps standardize the text and prepare it for
use in the natural language processing and machine learning
models employed in subsequent phases of the study [22].

B. Phase 2: Contextual Feature Estimation

Each contextual feature was modeled with a dedicated
machine learning pipeline appropriate to its data type and
structure. The training data consisted of requirement statements
from open-source SRS documents, which were annotated for
contextual feature values and binary dependency [16]. The
accompanying table summarizes the specification and
characteristics of the estimation and inference models. Coupling
preferences with dependency information has been shown to
improve prioritization quality in semi-automated and
dependency aware settings [11] [16] [23]. SHAP (Shapley
Additive Explanations) was then applied to a subset of the
labeled data to identify the features with the greatest influence
on the output of the core prioritization model; a basic random
forest regressor was used only for this SHAP analysis step [24].
The most influential features were selected and fixed for training
the prioritization model. Finally, all trained inference models,
together with configuration files, tokenizers, and vectorizers,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

976 | P a g e
www.ijacsa.thesai.org

were saved for use by the backend API of the core prioritization
system.

Fig. 1. Methodology workflow diagram.

C. Phase 3: Requirements Prioritization Model

The requirement prioritization pipeline begins by estimating
contextual features from requirement statements using the
inference models developed in Phase 2. Next, the expert labeled
training data are augmented to create the initial training set for
the core prioritization model. Augmentation injects small
Gaussian noise into sentence embeddings derived from the
requirement text, as well as into priority scores and contextual
feature values scaled from 0 to 1, while preserving the original
dependency labels to maintain structural consistency. A subset
of the augmented data is then used to train multiple supervised
regression models, including Random Forest, Gradient Boosting
Regressor, Support Vector Regressor, and XGBoost Regressor.
Model performance is evaluated with fivefold cross validation
using Root Mean Squared Error, Mean Bias Error, Mean
Absolute Error, Mean Bias Ratio, and the coefficient of
determination R2 as metrics. Across these comparisons, the
XGBoost Regressor shows the strongest accuracy and
generalization [25].

After selecting XGBoost as the core prioritization model,
hyperparameter tuning was conducted using two strategies:
randomized search cross validation and Bayesian optimization
[26]. The search covered learning rate, maximum tree depth,
number of estimators, L1 and L2 regularization strengths, and
subsampling ratio [29]. In comparison, Bayesian optimization
produced lower root mean squared error and higher overall

performance while exploring the search space more efficiently
[26]. The final XGBoost model, trained on the selected feature
set with the best parameters from Bayesian optimization, was
exported together with the TF IDF vectorizer. These
components were integrated into the backend application
programming interface of the prioritization system, which
prioritizes new software requirements. The main stakeholder
interactions are illustrated within the use case diagram shown
within Fig. 2.

Fig. 2. Use case diagram (core priorization).

D. Phase 4: Model Validation and Interpretability

After tuning and finalizing the core prioritization model, an
empirical study is conducted to assess its applicability in real
settings. The model’s predicted priority scores and ordering are
compared with the judgments of three domain experts on a new
set of requirement statements and project contexts. Performance
is measured using Spearman rank correlation, Top 5 match rate,
and mean absolute error. Two evaluation modes are used. In the
end-to-end automated mode, the inference models estimate
contextual feature values and binary dependencies. In the
manual mode, domain experts provide contextual feature and
dependency values after reviewing the project contexts. The
results provide quantitative evidence of the applicability and
effectiveness of the machine learning based prioritization
system and address the study objective of reducing subjectivity
and improving scalability in requirements prioritization [5][9].

E. Phase 5: System Deployment

The system is deployed with Fast API to provide backend
services and programmatic access to the core prioritization
models through HTTP endpoints. A user interface enables
nontechnical users to submit requirement statements and view
the resulting priority scores and ordering.

III. IMPLEMENTATION

A. Data Acquisition and Preparation

The first step is the search and collection of software
requirement statements from Software Requirements
Specification (SRS) documents associated with open source or
declassified projects. To support contextual diversity and
generalizability of the machine learning models, SRS
documents were drawn from a range of project domains,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

977 | P a g e
www.ijacsa.thesai.org

including telecommunication, healthcare, finance, and
education.

After extracting the requirement statements, a domain expert
manually annotated contextual feature values for each statement
in the context of its source project. The features included
technical implementation risk, complexity, urgency, stability
across the project lifecycle, implementation effort, security
sensitivity, and stakeholder criticality. Prior work has used NLP
to assess structural properties and complexity of requirements,
supporting the inclusion of such signals in our feature set [14].
Each feature was rated on a five-point ordinal scale from 1
(lowest) to 5 (highest) with respect to the corresponding SRS. In
addition, inter requirement dependencies were annotated within
each project using a binary label (dependent or independent)
based on structural relationships observed in the SRS. Graph-
based representations capture inter-sentence dependencies
relevant to inferring such links [27]. These annotations
constitute the ground truth for training the contextual feature
inference models and the core requirements prioritization model
used in this study.

Before training the machine learning models, the
requirement text was preprocessed to standardize format by
lowercasing, removing special characters, and normalizing
whitespace. The semantic content of the statements was
preserved without paraphrasing to remain consistent with the
expert annotations. Contextual feature values were normalized
to the interval [0,1] (for example, 2 maps to 0.4). Requirement
statements were then vectorized with the all-mpnet-base-v2
Sentence Transformer, yielding 768 dimensional embeddings
that capture the meaning and nuances of each statement.

To address the sparsity of expert labeled training data and to
improve the robustness of the contextual feature estimators, the
dependency detector, and the core prioritization model, a
controlled data augmentation procedure is applied. The
procedure injects Gaussian noise into the sentence embeddings
and the normalized contextual feature values while leaving the
dependency labels unchanged to preserve logical correctness.
This emulates minor contextual and semantic variations that
arise in practice [28]. Gaussian noise is applied to each input
element, including normalized feature values and the 768-
dimensional embedding that represents each requirement
statement, using the formula given below.

 𝑥𝑗 = 𝑥 + 𝜀, 𝜀 ∼ 𝑁(𝜇, 𝜎2) ()

x: Original data point (scalar or vector).

x^j: jth augmented sample generated from x.

ε: Additive Gaussian noise.

μ: Mean of the Gaussian noise (often 0).

σ: Standard deviation of the Gaussian noise; the variance is
σ^2.

Here, gaussian noise is sampled from the probability density
function given below:

The Gaussian probability density function specifies the
distribution of the noise introduced during data augmentation
and enables controlled simulation of stochastic fluctuations

around a chosen mean. This supports more robust estimation of
contextual features and dependencies and improves the
generalizability of the core prioritization model. The augmented
samples were then combined with the original expert labeled
data to form a more comprehensive and balanced training set.
Finally, the target variable Priority Score was perturbed with
Gaussian noise using a separate standard deviation 𝜎 priority
and then clipped to the interval [0.5,1.0] to keep augmented
labels within realistic scoring ranges.

B. SHAP Analysis for Contextual Feature Evaluation

To examine the effect of contextual features on the output of
the core prioritization model, Shapley Additive Explanations
(SHAP) are used to decompose each prediction into additive
contributions from individual features. SHAP supports global
and local interpretation, which allows quantification of feature
importance, assessment of average directional effects, and
inspection of instance level behavior for each contextual feature
[24]. The following subsections present visualizations of the
SHAP analysis performed on the initial augmented training data
with a basic random forest regressor.

Fig. 2 ranks the features by their mean absolute SHAP value,
which reflects overall influence on the model output irrespective
of sign. For each feature, the mean of the absolute Shapley
values is computed across all test instances, providing an
aggregate measure of the extent to which the feature moves
predictions away from the base value. Requirements stability
shows the highest mean absolute SHAP value (0.035),
indicating the strongest contribution to the predicted priority
scores. Complexity (0.028) and urgency (0.020) follow,
suggesting that anticipated implementation difficulty and time
sensitivity also have substantial impact. Implementation effort
(0.018) and stakeholder criticality (0.016) form a middle group
with moderate effects. Business value, security sensitivity, and
technical risk have lower values (0.010 to 0.012), indicating less
consistent contributions across the dataset.

Fig. 3. Outcome of SHAP analysis.

This observation raises the possibility of under
representation or collinearity with other features. Whereas the
previous figure reports the absolute magnitude of feature
importance, the current Fig. 3 presents signed mean SHAP
values, which indicate whether a feature increases or decreases
the predicted priority on average. The signed mean is obtained
by averaging the raw Shapley values, including their signs,
across all samples in the training data. In this analysis,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

978 | P a g e
www.ijacsa.thesai.org

requirements stability shows a small negative mean
(approximately −0.0010), indicating that higher stability is
associated with lower predicted priority. These average
directional effects of each contextual feature on the predicted
priority scores are illustrated in Fig. 4.

Fig. 4. Average Directional Effects (SHAP analysis).

This pattern is consistent with the local rationale that stable
requirements are less urgent and can be deferred without
jeopardizing schedules or increasing the risk of implementation
failure. Security sensitivity (approximately −0.0007) and
business value (approximately −0.0005) also show negative
means, suggesting that highly valuable or sensitive items may
be deprioritized relative to volatile tasks, possibly reflecting a
trade off with complexity or risk. In contrast, technical risk
exhibits a positive mean effect (approximately +0.0005),
indicating that riskier requirements tend to receive higher
priority, which aligns with a mitigation first strategy that
addresses components prone to failure early in the lifecycle.
Urgency, stakeholder criticality, and complexity show positive
average contributions (approximately +0.0004 to +0.0008),
reinforcing their influence in increasing the priority score. Taken
together, the directional analysis indicates an implicit policy to
defer stable, even high value, requirements while advancing
urgent, complex, or risky items. Based on the SHAP analysis,
requirements stability, complexity, and urgency are retained for
their strong mean absolute contributions, and technical risk,
implementation effort, and stakeholder criticality are included
for their consistent directional effects, which capture risk
mitigation, resource demand and allocation, and stakeholder
influence in prioritization. This feature subset is expected to
preserve predictive accuracy, improve interpretability, and
reduce the risk of overfitting.

C. Model Evaluation and Metrics

The dataset refined through augmentation was used to train
four machine learning models: Random Forest, Gradient
Boosting, XGBoost, and a multilayer perceptron. Model
performance was assessed with K fold cross validation using
root mean square error (RMSE), mean bias error (MBE), mean
absolute error (MAE), mean bias ratio (MBR), and the
coefficient of determination 𝑅2. Brief descriptions of these
metrics are provided in Table I. The corresponding formulas are
presented below.

TABLE I. MODEL EVALUATION METRICS

Model Evaluation Metrics

Evaluation

Metrics
Description

Root Mean

Square Error

The Root Mean Square Error metric measures the

average magnitude of error (net difference) between the

actual values (within the training subset of data) and

predicted values (actual values predicted by the

regression learning models). This approach typically

penalizes larger errors (difference in prediction) more

than smaller errors due to the squaring operation before

averaging. So, lower root means square error signifies

better model accuracy as it quantifies comparatively

lower prediction error.

Mean Bias Error

The Mean Bias Error actually measures the average
difference between the actual and predicted values,

which takes a bit different approach than RMSE where
more focus is given only on measuring magnitude 78 of

prediction error, whereas MBE also takes signs of the

absolute difference into consideration. Considering the
sign of the difference in predicted and actual values,

MBE signifies positive and negative biases in
prediction. This approach aids in identifying systemic

bias, where positive MBE indicates model is under
predicting (model output lower than actual values) and

negative MBE indicates the model is over predicting

(model output higher than actual values) than the actual

values

Mean Absolute

Error

The mean absolute error (MAE) is a popular metric
for evaluation of regression models, which measures the

average magnitude of the prediction error without
considering the direction. This approach of evaluating

only the net difference in predictive error, makes MAE
a more direct and explainable error metric, which neither

allows errors to cancel out like MBE.

Mean Bias Ratio

This evaluation metric like the MBE is also focused

on evaluation of the bias (over and under prediction)
within a model’s prediction. However, MBR focuses on

determining whether a model systematically over

predicts or under predicts outcomes. Similarly, a
positive mean bias ratio signifies that the model

underestimates values and a negative mean bias ratio
signifies that the model overestimates values. So, mean

bias ratio closer to zero signifies overall lower or

minimal bias in predictions made by model.

R2 (R-squared

coefficient of

determination)

The R2 is a metric that quantifies how well the
regression learning model explains the variability of the

actual data (.i.e. How well does the regression model’s
prediction match the actual data). If the model predicts

perfectly, the numerator (sum of squa red errors)

becomes zero, then . But if the model can’t explain
variance well, the numerator will be larger making it

closer to zero or even negative in some cases

R-squared coefficient of determination

 𝑅2 = 1 −
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖− ȳ)2𝑛
𝑖=1

 ()

Mean Bias Ratio

𝑀𝐵𝑅 =
∑ (𝑦𝑖 − ŷ𝑖)𝑛

𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

 ()

Mean Absolute Error

𝑀𝐴𝐸 = (
1

𝑛
) ∑ |𝑦𝑖 − ŷ𝑖|

𝑛
𝑖=1 ()

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

979 | P a g e
www.ijacsa.thesai.org

The evaluation results of the model after K - cross fold
validation using the above-mentioned metrics are illustrated
within the graphs provided within Fig. 4, 5 and 6 where Fig. 4,
Fig. 5 and Fig. 6 refer to average directional effects (SHAP
Analysis), Test RMSE, and Test MBE respectively.

Fig. 5. Test RMSE.

Fig. 6. Test MBE.

Mean Bias Error

𝑀𝐵𝐸 = (
1

𝑛
) ∑ (ŷ𝑖 − 𝑦𝑖)

𝑛
𝑖=1 ()

Root Mean Square Error

𝑅𝑀𝑆𝐸 = √(
1

𝑛
)∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1 ()

The results show that XGBoost outperformed the other
models. It achieved the lowest root mean square error (0.0718),
the highest coefficient of determination 𝑅2 (0.7991), and near
zero bias (MBE = −0.0011, MBR = −0.0013). Light GBM and
k nearest neighbors were the next best models but with slightly
lower accuracy and consistency. Linear regression performed
poorly, with higher error and a negative 𝑅2, indicating that it did
not capture the structure of the data. Plots comparing the models
across all metrics corroborate these findings. Test RMSE, cross
validation RMSE, 𝑅2, MBE, and MBR were all lowest or closest
to ideal for XGBoost, supporting its better generalization,
stability, and low bias. The cross‑validation RMSE values for
the candidate models are reported in Fig. 7 and distribution of
test mean bias ratio in Fig. 8.

Fig. 7. Cross-Validation RMSE (Train).

Fig. 8. Test Mean Bias Ratio (MBR).

Fig. 9. Coefficient of determination (R2).

Furthermore, the corresponding coefficients of
determination for the evaluated models are presented in Fig. 9.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

980 | P a g e
www.ijacsa.thesai.org

D. Hyperparameter Tuning Process

After selecting XGBoost as the best performing model, we
refined it through hyperparameter tuning using two techniques:
randomized search cross-validation and Bayesian optimization.
Both procedures were implemented and evaluated using the
study’s core metrics, and the tuned configurations were
compared on the same validation protocol. The results of the two
hyperparameter tuning approaches for XGBoost are as follows:

TABLE II. HYPERPARAMETER PROCESS

Outcome of Hyperparameter Tunning

Method Best RMSE Best R2 Best MBE

Bayesian Optimization 0.074881 0.781547 0.000841

Randomized Search 0.078633 0.759108 –0.002580

The model tuned with Bayesian optimization produced a
lower root mean square error (0.07488 versus 0.07863), a higher
coefficient of determination 𝑅2 (0.78155 versus 0.75911), and a
mean bias error closer to zero and positive (0.00084 versus
−0.00258), indicating lower and more balanced bias. The tuning
results are summarized in Table II. These results support
Bayesian optimization as the preferred hyperparameter tuning
strategy for the XGBoost model used for contextual
requirements prioritization. The tuned model was then retrained
on the full training set, excluding the portion reserved for
evaluation, and both the final model and the TF IDF vectorizer
were saved for deployment within the prioritization system.

E. Implementation and Validation of Core Prioritization

Model

The system architecture consists of a ReactJS frontend and a
Fast API backend. Fast API is used to implement RESTful
endpoints with asynchronous request handling and data
validation. The endpoints support requirement submission,
prioritization, editing of contextual features, dependency
analysis, and retrieval of prioritization results. The frontend
provides modular components for user interaction and
communicates with the backend through HTTP POST and GET
requests. The High-Level overview of the prioritization model’s
architecture is shown in Fig. 10 and details of API endpoints are
summarized in Table III.

Fig. 10. Prioritization model architecture.

TABLE III. API ENDPOINTS DESCRIPTION

API endpoints description

Endpoint Purpose Method Input Output

/estimate_risk Estimate technical risk Post Requirement text Risk level (1–5)

/estimate_dependency Estimate binary Post Requirement pair 0 or 1

/estimate_complexity dependency Post Requirement text Score (1–5)

/estimate_urgency Estimate implementation complexity Post Requirement text Score (1–5)

/estimate_stability Estimate urgency Post Requirement text Score (1–5)

/estimate_effort Estimate requirement stability Post Requirement text Score (1–5)

/estimate_security Estimate implementation effort Post Requirement text Score (1–5)

/estimate_criticality Estimate security sensitivity Post Requirement text Score (1–5)

/prioritize Predict final requirement priority Post
Requirement text embeddings, Contextual features and

dependency values within JSON format.
Priority score (0–1)

IV. RESULTS

This section reports the results of expert-based validation of
the core prioritization model, an XGBoost model optimized with
Bayesian optimization. Performance is summarized for five
projects from different domains and compared with the
judgments of three domain experts. The analysis focuses on
alignment between the model and the experts using three
metrics: Spearman rank correlation, Top 5 match rate, and mean
absolute error.

Fig. 11 summarizes mean absolute error results across
projects and experts. Excluding three specified instances,
namely Expert 1 in Project 5 with MAE 0.07, Expert 2 in Project

4 with MAE 0.06, and Expert 3 in Project 3 with MAE 0.07, the
model maintains low error across the remaining evaluations,
with MAE values between 0.06 and 0.11 and an average near
0.10. The agreement is strongest in logistics, where Project 2
shows MAE 0.06 for all experts, and in telecommunications,
where Project 1 reports MAE 0.08 for Expert 1, 0.07 for Expert
2, and 0.11 for Expert 3. Minor variations, such as the higher
MAE of 0.11 for Expert 3 in Project 1, indicate deviations in
some project contexts.

Fig. 12 reports Spearman rank correlation outcomes. Across
projects, the model shows consistent ranking agreement, with
average Spearman rank correlation between 0.6 and 0.7. The
strongest agreement is observed with Expert 2, particularly in

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

981 | P a g e
www.ijacsa.thesai.org

healthcare (Project 5) and logistics (Project 2), where Spearman
rank correlation reaches 0.75 and 0.70 respectively.

Fig. 11. Mean Absolute Error (MAE) values.

Fig. 12. Spearman rank correlation outcomes.

Fig. 13. Top 5 match rate values.

Fig. 13 presents Top 5 match rate values, with average Top
5 match rate between 0.5 and 0.55. In Project 5, the Top 5 match
rate attains 0.80 for Expert 2, indicating close agreement on the
highest-priority items. In Project 3, Spearman rank correlation is

0.60 for Experts 1 and 2 and the Top 5 match rate is 0.60 for
both.

Additional results include Project 4 with Spearman rank
correlation 0.60 for Expert 1 and 0.40 for Expert 3, and Top 5
match rates of 0.40 and 0.60 respectively. In Project 4, mean
absolute error is 0.07 for Expert 1 and 0.09 for Expert 3. In
Project 1, MAE is 0.08 for Expert 1, 0.07 for Expert 2, and 0.11
for Expert 3. In Project 5, MAE is 0.08 for Experts 2 and 3. The
absence of measurements for Expert 3 in Project 3 limits a
complete assessment for that project.

V. DISCUSSION

The results indicate that the model can align closely with
expert judgments in domains where requirements are well
defined and evaluation criteria are relatively consistent. The
strongest agreement with Expert 2 in healthcare and logistics
suggests that the inferred contextual representation supports
reliable prioritization in such settings, including for critical non-
functional requirements.

Performance varies across domains, particularly in e-
commerce (Project 4) and smart city (Project 3), where
agreement is weaker for some experts. This variability is
consistent with domains that exhibit stronger context
dependence and greater divergence in expert preferences, which
can reduce rank agreement even when absolute score differences
remain small. The missing Expert 3 measurements in Project 3
further limits the interpretation of results for that domain.

This study has several limitations that should be considered
when interpreting the findings. First, the datasets were derived
primarily from open-source Software Requirements
Specification documents, which may not fully represent
industrial requirements practices, particularly in regulated or
safety critical environments. Second, contextual feature values
and dependency labels were annotated by a limited number of
domain experts, and expert judgments can vary across projects
and domains. This variability may influence both the learned
mapping between contextual features and priority scores and the
observed agreement metrics. Third, the approach infers
contextual features from requirement statements, and the
inference quality depends on the clarity and completeness of the
textual descriptions. Requirements that are underspecified,
ambiguous, or strongly dependent on external project context
can reduce inference accuracy and, in turn, affect prioritization
performance. Fourth, although cross validation and held out
expert evaluation were used, the training data remains limited in
scale. Data augmentation improves robustness, but it cannot
substitute for broader real-world coverage, and generalization to
unseen domains may require additional calibration. Finally, the
system evaluates agreement against expert prioritizations rather
than measuring downstream project outcomes. Therefore, the
reported improvements reflect alignment with expert judgment
and do not directly quantify impacts on delivery time, defect
reduction, or operational risk.

Overall, the findings support robustness in critical domains
while indicating the need for targeted improvements to address
inconsistencies in subjective or complex project contexts. In
practice, the model can reduce manual effort and provide
decision support in resource constrained settings, but it should

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

982 | P a g e
www.ijacsa.thesai.org

be used to assist expert decision making rather than replace
expert judgment, particularly in domains with high subjectivity.

A. Comparison with Existing Approaches

Existing machine learning based requirements prioritization
techniques report improved scalability and reduced elicitation
effort, but often without rich contextual features or explicit
dependency handling [5] [9]. Semi-automated models such as
SRP Tackle achieve high prioritization accuracy on large
requirement sets but focus mainly on multi criteria scoring and
clustering, with limited attention to fine grained dependency and
risk signals [10]. Dependency aware approaches like DRank and
CDBR show that incorporating requirement graphs and
execution order improves prioritization quality, yet they
typically rely on manually specified dependencies and do not
infer contextual attributes directly from requirement text
[11][16][23].

Within this landscape, the proposed model attains Spearman
rank correlations between 0.6 and 0.75, Top 5 match rates up to
0.80, and mean absolute errors around 0.10 across diverse
domains, which is consistent with or better than performance
ranges reported for recent ML based RP methods when
evaluated against expert judgments [7] [9]. The main added
value lies in jointly modeling contextual factors such as stability,
urgency, risk, and stakeholder criticality, inferring dependencies
from SRS text, and providing SHAP based explanations, which
extend prior dependency awareness and semi-automated
frameworks while maintaining competitive predictive accuracy
[5] [16] [24].

B. Limitations and Threats to Validity

The empirical evaluation is based on requirement statements
drawn from publicly available or declassified SRS documents
across a limited set of domains, including telecommunications,
healthcare, finance, and education. This dataset may not fully
represent industrial projects with different documentation styles,
regulatory constraints, or safety critical requirements, which
restricts the generalizability of the findings to other contexts. In
addition, the number of projects and requirements per project is
modest compared with large scale industrial portfolios, so
scalability to very large backlogs remain to be confirmed
empirically.

The expert-based validation involves three domain experts
whose judgments reflect individual preferences, experience, and
familiarity with specific domains. While multiple experts and
projects were used to mitigate individual bias, differences in
their rankings, particularly in e-commerce and smart city
domains, indicate that part of the observed disagreement arises
from variability in human judgments rather than model error
alone. The study also focuses on Spearman rank correlation,
mean absolute error, and Top 5 match rate as evaluation metrics,
which capture ordering and score alignment but do not fully
reflect all project level outcomes such as business value
realization, downstream defect reduction, or stakeholder
satisfaction.

From a modeling perspective, there is a risk of overfitting or
tuning bias because the XGBoost model and its hyperparameters
were selected based on cross validation performance on an
augmented dataset. Although K fold cross validation and data

augmentation were used to improve robustness, the same family
of metrics guides both model selection and evaluation, which
may overestimate performance relative to unseen industrial data.
Furthermore, the contextual feature estimators and dependency
detectors are trained on annotations produced within this study,
so systematic biases or inconsistencies in the labeling process
could propagate into the final prioritization outputs.

VI. CONCLUSION AND FUTURE WORK

This research developed a context-aware requirements
prioritization framework using machine learning, centered on an
XGBoost regression model optimized with Bayesian
optimization. The system automates and improves prioritization
by integrating contextual factors such as technical risk, urgency,
complexity, requirement stability, implementation effort,
security sensitivity, stakeholder criticality, business value, and
inter-requirement dependencies, which are inferred from
requirement statements in SRS documents or provided through
user input. In doing so, the framework addresses limitations of
traditional approaches such as Analytic Hierarchy Process and
MoSCoW that are sensitive to subjectivity, scale poorly, and
depend heavily on expert availability.

The methodology combines fine-tuned RoBERTa models
for risk and dependency estimation with sentence transformer
embeddings and Coral Ordinal models for complexity and
related features. At design time, a feature selection step is
performed using the Shapley Additive Explanations (SHAP)
process to retain the most influential contextual variables for
consistent training and retraining, thereby enhancing
interpretability and transparency. Empirical evaluation across
five projects with three domain experts demonstrates consistent
alignment between model outputs and expert prioritizations, as
reflected by Spearman rank correlation, Top 5 match rate, and
low mean absolute error across projects.

In practice, the system supports prioritization in dynamic
development settings by enabling iterative refinement through
stakeholder feedback and by providing structured prioritization
outputs that can assist decision-making. The approach is
intended to support expert judgment by producing an initial
ordering and exposing the contextual basis of priority scores
rather than replacing expert decision-making.

Despite the contributions of this study, the evaluation
remains limited to open‑source and declassified SRS
documents, a modest number of projects, and expert validation
in selected domains. Future work will expand the annotated
training data with larger industrial case studies to increase
stakeholder and domain diversity, refine contextual inference
using more advanced natural language processing techniques,
and strengthen dependency modeling for complex requirement
networks. Additional evaluation criteria will be incorporated to
improve external validity and assess downstream project
outcomes such as delivery efficiency and risk reduction.
Continued attention to interpretability, transparency, and ethical
scaling is essential for deployment in sensitive domains such as
healthcare and other mission‑critical systems. Overall, this
research contributes to machine learning‑assisted software
engineering by providing a practical and scalable foundation for
context‑aware requirements prioritization and management.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

983 | P a g e
www.ijacsa.thesai.org

ACKNOWLEDGMENT

The authors acknowledge the Faculty of Computer Science
and Information Technology, Universiti Putra Malaysia (UPM),
for supporting this work.

REFERENCES

[1] M. Sufian, Z. Khan, S. Rehman, and W. Haider Butt, “A Systematic

Literature Review: Software Requirements Prioritization Techniques,” in

2018 International Conference on Frontiers of Information Technology

(FIT), Dec. 2018, pp. 35–40. doi: 10.1109/FIT.2018.00014.

[2] A. A. Araújo, M. Paixao, I. Yeltsin, A. Dantas, and J. Souza, “An

Architecture based on interactive optimization and machine learning

applied to the next release problem,” Autom. Software. Eng., vol. 24, no.

3, pp. 623–671, Sep. 2017, doi: 10.1007/s10515-016-0200-3.

[3] F. A. Bukhsh, Z. A. Bukhsh, and M. Daneva, “A systematic literature

review on requirement prioritization techniques and their empirical

evaluation,” Comput. Stand. Interfaces, vol. 69, p. 103389, Mar. 2020,

doi: 10.1016/j.csi.2019.103389.

[4] Y. Odeh and N. Al-Saiyd, “Prioritizing Use Cases: A Systematic

Literature Review,” Computers, vol. 12, no. 7, p. 136, Jul. 2023, doi:

10.3390/computers12070136.

[5] R. Anwar and M. B. Bashir, “A Systematic Literature Review of AI -

Based Software Requirements Prioritization Techniques,” IEEE Access,

vol. 11, pp. 143815–143860, 2023, doi:

10.1109/ACCESS.2023.3343252.

[6] A. M. Radwan, M. A. Abdel-Fattah, and W. Mohamed, “AI-Driven

Prioritization Techniques of Requirements in Agile Methodologies: A

Systematic Literature Review,” Int. J. Adv. Comput. Sci. Appl., vol. 15,

no. 9, 2024, doi: 10.14569/IJACSA.2024.0150983.

[7] A. Fatima, A. Fernandes, D. Egan, and C. Luca, “Software Requirements

Prioritisation Using Machine Learning:,” in Proceedings of the 15th

International Conference on Agents and Artificial Intelligence, Lisbon,

Portugal: SCITEPRESS - Science and Technology Publications, 2023,

pp. 893–900. doi: 10.5220/0011796900003393.

[8] N. R. Bollumpally, A. C. Evans, S. W. Gleave, A. R. Gromadzki, and G.

Learmonth, “A Machine Learning Approach to Workflow Prioritization,”

in 2019 Systems and Information Engineering Design Symposium

(SIEDS), Charlottesville, VA, USA: IEEE, Apr. 2019, pp. 1–5. doi:

10.1109/SIEDS.2019.8735589.

[9] K. I. A. Fadlallah and M. E. Y. Eldow, “Machine Learning: A survey of

requirements prioritization: A Review Study,” J. Artif. Intell. Comput.

Technol., vol. 1, no. 1, Nov. 2024, doi: 10.70274/jaict.2024.1.1.34.

[10] F. Hujainah, R. Binti Abu Bakar, A. B. Nasser, B. Al-haimi, and K. Z.

Zamli, “SRPTackle: A semi-automated requirements prioritisation

technique for scalable requirements of software system projects,” Inf.

Softw. Technol., vol. 131, p. 106501, Mar. 2021, do i:

10.1016/j.infsof.2020.106501.

[11] F. Shao, R. Peng, H. Lai, and B. Wang, “DRank: A semi-automated

requirements prioritization method based on preferences and

dependencies,” J. Syst. Softw., vol. 126, pp. 141–156, Apr. 2017, doi:

10.1016/j.jss.2016.09.043.

[12] S.-C. Necula, F. Dumitriu, and V. Greavu-Șerban, “A Systematic

Literature Review on Using Natural Language Processing in Software

Requirements Engineering,” Electronics, vol. 13, no. 11, p. 2055, Jan.

2024, doi: 10.3390/electronics13112055.

[13] F. Dalpiaz, D. Dell’Anna, F. Aydemir, and S. Cevikol, “Requirements

Classification with Interpretable Machine Learning and Dependency

Parsing,” Sep. 2019, pp. 142–152. doi: 10.1109/RE.2019.00025.

[14] A. M. Madni and M. Sievers, “Natural Language Processing To Assess

Structure and Complexity of System Requirements,” Syst. Eng., vol. 21,

no. 3, pp. 172–190, May 2018, doi: 10.1002/sys.21438.

[15] A. Gupta and C. Gupta, “CDBR: A semi-automated collaborative

execute-before-after dependency-based requirement prioritization

approach,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 2, pp. 421–

432, Feb. 2022, doi: 10.1016/j.jksuci.2018.10.004.

[16] F. Noviyanto, R. Razali, and M. Z. A. Nazree, “Understanding

requirements dependency in requirements prioritization: a systematic

literature review,” Int. J. Adv. Intell. Inform., vol. 9, no. 2, pp. 249–272,

Jul. 2023, doi: 10.26555/ijain.v9i2.1082.

[17] W. Zhou, Z. Yan, and L. Zhang, “A comparative study of 11 non -linear

regression models highlighting autoencoder, DBN, and SVR, enhanced

by SHAP importance analysis in soybean branching prediction,” Sci.

Rep., vol. 14, no. 1, p. 5905, Mar. 2024, doi: 10.1038/s41598-024-55243-

x.

[18] G. Y. Quba, H. Al Qaisi, A. Althunibat, and S. AlZu’bi, “Software

Requirements Classification using Machine Learning algorithm’s,” in

2021 International Conference on Information Technology (ICIT), Jul.

2021, pp. 685–690. doi: 10.1109/ICIT52682.2021.9491688.

[19] M. Atas, R. Samer, and A. Felfernig, “Automated Identification of Type-

Specific Dependencies between Requirements,” in 2018

IEEE/WIC/ACM International Conference on Web Intelligence (WI),

Santiago: IEEE, Dec. 2018, pp. 688–695. doi: 10.1109/WI.2018.00-10.

[20] H. Guan, H. Xu, and L. Cai, “Requirement Dependency Extraction Based

on Improved Stacking Ensemble Machine Learning,” Mathematics, vol.

12, no. 9, p. 1272, Jan. 2024, doi: 10.3390/math12091272.

[21] B. Jamasb, S. R. Khayami, R. Akbari, and R. Taheri, “An Automated

Framework for Prioritizing Software Requirements,” Electronics, vol. 14,

no. 6, p. 1220, Jan. 2025, doi: 10.3390/electronics14061220.

[22] A.-G. Núñez, M. Granda, V. Saquicela, and O. Parra, “Machine Learning-

Enhanced Requirements Engineering: A Systematic Literature Review:,”

in Proceedings of the 19th International Conference on Evaluation of

Novel Approaches to Software Engineering, Angers, France:

SCITEPRESS - Science and Technology Publications, 2024, pp. 521–

528. doi: 10.5220/0012688100003687.

[23] T. Amelia and R. Mohamed, “Reprocolla: Requirements Prioritisation

Model with Collaboration Perspectives Based on Cost-Value Approach,”

J. Inf. Commun. Technol., vol. 23, no. 2, pp. 211–252, Apr. 2024, doi:

10.32890/jict2024.23.2.3.

[24] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model

Predictions,” in Advances in Neural Information Processing Systems,

Curran Associates, Inc., 2017. Accessed: Dec. 22, 2025. [Online].

Available:

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c4

3dfd28b67767-Abstract.html

[25] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”

in Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, in KDD ’16. New York, NY,

USA: Association for Computing Machinery, Aug. 2016, pp. 785–794.

doi: 10.1145/2939672.2939785.

[26] X. Wang, Y. Jin, S. Schmitt, and M. Olhofer, “Recent Advances in

Bayesian Optimization,” Nov. 11, 2022, arXiv: arXiv:2206.03301. doi:

10.48550/arXiv.2206.03301.

[27] L. Xu et al., “Zero-Shot Cross-Lingual Machine Reading Comprehension

via Inter-sentence Dependency Graph,” Mar. 15, 2022, arXiv:

arXiv:2112.00503. doi: 10.48550/arXiv.2112.00503.

[28] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data

Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, p. 60, Jul.

2019, doi: 10.1186/s40537-019-0197-0.

[29] P. Probst, A.-L. Boulesteix, and B. Bischl, “Tunability: Importance of

Hyperparameters of Machine Learning Algorithms,” J. Mach. Learn. Res.

20 2019 1-32, 2019.

[30] T. Li, X. Zhang, Y. Wang, Q. Zhou, Y. Wang, and F. Dong, “Machine

learning for requirements engineering (ML4RE): A systematic literature

review complemented by practitioners’ voices from Stack Overflow,” Inf.

Softw. Technol., vol. 172, p. 107477, Aug. 2024, doi:

10.1016/j.infsof.2024.107477.

[31] S. S. Tanveer and Z. A. Rana, “Prioritizing Software Requirements by

Combining the Usage Monitoring and User Feedback Data,” IEEE

Access, vol. 12, pp. 82825–82841, Jan. 2024, doi:

10.1109/access.2024.3409847.

[32] F. Hujainah, R. Bakar, M. Abdulhak, and K. Zamli, “Software

Requirements Prioritisation: A Systematic Literature Review on

Significance, Stakeholders, Techniques and Challenges,” IEEE Access,

vol. PP, pp. 1–1, Nov. 2018, doi: 10.1109/ACCESS.2018.2881755.

