
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

984 | P a g e
www.ijacsa.thesai.org

Functions Inverse Using Neural Networks via

Branch-Wise Decomposition and Newton Refinement

Abdullah Balamash

Electrical and Computer Engineering-Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—In this work, a unified framework (using Neural

Networks) is proposed to find the inverse of mathematical

functions, spanning both simple one-to-one mapping and complex

multivalued relations. The approach uses standard multilayer

Neural Networks (NN) to approximate the functions’ inverse and

introduces a deterministic branch-wise decomposition to handle

multi-valued inverses. For single-valued (one-to-one) functions, a

NN is directly trained on input-output pairs to learn the inverse

mapping. For multi-valued functions, the function domain is

decomposed into one-to-one branches, and a dedicated NN is

trained for each branch. A refinement step using Newton’s method

is applied to the NN output to further improve inversion accuracy.

Across a broad set of benchmark functions, the proposed

approach achieved low mean absolute error (MAE) and mean

squared error (MSE) in recovering the true inverse, with high

round-trip consistency. Newton refinement further reduces

inversion error by rapidly converging to higher precision

solutions. Notably, even for multi-valued inverse functions, each

branch-specific NN can accurately recover the true inverse.

Accordingly, standard NN, when combined with branch-wise

decomposition and Newton refinement, can serve as an effective

universal approximator for the inverse of functions across a

spectrum of complexities.

Keywords—Neural networks; function inverse; Newton method;

branch-wise decomposition

I. INTRODUCTION

A. Background and Related Works

Finding the inverse function is a fundamental problem in
many domains, from control systems and robotics to scientific
computing and optimization. Traditional analytical or numerical
methods can be challenging to apply when the function is
complex or not single-valued. Neural networks offer a powerful
alternative, since when they are provided with sufficient training
data, they can approximate any well-behaved and invertible
continuous function to an arbitrary accuracy [1]. In practice,
inversion using NN has been explored in control systems and
other fields [2], but significant challenges remain when the
inverse mapping is multi-valued [3]. Recent advances in
physics-informed neural networks (PINNs) have demonstrated
remarkable capability in solving both forward and inverse
problems by embedding physical laws directly into the learning
process [4], although these approaches primarily address
parameter identification rather than multi-valued function
inversion.

If the forward function is 𝑦 = 𝑓(𝑥) is not one-to-one, then
the inverse relation 𝑥 = 𝑓−1(𝑦) is multi-valued, meaning a
single 𝑦 corresponds to multiple valid solutions (𝑥). For

example, both 𝑦 = 𝑥2 and 𝑦 = sin(𝑥) have two or more
inverse values for a given 𝑦. Standard neural regression fails in
this setting because training data is not a single-valued mapping:
the same input y appears with different target 𝑥, leading to
contradictory samples [5]. A conventional NN trained on such
data will tend to predict the average of the contradictory samples
[6]. Previous studies have shown that multi-valuedness can
hinder learning [3]. It has been shown in robotics that a standard
NN cannot learn a multi-valued kinematics function,
necessitating specialized solutions [7]. Recent work using deep
learning for inverse kinematics in robotic manipulators has
demonstrated both the potential and limitations of various neural
architectures in handling such non-unique mappings [8].

Several schemes were explored to cope with multi-valued
inverses. Mixture Density Networks (MDNs) model the inverse
distribution as a mixture of Gaussian distributions, where each
Gaussian component corresponds to a single outcome. MDN
minimizes the log-likelihood of the observed data under the
predicted mixture model, which allows the model to fit all
possible outcomes [9]. While MDNs are powerful, they are
complex, hard to train, and less interpretable in practice. They
are difficult to train since they need to learn several things at
once, such as means, variances, and mixing weights for each
Gaussian component. They also need a careful initialization and
regularization to avoid both overfitting and underfitting. Recent
applications of MDNs in photonic inverse design have shown
their effectiveness in handling non-uniqueness, through the
challenges of specifying the number of mixture components and
joint parameter optimization persist [10]. Transfer learning
approaches have been proposed to mitigate some of these
training difficulties [11].

The modular neural networks (mixtures of experts) method
was explored, where each expert network learns one branch of
the inverse mapping, and a gating network decides which expert
network to activate for a given input [12], [13]. While such
gating architectures can handle multi-valued mappings, they add
an extra layer of complexity, as the gating layer must be trained
and tuned, and performance can be sensitive to the partitioning
of the input space.

Multi-headed neural networks provide another approach, in
which a single network outputs several possible inverse
candidates (heads) simultaneously [14], [15]. While this
approach allows multiple solutions, it still couples all outputs
into one model, requiring complex loss functions and additional
mechanisms to ensure that each head specializes in a distinct
branch. For example, a multiple-choice learning strategy can be
employed, wherein for each training example, only the output
head closest to the ground truth is updated, forcing other heads

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

985 | P a g e
www.ijacsa.thesai.org

to diverge [16]. This added training complexity is necessary to
prevent the heads from collapsing to the output. The work in [15]
demonstrated a multi-headed tandem neural network approach
for non-uniqueness in inverse design of layered photonic
structures, utilizing a self-attention mechanism to constrain and
separate multiple outputs.

Beyond these mainstream methods, researchers have
explored other techniques for multi-valued inversion. One idea
is to provide the network with additional inputs or context to
disambiguate the inverse. In study [3], the authors proposed a
state-regulated NN that augments a multilayer perceptron with a
discrete state variable to indicate different branches of the
inverse. This effectively transforms a one-to-many mapping to
multiple one-to-one mappings, provided the correct state is
supplied during the inference. Some researchers have
approached the one-to-many mapping using manifolds or
piecewise mappings. In study [17], the researchers present a
method that learns locally linear maps on different regions of a
data manifold to represent multiple outputs for a given input.

In photonic design, generative models have been leveraged
to address the inverse problem of non-unique solutions. For
example, conditional generative adversarial networks have been
used to generate multiple candidate structures that all produce
the same target optical spectrum [18], and conditional
variational autoencoders have been applied to learn the
distribution of possible inputs that yield a given output [19].
More recently, diffusion models have emerged as a powerful
alternative for inverse design problems, demonstrating superior
performance in capturing complex distributions and naturally
handling one-to-many mappings [20]. In [21], the authors
proposed DiffMat, a diffusion model-based framework for
energy-absorbing mathematical design that effectively realizes
one-to-many mapping from properties to geometries.

Another strategy is to use invertible neural networks
(normalizing flows). Invertible networks can be trained
simultaneously on forward and inverse mappings, and once
trained, can produce a complete distribution of 𝑥 that correspond
to a given 𝑦 [22]. However, invertible networks and other
generative approaches introduce significant complexity and
often require substantial training data. They also yield
probabilistic rather than deterministic selection of the correct
inverse branch in a specific network. In [23], the authors provide
a comprehensive review of NN-based regularization methods
for inverse problems, highlighting both the theoretical
foundations and practical challenges of these approaches.

In contrast, this work adopts a branch-wise deterministic
learning approach, where the multi-valued inverse relation is
decomposed into distinct single-valued branches, each modeled
by a simple neural network. This avoids the probabilistic
interpretation and training difficulties of the MDNs, as well as
the architectural complexity of mixtures-of-experts and multi-
headed models.

B. Deterministic Inverse-Learning Framework

In this work, a simple deterministic framework for learning
inverse functions of single-valued and multi-valued cases is

proposed through branch-wise decomposition rather than
relying on probabilistic modeling.

Unlike probabilistic inverse-learning approaches such as
MDNs, invertible neural networks, or generative models, the
proposed framework adopts a fully deterministic inverse-
learning paradigm. The novelty of this work lies not in
introducing a new neural architecture, but in reframing inverse
learning as a branch-constrained deterministic problem, where
each inverse branch is learned independently and refined using
a numerical solver. This formulation ensures branch
consistency, avoids output ambiguity, and eliminates the
training instability and interoperability limitations commonly
associated with probabilistic or multi-head inverse models.
Furthermore, the integration of a neural approximator with
Newton refinement establishes a hybrid learning-numerical
pipeline that combines fast global approximation with high-
precision convergence at low inference cost, a capability not
explicitly addressed in existing inverse-learning frameworks.

The main contributions of this work are summarized as
follows:

• A deterministic inverse-learning framework that
reformulates multi-value inverse problems as branch-
constrained learning tasks, enabling guaranteed branch
consistency and eliminating ambiguity inherent in
probabilistic inverse models.

• A hybrid neural-numerical inversion pipeline, where
neural networks provide fast global inverse
approximations and Newton refinement ensures high-
precision convergence with minimal additional
computation cost.

• A reusable benchmark and evaluation protocol based on
direct inverse error and round-trip consistency, exposing
both the strengths and failure modes of purely learning-
based or purely numerical inversion strategies.

To clarify the positioning of the proposed framework within
the broader landscape of inverse-learning approaches, Table I
provides a qualitative comparison with representative methods
commonly used for learning inverse mapping. The comparison
focuses on key design dimensions that are particularly relevant
to practical inverse problems, including the determinism of the
output, architectural complexity, training stability, inference
cost, and consistency of inverse-branch selection.

The remainder of the paper is organized as follows. In
Section II (Methodology), the NN training procedure for inverse
functions is formalized, and the branch-wise decomposition and
Newton refinement technique are detailed. In Section III
(Benchmark Design), the selected test functions and the
experimental setup are described. Section IV (Results) presents
quantitative outcomes that directly support our claims,
demonstrating the successful inversion of the chosen functions,
confirming that the branch-wise mechanism effectively solves
the multi-valued problem, and showing that Newton’s method
improves accuracy. A dedicated discussion section (Section V)
highlights practical implications and limitations. The paper is
concluded in Section VI.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

986 | P a g e
www.ijacsa.thesai.org

TABLE I. CONCEPTUAL COMPARISON OF REPRESENTATIVE INVERSE-LEARNING APPROACHES

Method Output Type Determinism Training Stability Inference Cost Branch-Consistency

MDNs Probabilistic No Low High No

Mixture of Experts Semi-deterministic No Medium Medium No

Mult-head NNs Deterministic No Low Medium No

Invertible NNs Probabilistic No Low High No

Proposed Method Deterministic Yes High Low Yes

II. METHODOLOGY

This framework considers a forward function 𝑦 = 𝑓(𝑥)
where 𝑥 and 𝑦 𝜖 ℛ. Our goal is to learn an approximate inverse
function (𝑓 −1(𝑦) ≈ 𝑥) using a neural network. The focus is
restricted to single-output functions, for which the inverse is
either single-valued or multi-valued. Each function 𝑓 in our
framework is assumed to be continuous and differentiable, and
leverage 𝑓 and its derivative for data generation and Newton’s
refinement.

A. Neural Network Architecture

The standard feed-forward multilayer perceptron (MLP) is
used as the function approximator to compute the inverse. For
each function 𝑓, one or more MPLs are configured to take 𝑦 as
input and output an 𝑥 prediction. A fixed architecture with two
hidden nodes, each with 128 neurons, is used. One can use
different architectures for different functions to improve
performance, but we decided not to do so because our goal is to
prove the concept. The tanh activation function is used. For one-
to-one functions, a single network is trained on the entire dataset.
For many-to-one functions, a separate network is trained for
each branch. The loss function is the mean square error between
the network’s output 𝑥, and the true 𝑥. The Adam optimizer is
used for training the network.

For many-to-one functions, the function is decomposed into
one-to-one branches, and a separate network is trained for each
branch. During the prediction, a mechanism is needed to select
the appropriate branch. In this work, it is assumed that simple
rules can identify branches: for instance, in a real application
context, the physical meaning of 𝑥 indicates which branch to use
(e.g., positive vs. negative solution). Alternatively, one could
run all branch networks and select the output that satisfies
𝑓(𝑥) = 𝑦.

For each benchmark function, a large training dataset is
generated by sampling x values from a reasonable range of its
domain (covering a range of interest). Then 𝑦 = 𝑓(𝑥) is
computed for each sample. These (𝑥, 𝑦) pairs are used to train
the network with 𝑦 as input and 𝑥 as target output. Each
network's performance is validated using a test set of (x, y) pairs
not seen during training.

It is important to emphasize that the proposed approach does
not rely on probabilistic inference, gating networks, or multi-
output architectures. Instead, each inverse branch is learned
independently using a standard feedforward neural network,
resulting in a modular, interpretable, and deployment-friendly
design. The deterministic structure simplifies training, avoids
mode collapse, and enables predictable inference behavior,

which is particularly important in critical and real-time
applications.

B. Newton Refinement Procedure

Once the neural network inverse is obtained, one can
optionally use the Newton method to refine the solution. The
output of the network is considered as the initial guess of the
solution (the initial value 𝑥0 of the Newton method. When the
network has already achieved high accuracy, Newton updates
make minimal adjustments, but when extreme precision is
needed, a few iterations can dramatically reduce the error. A
limit is set on the number of iterations (one to two iterations).
This hybrid approach effectively combines the speed and the
generality of neural network learning with the precision of a
numerical solver. It is noted that the Newton method requires a
good initial guess to converge to the correct root.

Fig. 1 illustrates the workflow of the proposed inverse-
learning framework. Given a value y, a deterministic branch-
selection step identifies the appropriate inverse branch using
prior knowledge, simple rule-based constraints, or a forward-
consistency check. The selected branch-specific neural network
then provides an initial inverse estimate (𝑥0̂), which can be
further refined using a small number of Newton iterations to
improve numerical accuracy. The sequential structure separates
branch identification from inverse approximation, ensuring
deterministic behavior, interpretability, and efficient inference.

Fig. 1. Overview of the deterministic inverse-learning framework.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

987 | P a g e
www.ijacsa.thesai.org

III. BENCHMARK DESIGN

The proposed method is evaluated in a suite of representative
functions. Each function is chosen to test specific challenges in
inverse learning, such as steep nonlinearities, multiple inverse
values, or the absence of a closed-form inverse. The following
subsections present the benchmark functions, their
characteristics, and the inverse challenges they pose.

A. Benchmark Functions

1) Cubic function (𝑦 = 𝑥3): This is a strictly increasing and

monotonic one-to-one function defined in ℝ. Its inverse is a

single-valued, continuous function. Although an analytic

inverse exists, this function is used to verify that the MLP can

learn a nonlinear invertible function with high accuracy.

2) Quadratic function (𝑦 = 𝑥2): This function is a two-

value inverse defined in ℝ : 𝑥 = ±√𝑦. The domain of the

inverse is restricted to 𝑦 ≥ 0. Two branches are created: Branch

A for 𝑥 ≥ 0 (𝑥 = +√𝑦) and Branch B for 𝑥 ≤ 0 (𝑥 = −√𝑦).

Training data are generated for each branch by sampling 𝑥 in

[0, 𝑋𝑚𝑎𝑥] for Branch A, and [− 𝑋𝑚𝑎𝑥,0] for Branch B, and then

𝑦 = 𝑥2 is computed. This tests the branch-wise approach on a

simple discontinuous inverse.

3) Quartic function (𝑥 = 𝑥4): This is a two-value inverse

defined in ℝ like the quadratic function. It is defined in ℝ, and

the inverse domain is restricted to 𝑦 ≥ 0. It has two branches:

Branch A for 𝑥 ≥ 0 (𝑥 = + √𝑦4) and Branch B for 𝑥 ≤ 0 (𝑥 =
− √𝑦4). It grows faster than the quadratic functions, and it is

flatter near 0, which might impose a tougher learning problem

in this region. This function tests the network's ability to learn

a steep nonlinear inverse.

4) Exponential function (𝑦 = 𝑒𝑥): This is a classic one-to-

one monotonic and increasing function that grows rapidly,

defined in ℝ. The inverse domain is restricted to 𝑦 > 0.

Because the function spans many orders of magnitude,

Attention is paid to how the network handles small and large 𝑦

values.

5) Sigmoid function (𝑦 =
1

1+𝑒−𝑥): This is a strictly

increasing function from 0 and 1, which expresses a function

with a tight range relative to its domain, which is ℝ. It also has
a steep slope in the middle. The domain is restricted to [−𝐿, 𝐿]
since y saturates when 𝑥 goes to ±∞ (extremely flat curves).

6) Sine function – principal branch (𝑦 = 𝑠𝑖𝑛(𝑥) for 𝑥 ∈

[−
𝜋

2
,

𝜋

2
]): Over the interval [−

𝜋

2
,

𝜋

2
], sin (𝑥) is monotonic and

covers [−1,1] one-to-one. This is considered as the principal
branch for 𝑠𝑖𝑛−1(𝑦). This tests learning an inverse for a smooth
but non-linear bounded function.

7) Composite function 𝑦 = 𝑥 + 𝑒𝑥): This function is

strictly increasing for all 𝑥 in ℝ. It is invertible (its closed-form

inverse is known as the Lambert W function). However, its

inverse does not have a simple elementary function. This

function is included to represent a one-to-one function where

the inverse is not a simple one (there is no standard closed

inverse form that one can use for evaluation). The difficulty in

learning is that the function grows exponentially for positive

values of 𝑥, and almost linear when 𝑥 is negative.

B. Data Generation and Performance Metrics

For each function, 50,000 random samples are drawn of 𝑥
for training, 10000 samples of 𝑥 for validating the model, and
10000 samples of 𝑥 for testing. The sampling distribution is
chosen to cover the domain of interest uniformly in general,
while slightly biasing towards challenging regions (e.g., near
boundaries, peak or trough values, steep regions, or flat regions).
The test sample is chosen from the same domain of interest,
ensuring that no test sample appears in the training sample. The
y values are computed using the function of interest (𝑦 =
 𝑓(𝑥)). Data normalization is done by scaling 𝑦 and 𝑥 to zero
mean and unit variance.

The mean-absolute error (MAE) and mean-squared error
(MSE) between the predicted inverse 𝑥 and true 𝑥 are reported.
Additionally, the report round-trip error (|𝑦 − 𝑦|), where 𝑦 =
𝑓(𝑥) is reported. Both the direct and round-trip errors provide
valuable insight. The round-trip error becomes more significant
for steep curves, where even a slight deviation in 𝑥 can amplify
it. In contrast, the direct error is more relevant for flat curves,
where a large deviation in 𝑥 has a minor effect on the round-trip
error. The suffixes _x and _y are used to distinguish between the
direct and the round-trip errors, respectively. For each function,
the Newton refinement step is done for very few (one to two)
iterations, and the errors are reported before and after applying
the Newton method.

IV. RESULTS

The benchmark results for all functions are shown in Table
II. The following subsections discuss these results by dedicating
a subsection to each function.

TABLE II. BENCHMARK PERFORMANCE

benchmark 𝑴𝑨𝑬𝒙 𝑴𝑺𝑬𝒙 𝑴𝑨𝑬𝒚
𝑴𝑨𝑬𝒚 +

Newton

Cubic 0.022169 0.001525 0.083884 6.21x1012

Quadratic 0.016777 0.000555 0.071686 0.000519

Quartic 0.041733 0.005616 0.126786 0.051399

Exp 0.028440 0.001271 0.040086 0.000371

Sigmoid 0.094882 0.024346 0.000568 0.000024

Sin 0.019173 0.000867 0.007929 0.000025

x + Exp 0.004318 0.000023 0.015278 0.000025

1) Cubic function (𝑦 = 𝑥3,𝑥 ∈ [−3,3]): This function is

globally monotonic and therefore invertible. The neural

network achieved good accuracy (𝑀𝐴𝐸𝑥 =
 0.022 and 𝑀𝐴𝐸𝑦 = 0.084), and a good round-trip error

(𝑀𝐴𝐸_𝑦 = 0.084). However, Newton refinement caused

catastrophic divergence (error > 1e12) because 𝑓′(𝑥) = 3𝑥2

vanishes at 𝑥 = 0. This illustrates that while cubic inverses

can be learned accurately, Newton steps must be applied

carefully with damping or safeguards to avoid division by near-

zero derivatives. This result shows that the scheme correctly

handles the inverse of simple monotonic functions.

2) Quadratic function (𝑦 = 𝑥2 𝑓𝑜𝑟 𝑥 ∈ [0, 5]): The results

of the square function (principal branch) show that the scheme

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

988 | P a g e
www.ijacsa.thesai.org

handles the inversion of this function with high accuracy

(𝑀𝐴𝐸𝑥 = 0.017 and 𝑀𝐴𝐸𝑦 = 0.072). After Newton

refinement, the round-trip error dropped sharply (𝑀𝐴𝐸_𝑦 =
 0.00052). The main challenge lies near 𝑥 = 0, where the

derivative approaches 0. Nonetheless, the combination of

neural approximator and Newton refinement provided highly

accurate inverses.

3) Quartic function (𝑦 = 𝑥4 𝑓𝑜𝑟 𝑥 ∈ [0, 3]): The

benchmark outcomes of the quartic function (principal branch)

demonstrate that the inversion scheme can manage this more

challenging polynomial effectively (𝑀𝐴𝐸_𝑥 = 0.042).

Although, the 𝑀𝐴𝐸_𝑦 = 0.127. It is slightly high; one step of

the Newton refinement reduced it to 0.051. This result shows

that the scheme can handle functions with flat and steep curves.

4) Exponential function (𝑦 = 𝑒𝑥 𝑓𝑜𝑟 𝑥 ∈ [−3, 3]): The

neural network achieved good accuracy (𝑀𝐴𝐸_𝑥 = 0.028 and

𝑀𝐴𝐸_𝑦 = 0.04). After a single Newton step, the round-trip

error dropped by two orders of magnitude (to 0.0004)
demonstrating near-perfect recovery.

5) Sigmoid function (𝑦 =
1

1+𝑒−𝑥 𝑓𝑜𝑟 𝑥 ∈ [−8, 8]):

Although the saturation near 0 and 1 makes the learning a bit
difficult, the results are extremely good (𝑀𝐴𝐸𝑥 =
 0.094) and the 𝑀𝐴𝐸𝑦 = 0.0006) was extremely small.

This is expected since the sigmoid curve is mostly a flat curve.
Newton refinement nearly eliminated round-trip error

discrepancies (𝑀𝐴𝐸_𝑦 = 0.0004).

6) Sine function – principal branch (𝑦 = 𝑠𝑖𝑛(𝑥) for 𝑥 ∈
[−

𝜋

2
,

𝜋

2
]): Baseline performance was good (𝑀𝐴𝐸_𝑥 = 0.019

and 𝑀𝐴𝐸_𝑦 = 0.0079). Newton refinement significantly

reduced the 𝑀𝐴𝐸_𝑦 to 0.00024. This demonstrates that

oscillatory functions can be inverted accurately when restricted

to monotonic branches.

7) Composite function 𝑦 = 𝑥 + 𝑒𝑥, 𝑓𝑜𝑟 𝑥 ∈ [−4, 3]): The

combined linear and exponential function achieved the best

results overall. The errors were extremely low (𝑀𝐴𝐸𝑥 =
 0.0043 and 𝑀𝐴𝐸𝑦 = 0.015). After the Newton refinement,

the 𝑀𝐴𝐸𝑦 dropped to 0.0003.

In summary, the MLP model produced low prediction errors
across all functions, with 𝑀𝐴𝐸𝑥 generally below 0.1. The
subsequent round-trip analysis showed that applying Newton’s
method to refine the predicted results usually reduced the output
errors by one or more orders of magnitude. In 7 out of the eight
functions, Newton’s method converged to a highly accurate
solution, yielding a near-zero error. The cubic function was the
sole exception, where Newton’s method diverged dramatically,
which is an expected outcome when the starting point is not
close to a real root. Overall, these results demonstrate that the
scheme predictions, combined with Newton refinement, can
effectively invert a variety of smooth functions with high
accuracy.

V. DISCUSSION

The experimental results demonstrate that the proposed
framework achieves reliable inverse approximation across a
wide range of nonlinear functions, including monotonic,
composite, and multi-valued cases. The branch-wise

decomposition effectively resolves the ambiguity inherent in
multi-valued inverses, while the Newton refinement step
significantly improves precision with minimal computational
overhead.

A key observation is that purely numerical solvers such as
Newton’s method are highly sensitive to initialization, whereas
purely learning-based approaches may suffer from limited
precision. The hybrid neural-numerical formulation bridges this
gap by combining global approximation capability with local
convergence guarantees. The cubic function example further
highlights the importance of derivative behavior and motivates
the use of safeguarded or damped Newton variants in future
extensions.

Beyond synthetic benchmarks, the deterministic and
modular nature of the proposed framework makes it well-suited
for real-world inverse problems in control systems, robotics, and
engineering design, where interpretability, predictability, and
low inference cost are often more critical than probabilistic
diversity.

The proposed framework is currently demonstrated on one-
dimensional inverse functions, where branch decomposition can
be explicitly defined. While this setting allows precise analysis
and benchmarking, extending the approach to higher-
dimensional inverse problems introduces challenges related to
branch identification, scalability, and Jacobian conditioning.
Additionally, the Newton refinement step relies on derivative
information and may require safeguarding in regions where
derivatives approach zero. These limitations motivate future
research on automated branch discovery, damped refinement
strategies, and multi-dimensional inverse learning.

VI. CONCLUSION AND FUTURE WORK

This work presents a unified framework for learning inverse
functions using neural networks, demonstrating that even a
simple multilayer perceptron (MLP) can accurately approximate
inverse mappings for a single-valued function. For multi-valued
cases, the study introduces a branch-wise decomposition method
by splitting the inverse relationship into single-valued branches,
each modeled by a separate network. This avoids the ambiguity
of one-to-many mappings and ensures deterministic outputs.
Experiments across a range of benchmark functions showed that
each branch network effectively learns its part of the inverse,
and the combined branch networks reconstruct the full inverse
relationship.

To enhance the precision, the approach integrates Newton’s
method as a post-processing step, refining the neural network’s
estimates to achieve near-exact inversion. This hybrid approach
merges the speed and the flexibility of neural approximations
with the rigor of analytical refinement, making it useful for a
wide range of engineering applications.

In conclusion, this work introduces a deterministic and
interpretable framework for inverse function learning that
combines neural approximation with numerical refinement. By
explicitly decomposing multi-values inverses into single-valued
branches and integrating Newton’s method as a refinement step,
the proposed approach achieves accurate, stable, and
computationally efficient inversion. The framework addresses
practical limitations of existing probabilistic and multi-head

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

989 | P a g e
www.ijacsa.thesai.org

inverse-learning methods, particularly in terms of determinism,
deployment simplicity, and precision. These properties make the
approach especially relevant for critical, real-time, and resource-
constrained applications, while also providing a foundation for
future extensions to higher-dimensional inverse problems.

REFERENCES

[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward

networks are universal approximators,” Neural Networks, vol. 2, no. 5,

pp. 359–366, 1989.

[2] K. S. Narendra and K. Parthasarathy, “Identification and control of

dynamical systems using neural networks,” IEEE Transactions on Neural

Networks, vol. 1, no. 1, pp. 4–27, 1990.

[3] J.-M. Wu, C.-C. Wu, J.-C. Chen, and Y.-L. Lin, “Set-valued functional

neural mapping and inverse system approximation,” Neurocomputing,

vol. 173, pp. 1276–1287, 2016.

[4] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural

networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations,” Journal of

Computational Physics, vol. 378, pp. 686–707, 2019.

[5] Y. Tomikawa, H. Akiyama, and K. Nakayama, “Layered neural network

with a feedback to realize a many-valued function,” IEICE Technical

Report (Neural Computing), NC95-167, 1996.

[6] D. J. MacKay, “Bayesian interpolation,” Neural Computation, vol. 4, no.

3, pp. 415–447, 1992.

[7] E. Oyama, A. Agah, K. F. MacDorman, T. Maeda, and S. Tachi, “A

modular neural network architecture for inverse kinematics model

learning,” Neurocomputing, vol. 38–40, pp. 797–805, 2001.

[8] D. Cagigas-Muñiz, “Artificial Neural Networks for inverse kinematics

problem in articulated robots,” Engineering Applications of Artificia l

Intelligence, vol. 126, p. 107175, 2023.

[9] C. M. Bishop, “Mixture density networks,” Aston University, 1994.

[10] R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density

network for inverse design of layered photonic structures,” ACS

Photonics, vol. 7, no. 10, pp. 2703–2712, 2020.

[11] L. Cheng, P. Singh, and F. Ferranti, “Transfer learning-assisted inverse

modeling in nanophotonics based on mixture density networks,” IEEE

Access, vol. 12, pp. 55218–55224, 2024.

[12] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the

EM algorithm,” Neural Computation, vol. 6, pp. 181–214, 1994.

[13] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive

mixtures of local experts,” Neural computation, vol. 3, no. 1, pp. 79–87,

1991.

[14] C. Rupprecht et al., “Learning in an uncertain world: representing

ambiguity through multiple hypotheses,” in Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 2017, pp. 3611–

3620.

[15] X. Yuan, S. Wang, L. Gu, S. Xie, Q. Ma, and J. Guo, “Multi-headed

tandem neural network approach for non-uniqueness in inverse design of

layered photonic structures,” Optics & Laser Technology, vol. 176, p.

110972, 2024.

[16] A. Guzmán-Rivera, D. Batra, and P. Kohli, “Multiple choice learning:

learning to produce multiple structured outputs,” in Advances in Neural

Information Processing Systems (NIPS) 25, 2012, pp. 1808–1816.

[17] D.-K. Oh, S.-H. Oh, and S.-Y. Lee, “Learning one-to-many mapping with

locally linear maps based on manifold structure,” IEEE Signal Processing

Letters, vol. 18, no. 9, pp. 521–524, 2011.

[18] P. Dai and others, “Inverse design of structural color: finding multiple

solutions via conditional generative adversarial networks,”

Nanophotonics, vol. 11, no. 13, pp. 3057–3069, 2022.

[19] T. Rahman and others, “Leveraging generative neural networks for

accurate, diverse, and robust nanoparticle design,” Nanoscale Advances,

vol. 7, no. 2, pp. 634–642, 2025.

[20] Y. Mao et al., “Generative adversarial networks and mixture density

networks-based inverse modeling for microstructural materials design,”

Integrating Materials and Manufacturing Innovation, vol. 11, no. 4, pp.

637–647, 2022.

[21] H. Wang, Z. Du, F. Feng, Z. Kang, S. Tang, and X. Guo, “DiffMat: Data-

driven inverse design of energy-absorbing metamaterials using diffusion

model,” Computer Methods in Applied Mechanics and Engineering, vol.

432, p. 117421, 2024.

[22] L. Ardizzone et al., “Analyzing inverse problems with invertible neural

networks,” arXiv preprint arXiv:1808.04730, 2018.

[23] A. Habring and M. Holler, “Neural-network-based regularization

methods for inverse problems in imaging,” GAMM-Mitteilungen, vol. 47,

no. 4, p. e202470004, 2024.

