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Abstract—In this work, a unified framework (using Neural 

Networks) is proposed to find the inverse of mathematical 

functions, spanning both simple one-to-one mapping and complex 

multivalued relations. The approach uses standard multilayer 

Neural Networks (NN) to approximate the functions’ inverse  and 

introduces a deterministic branch-wise decomposition to handle 

multi-valued inverses. For single-valued (one-to-one) functions, a 

NN is directly trained on input-output pairs to learn the inverse 

mapping. For multi-valued functions, the function domain is 

decomposed into one-to-one branches, and a dedicated NN is 

trained for each branch. A refinement step using Newton’s method 

is applied to the NN output to further improve inversion accuracy. 

Across a broad set of benchmark functions, the proposed 

approach achieved low mean absolute error (MAE) and mean 

squared error (MSE) in recovering the true inverse, with high 

round-trip consistency. Newton refinement further reduces 

inversion error by rapidly converging to higher precision 

solutions. Notably, even for multi-valued inverse functions, each 

branch-specific NN can accurately recover the true inverse. 

Accordingly, standard NN, when combined with branch-wise 

decomposition and Newton refinement, can serve as an effective 

universal approximator for the inverse of functions across a 

spectrum of complexities. 

Keywords—Neural networks; function inverse; Newton method; 

branch-wise decomposition 

I. INTRODUCTION 

A. Background and Related Works 

Finding the inverse function is a fundamental problem in 
many domains, from control systems and robotics to scientific 
computing and optimization. Traditional analytical or numerical 
methods can be challenging to apply when the function is 
complex or not single-valued. Neural networks offer a powerful 
alternative, since when they are provided with sufficient training 
data, they can approximate any well-behaved and invertible 
continuous function to an arbitrary accuracy [1]. In practice, 
inversion using NN has been explored in control systems and 
other fields [2], but significant challenges remain when the 
inverse mapping is multi-valued [3]. Recent advances in 
physics-informed neural networks (PINNs) have demonstrated 
remarkable capability in solving both forward and inverse 
problems by embedding physical laws directly into the learning 
process [4], although these approaches primarily address 
parameter identification rather than multi-valued function 
inversion. 

If the forward function is 𝑦 = 𝑓(𝑥) is not one-to-one, then 
the inverse relation 𝑥 = 𝑓−1(𝑦) is multi-valued, meaning a 
single 𝑦 corresponds to multiple valid solutions (𝑥). For 

example, both 𝑦 = 𝑥2 and 𝑦 = sin(𝑥)  have two or more 
inverse values for a given 𝑦. Standard neural regression fails in 
this setting because training data is not a single-valued mapping: 
the same input y appears with different target 𝑥, leading to 
contradictory samples [5]. A conventional NN trained on such 
data will tend to predict the average of the contradictory samples 
[6]. Previous studies have shown that multi-valuedness can 
hinder learning [3]. It has been shown in robotics that a standard 
NN cannot learn a multi-valued kinematics function, 
necessitating specialized solutions [7]. Recent work using deep 
learning for inverse kinematics in robotic manipulators has 
demonstrated both the potential and limitations of various neural 
architectures in handling such non-unique mappings [8]. 

Several schemes were explored to cope with multi-valued 
inverses. Mixture Density Networks (MDNs) model the inverse 
distribution as a mixture of Gaussian distributions, where each 
Gaussian component corresponds to a single outcome. MDN 
minimizes the log-likelihood of the observed data under the 
predicted mixture model, which allows the model to fit all 
possible outcomes [9]. While MDNs are powerful, they are 
complex, hard to train, and less interpretable in practice. They 
are difficult to train since they need to learn several things at 
once, such as means, variances, and mixing weights for each 
Gaussian component. They also need a careful initialization and 
regularization to avoid both overfitting and underfitting. Recent 
applications of MDNs in photonic inverse design have shown 
their effectiveness in handling non-uniqueness, through the 
challenges of specifying the number of mixture components and 
joint parameter optimization persist [10]. Transfer learning 
approaches have been proposed to mitigate some of these 
training difficulties [11]. 

The modular neural networks (mixtures of experts) method 
was explored, where each expert network learns one branch of 
the inverse mapping, and a gating network decides which expert 
network to activate for a given input [12], [13]. While such 
gating architectures can handle multi-valued mappings, they add 
an extra layer of complexity, as the gating layer must be trained 
and tuned, and performance can be sensitive to the partitioning 
of the input space. 

Multi-headed neural networks provide another approach, in 
which a single network outputs several possible inverse 
candidates (heads) simultaneously [14], [15]. While this 
approach allows multiple solutions, it still couples all outputs 
into one model, requiring complex loss functions and additional 
mechanisms to ensure that each head specializes in a distinct 
branch. For example, a multiple-choice learning strategy can be 
employed, wherein for each training example, only the output 
head closest to the ground truth is updated, forcing other heads 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

985 | P a g e  
www.ijacsa.thesai.org 

to diverge [16]. This added training complexity is necessary to 
prevent the heads from collapsing to the output. The work in [15] 
demonstrated a multi-headed tandem neural network approach 
for non-uniqueness in inverse design of layered photonic 
structures, utilizing a self-attention mechanism to constrain and 
separate multiple outputs. 

Beyond these mainstream methods, researchers have 
explored other techniques for multi-valued inversion. One idea 
is to provide the network with additional inputs or context to 
disambiguate the inverse. In study [3], the authors proposed a 
state-regulated NN that augments a multilayer perceptron with a 
discrete state variable to indicate different branches of the 
inverse. This effectively transforms a one-to-many mapping to 
multiple one-to-one mappings, provided the correct state is 
supplied during the inference.  Some researchers have 
approached the one-to-many mapping using manifolds or 
piecewise mappings. In study [17], the researchers present a 
method that learns locally linear maps on different regions of a 
data manifold to represent multiple outputs for a given input. 

In photonic design, generative models have been leveraged 
to address the inverse problem of non-unique solutions. For 
example, conditional generative adversarial networks have been 
used to generate multiple candidate structures that all produce 
the same target optical spectrum [18], and conditional 
variational autoencoders have been applied to learn the 
distribution of possible inputs that yield a given output [19]. 
More recently, diffusion models have emerged as a powerful 
alternative for inverse design problems, demonstrating superior 
performance in capturing complex distributions and naturally 
handling one-to-many mappings [20]. In [21], the authors 
proposed DiffMat, a diffusion model-based framework for 
energy-absorbing mathematical design that effectively realizes 
one-to-many mapping from properties to geometries. 

Another strategy is to use invertible neural networks 
(normalizing flows). Invertible networks can be trained 
simultaneously on forward and inverse mappings, and once 
trained, can produce a complete distribution of 𝑥 that correspond 
to a given 𝑦 [22]. However, invertible networks and other 
generative approaches introduce significant complexity and 
often require substantial training data. They also yield 
probabilistic rather than deterministic selection of the correct 
inverse branch in a specific network. In [23], the authors provide 
a comprehensive review of NN-based regularization methods 
for inverse problems, highlighting both the theoretical 
foundations and practical challenges of these approaches. 

In contrast, this work adopts a branch-wise deterministic 
learning approach, where the multi-valued inverse relation is 
decomposed into distinct single-valued branches, each modeled 
by a simple neural network. This avoids the probabilistic 
interpretation and training difficulties of the MDNs, as well as 
the architectural complexity of mixtures-of-experts and multi-
headed models. 

B. Deterministic Inverse-Learning Framework 

In this work, a simple deterministic framework for learning 
inverse functions of single-valued and multi-valued cases is 

proposed through branch-wise decomposition rather than 
relying on probabilistic modeling. 

Unlike probabilistic inverse-learning approaches such as 
MDNs, invertible neural networks, or generative models, the 
proposed framework adopts a fully deterministic inverse-
learning paradigm. The novelty of this work lies not in 
introducing a new neural architecture, but in reframing inverse 
learning as a branch-constrained deterministic problem, where 
each inverse branch is learned independently and refined using 
a numerical solver. This formulation ensures branch 
consistency, avoids output ambiguity, and eliminates the 
training instability and interoperability limitations commonly 
associated with probabilistic or multi-head inverse models. 
Furthermore, the integration of a neural approximator with 
Newton refinement establishes a hybrid learning-numerical 
pipeline that combines fast global approximation with high-
precision convergence at low inference cost, a capability not 
explicitly addressed in existing inverse-learning frameworks. 

The main contributions of this work are summarized as 
follows: 

• A deterministic inverse-learning framework that 
reformulates multi-value inverse problems as branch-
constrained learning tasks, enabling guaranteed branch 
consistency and eliminating ambiguity inherent in 
probabilistic inverse models. 

• A hybrid neural-numerical inversion pipeline, where 
neural networks provide fast global inverse 
approximations and Newton refinement ensures high-
precision convergence with minimal additional 
computation cost. 

• A reusable benchmark and evaluation protocol based on 
direct inverse error and round-trip consistency, exposing 
both the strengths and failure modes of purely learning-
based or purely numerical inversion strategies. 

To clarify the positioning of the proposed framework within 
the broader landscape of inverse-learning approaches, Table I 
provides a qualitative comparison with representative methods 
commonly used for learning inverse mapping. The comparison 
focuses on key design dimensions that are particularly relevant 
to practical inverse problems, including the determinism of the 
output, architectural complexity, training stability, inference 
cost, and consistency of inverse-branch selection. 

The remainder of the paper is organized as follows. In 
Section II (Methodology), the NN training procedure for inverse 
functions is formalized, and the branch-wise decomposition and 
Newton refinement technique are detailed. In Section III 
(Benchmark Design), the selected test functions and the 
experimental setup are described. Section IV (Results) presents 
quantitative outcomes that directly support our claims, 
demonstrating the successful inversion of the chosen functions, 
confirming that the branch-wise mechanism effectively solves 
the multi-valued problem, and showing that Newton’s method 
improves accuracy. A dedicated discussion section (Section V) 
highlights practical implications and limitations. The paper is 
concluded in Section VI. 
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TABLE I.  CONCEPTUAL COMPARISON OF REPRESENTATIVE INVERSE-LEARNING APPROACHES 

Method Output Type Determinism Training Stability Inference Cost Branch-Consistency 

MDNs Probabilistic No Low High No 

Mixture of Experts Semi-deterministic No Medium Medium No 

Mult-head NNs Deterministic No Low Medium No 

Invertible NNs Probabilistic No Low High No 

Proposed Method Deterministic Yes High Low Yes 
 

II. METHODOLOGY 

This framework considers a forward function 𝑦 = 𝑓(𝑥) 
where 𝑥 and 𝑦 𝜖 ℛ. Our goal is to learn an approximate inverse 
function (𝑓 −1(𝑦) ≈ 𝑥) using a neural network. The focus is 
restricted to single-output functions, for which the inverse is 
either single-valued or multi-valued. Each function 𝑓 in our 
framework is assumed to be continuous and differentiable, and 
leverage 𝑓 and its derivative for data generation and Newton’s 
refinement. 

A. Neural Network Architecture 

The standard feed-forward multilayer perceptron (MLP) is 
used as the function approximator to compute the inverse. For 
each function 𝑓, one or more MPLs are configured to take 𝑦 as 
input and output an 𝑥 prediction. A fixed architecture with two 
hidden nodes, each with 128 neurons, is used. One can use 
different architectures for different functions to improve 
performance, but we decided not to do so because our goal is to 
prove the concept. The tanh activation function is used. For one-
to-one functions, a single network is trained on the entire dataset. 
For many-to-one functions, a separate network is trained for 
each branch. The loss function is the mean square error between 
the network’s output 𝑥, and the true 𝑥. The Adam optimizer is 
used for training the network. 

For many-to-one functions, the function is decomposed into 
one-to-one branches, and a separate network is trained for each 
branch. During the prediction, a mechanism is needed to select 
the appropriate branch. In this work, it is assumed that simple 
rules can identify branches: for instance, in a real application 
context, the physical meaning of 𝑥 indicates which branch to use 
(e.g., positive vs. negative solution). Alternatively, one could 
run all branch networks and select the output that satisfies 
𝑓(𝑥) = 𝑦. 

For each benchmark function, a large training dataset is 
generated by sampling x values from a reasonable range of its 
domain (covering a range of interest). Then  𝑦 =  𝑓(𝑥) is 
computed for each sample. These (𝑥, 𝑦) pairs are used to train 
the network with 𝑦 as input and 𝑥 as target output. Each 
network's performance is validated using a test set of (x, y) pairs 
not seen during training. 

It is important to emphasize that the proposed approach does 
not rely on probabilistic inference, gating networks, or multi-
output architectures. Instead, each inverse branch is learned 
independently using a standard feedforward neural network, 
resulting in a modular, interpretable, and deployment-friendly 
design. The deterministic structure simplifies training, avoids 
mode collapse, and enables predictable inference behavior, 

which is particularly important in critical and real-time 
applications. 

B. Newton Refinement Procedure 

Once the neural network inverse is obtained, one can 
optionally use the Newton method to refine the solution. The 
output of the network is considered as the initial guess of the 
solution (the initial value 𝑥0 of the Newton method. When the 
network has already achieved high accuracy, Newton updates 
make minimal adjustments, but when extreme precision is 
needed, a few iterations can dramatically reduce the error. A 
limit is set on the number of iterations (one to two iterations). 
This hybrid approach effectively combines the speed and the 
generality of neural network learning with the precision of a 
numerical solver.  It is noted that the Newton method requires a 
good initial guess to converge to the correct root. 

Fig. 1 illustrates the workflow of the proposed inverse-
learning framework. Given a value y, a deterministic branch-
selection step identifies the appropriate inverse branch using 
prior knowledge, simple rule-based constraints, or a forward-
consistency check. The selected branch-specific neural network 
then provides an initial inverse estimate (𝑥0̂), which can be 
further refined using a small number of Newton iterations to 
improve numerical accuracy. The sequential structure separates 
branch identification from inverse approximation, ensuring 
deterministic behavior, interpretability, and efficient inference. 

 
Fig. 1. Overview of the deterministic inverse-learning framework. 
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III. BENCHMARK DESIGN 

The proposed method is evaluated in a suite of representative 
functions. Each function is chosen to test specific challenges in 
inverse learning, such as steep nonlinearities, multiple inverse 
values, or the absence of a closed-form inverse. The following 
subsections present the benchmark functions, their 
characteristics, and the inverse challenges they pose. 

A. Benchmark Functions 

1) Cubic function (𝑦 = 𝑥3): This is a strictly increasing and 

monotonic one-to-one function defined in ℝ. Its inverse is a 

single-valued, continuous function. Although an analytic 

inverse exists, this function is used to verify that the MLP can 

learn a nonlinear invertible function with high accuracy. 

2) Quadratic function (𝑦 = 𝑥2): This function is a two-

value inverse defined in ℝ : 𝑥 = ±√𝑦. The domain of the 

inverse is restricted to 𝑦 ≥ 0. Two branches are created: Branch 

A for 𝑥 ≥ 0 (𝑥 = +√𝑦) and Branch B for 𝑥 ≤ 0 (𝑥 = −√𝑦). 

Training data are generated for each branch by sampling 𝑥 in 

[0, 𝑋𝑚𝑎𝑥] for Branch A, and [− 𝑋𝑚𝑎𝑥,0] for Branch B, and then 

𝑦 =  𝑥2 is computed. This tests the branch-wise approach on a 

simple discontinuous inverse. 

3) Quartic function (𝑥 = 𝑥4): This is a two-value inverse 

defined in ℝ like the quadratic function. It is defined in ℝ, and 

the inverse domain is restricted to 𝑦 ≥ 0. It has two branches: 

Branch A for 𝑥 ≥ 0 (𝑥 = + √𝑦4 ) and Branch B for 𝑥 ≤ 0 (𝑥 =
− √𝑦4 ). It grows faster than the quadratic functions, and it is 

flatter near 0, which might impose a tougher learning problem 

in this region. This function tests the network's ability to learn 

a steep nonlinear inverse. 

4) Exponential function (𝑦 = 𝑒𝑥 ): This is a classic one-to-

one monotonic and increasing function that grows rapidly, 

defined in ℝ. The inverse domain is restricted to 𝑦 > 0. 

Because the function spans many orders of magnitude, 

Attention is paid to how the network handles small and large 𝑦 

values. 

5) Sigmoid function (𝑦 =
1

1+𝑒−𝑥): This is a strictly 

increasing function from 0 and 1, which expresses a function 

with a tight range relative to its domain, which is ℝ. It also has 
a steep slope in the middle. The domain is restricted to [−𝐿, 𝐿] 
since y saturates when 𝑥 goes to ±∞ (extremely flat curves).  

6) Sine function – principal branch (𝑦 = 𝑠𝑖𝑛(𝑥) for 𝑥 ∈

[−
𝜋

2
,

𝜋

2
]): Over the interval [−

𝜋

2
,

𝜋

2
], sin (𝑥) is monotonic and 

covers [−1,1] one-to-one. This is considered as the principal 
branch for 𝑠𝑖𝑛−1(𝑦). This tests learning an inverse for a smooth 
but non-linear bounded function. 

7) Composite function 𝑦 = 𝑥 + 𝑒𝑥): This function is 

strictly increasing for all 𝑥 in ℝ. It is invertible (its closed-form 

inverse is known as the Lambert W function). However, its 

inverse does not have a simple elementary function. This 

function is included  to represent a one-to-one function where 

the inverse is not a simple one (there is no standard closed 

inverse form that one can use for evaluation). The difficulty in 

learning is that the function grows exponentially for positive 

values of 𝑥, and almost linear when 𝑥 is negative. 

B. Data Generation and Performance Metrics 

For each function, 50,000 random samples are drawn of 𝑥 
for training, 10000 samples of 𝑥 for validating the model, and 
10000 samples of 𝑥 for testing. The sampling distribution is 
chosen to cover the domain of interest uniformly in general, 
while slightly biasing towards challenging regions (e.g., near 
boundaries, peak or trough values, steep regions, or flat regions). 
The test sample is chosen from the same domain of interest, 
ensuring that no test sample appears in the training sample. The 
y values are computed using the function of interest (𝑦 =
 𝑓(𝑥)). Data normalization is done by scaling 𝑦 and 𝑥 to zero 
mean and unit variance. 

The mean-absolute error (MAE) and mean-squared error 
(MSE) between the predicted inverse 𝑥 and true 𝑥 are reported. 
Additionally, the report round-trip error (|𝑦 − 𝑦|), where 𝑦 =
𝑓(𝑥) is reported. Both the direct and round-trip errors provide 
valuable insight. The round-trip error becomes more significant 
for steep curves, where even a slight deviation in 𝑥 can amplify 
it. In contrast, the direct error is more relevant for flat curves, 
where a large deviation in 𝑥 has a minor effect on the round-trip 
error. The suffixes _x and _y are used to distinguish between the 
direct and the round-trip errors, respectively.  For each function, 
the Newton refinement step is done for very few (one to two) 
iterations, and the errors are reported before and after applying 
the Newton method.  

IV. RESULTS 

The benchmark results for all functions are shown in Table 
II. The following subsections discuss these results by dedicating 
a subsection to each function. 

TABLE II.  BENCHMARK PERFORMANCE 

benchmark 𝑴𝑨𝑬𝒙 𝑴𝑺𝑬𝒙 𝑴𝑨𝑬𝒚 
𝑴𝑨𝑬𝒚 + 

Newton 

Cubic 0.022169 0.001525 0.083884 6.21x1012 

Quadratic 0.016777 0.000555 0.071686 0.000519 

Quartic 0.041733 0.005616 0.126786 0.051399 

Exp 0.028440 0.001271 0.040086 0.000371 

Sigmoid 0.094882 0.024346 0.000568 0.000024 

Sin 0.019173 0.000867 0.007929 0.000025 

x + Exp 0.004318 0.000023 0.015278 0.000025 

1) Cubic function (𝑦 = 𝑥3,𝑥 ∈ [−3,3]): This function is 

globally monotonic and therefore invertible. The neural 

network achieved good accuracy (𝑀𝐴𝐸𝑥 =
 0.022 and  𝑀𝐴𝐸𝑦 = 0.084), and a good round-trip error 

(𝑀𝐴𝐸_𝑦 =  0.084). However, Newton refinement caused 

catastrophic divergence (error > 1e12) because 𝑓′(𝑥) = 3𝑥2 

vanishes at 𝑥 =  0. This illustrates that while cubic inverses 

can be learned accurately, Newton steps must be applied 

carefully with damping or safeguards to avoid division by near-

zero derivatives. This result shows that the scheme correctly 

handles the inverse of simple monotonic functions. 

2) Quadratic function (𝑦 = 𝑥2 𝑓𝑜𝑟 𝑥 ∈ [0, 5]): The results 

of the square function (principal branch) show that the scheme 
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handles the inversion of this function with high accuracy 

(𝑀𝐴𝐸𝑥 =  0.017 and 𝑀𝐴𝐸𝑦 = 0.072). After Newton 

refinement, the round-trip error dropped sharply (𝑀𝐴𝐸_𝑦 =
 0.00052). The main challenge lies near 𝑥 = 0, where the 

derivative approaches 0. Nonetheless, the combination of 

neural approximator and Newton refinement provided highly 

accurate inverses. 

3) Quartic function (𝑦 = 𝑥4 𝑓𝑜𝑟  𝑥 ∈ [0, 3]): The 

benchmark outcomes of the quartic function (principal branch) 

demonstrate that the inversion scheme can manage this more 

challenging polynomial effectively (𝑀𝐴𝐸_𝑥 =  0.042). 

Although, the 𝑀𝐴𝐸_𝑦 =  0.127. It is slightly high; one step of 

the Newton refinement reduced it to 0.051. This result shows 

that the scheme can handle functions with flat and steep curves. 

4) Exponential function (𝑦 = 𝑒𝑥  𝑓𝑜𝑟  𝑥 ∈ [−3, 3]): The 

neural network achieved good accuracy (𝑀𝐴𝐸_𝑥 =  0.028 and 

𝑀𝐴𝐸_𝑦 =  0.04).  After a single Newton step, the round-trip 

error dropped by two orders of magnitude (to 0.0004) 
demonstrating near-perfect recovery. 

5) Sigmoid function (𝑦 =
1

1+𝑒−𝑥  𝑓𝑜𝑟 𝑥 ∈ [−8, 8]): 

Although the saturation near 0 and 1 makes the learning a bit 
difficult, the results are extremely good (𝑀𝐴𝐸𝑥 =
 0.094) and the   𝑀𝐴𝐸𝑦  =  0.0006) was extremely small. 

This is expected since the sigmoid curve is mostly a flat curve. 
Newton refinement nearly eliminated round-trip error 

discrepancies (𝑀𝐴𝐸_𝑦 = 0.0004). 

6) Sine function – principal branch (𝑦 = 𝑠𝑖𝑛(𝑥) for 𝑥 ∈
[−

𝜋

2
,

𝜋

2
]): Baseline performance was good (𝑀𝐴𝐸_𝑥 =  0.019 

and 𝑀𝐴𝐸_𝑦 =  0.0079). Newton refinement significantly 

reduced the 𝑀𝐴𝐸_𝑦 to 0.00024. This demonstrates that 

oscillatory functions can be inverted accurately when restricted 

to monotonic branches. 

7) Composite function 𝑦 = 𝑥 + 𝑒𝑥, 𝑓𝑜𝑟 𝑥 ∈ [−4, 3]): The 

combined linear and exponential function achieved the best 

results overall. The errors were extremely low (𝑀𝐴𝐸𝑥  =
 0.0043 and 𝑀𝐴𝐸𝑦  =  0.015). After the Newton refinement, 

the 𝑀𝐴𝐸𝑦 dropped to 0.0003. 

In summary, the MLP model produced low prediction errors 
across all functions, with 𝑀𝐴𝐸𝑥 generally below 0.1. The 
subsequent round-trip analysis showed that applying Newton’s 
method to refine the predicted results usually reduced the output 
errors by one or more orders of magnitude. In 7 out of the eight 
functions, Newton’s method converged to a highly accurate 
solution, yielding a near-zero error. The cubic function was the 
sole exception, where Newton’s method diverged dramatically, 
which is an expected outcome when the starting point is not 
close to a real root. Overall, these results demonstrate that the 
scheme predictions, combined with Newton refinement, can 
effectively invert a variety of smooth functions with high 
accuracy. 

V. DISCUSSION 

The experimental results demonstrate that the proposed 
framework achieves reliable inverse approximation across a 
wide range of nonlinear functions, including monotonic, 
composite, and multi-valued cases. The branch-wise 

decomposition effectively resolves the ambiguity inherent in 
multi-valued inverses, while the Newton refinement step 
significantly improves precision with minimal computational 
overhead. 

A key observation is that purely numerical solvers such as 
Newton’s method are highly sensitive to initialization, whereas 
purely learning-based approaches may suffer from limited 
precision. The hybrid neural-numerical formulation bridges this 
gap by combining global approximation capability with local 
convergence guarantees. The cubic function example further 
highlights the importance of derivative behavior and motivates 
the use of safeguarded or damped Newton variants in future 
extensions. 

Beyond synthetic benchmarks, the deterministic and 
modular nature of the proposed framework makes it well-suited 
for real-world inverse problems in control systems, robotics, and 
engineering design, where interpretability, predictability, and 
low inference cost are often more critical than probabilistic 
diversity. 

The proposed framework is currently demonstrated on one-
dimensional inverse functions, where branch decomposition can 
be explicitly defined. While this setting allows precise analysis 
and benchmarking, extending the approach to higher-
dimensional inverse problems introduces challenges related to 
branch identification, scalability, and Jacobian conditioning. 
Additionally, the Newton refinement step relies on derivative 
information and may require safeguarding in regions where 
derivatives approach zero. These limitations motivate future 
research on automated branch discovery, damped refinement 
strategies, and multi-dimensional inverse learning. 

VI. CONCLUSION AND FUTURE WORK 

This work presents a unified framework for learning inverse 
functions using neural networks, demonstrating that even a 
simple multilayer perceptron (MLP) can accurately approximate 
inverse mappings for a single-valued function. For multi-valued 
cases, the study introduces a branch-wise decomposition method 
by splitting the inverse relationship into single-valued branches, 
each modeled by a separate network. This avoids the ambiguity 
of one-to-many mappings and ensures deterministic outputs. 
Experiments across a range of benchmark functions showed that 
each branch network effectively learns its part of the inverse, 
and the combined branch networks reconstruct the full inverse 
relationship. 

To enhance the precision, the approach integrates Newton’s 
method as a post-processing step, refining the neural network’s 
estimates to achieve near-exact inversion. This hybrid approach 
merges the speed and the flexibility of neural approximations 
with the rigor of analytical refinement, making it useful for a 
wide range of engineering applications. 

In conclusion, this work introduces a deterministic and 
interpretable framework for inverse function learning that 
combines neural approximation with numerical refinement. By 
explicitly decomposing multi-values inverses into single-valued 
branches and integrating Newton’s method as a refinement step, 
the proposed approach achieves accurate, stable, and 
computationally efficient inversion. The framework addresses 
practical limitations of existing probabilistic and multi-head 
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inverse-learning methods, particularly in terms of determinism, 
deployment simplicity, and precision. These properties make the 
approach especially relevant for critical, real-time, and resource-
constrained applications, while also providing a foundation for 
future extensions to higher-dimensional inverse problems. 
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