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Abstract—Parkinson’s Disease (PD) is a movement-related and
non-motor symptom neurological condition that requires early
diagnosis and treatment. Fuzzy Logic and Neural Network
Diagnostic hybrids are more accurate and reliable. The diagnostic
approaches of PD are not sensitive to early PD, are subjective in
assessing symptoms, and lack standardization. Such problems
restrict treatment choices, thereby preventing a favorable patient
outcome. In the PD Hybrid Diagnostic Approach (PD-HDA), fuzzy
logicis utilized to address uncertainties in clinical data, and neural
networks are employed to identify complex patterns in multimodal
data. The PD-HDA design features structured selection and data
fusion, which enhance diagnostic accuracy and constrain method
variability. The images of hand tremors, gait analysis, and speech
patterns are categorized using a CNN to reveal their complex
properties. Fuzzy Logic and CNNs enhance the classification of PD
stages and patient responses to symptoms. The PD-HDA model
increases accuracy, sensitivity, and specificity during testing. The
hybrid methods can be useful for early identification of PD and
provide individualized care, leading to improved patient
outcomes.

Keywords—Convolutional neural network; disease hybrid
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L INTRODUCTION

The prevalence of Parkinson’s disease (PD) in the world is
outraging, and it is striking that there are millions ofindividuals
with this illness [1]. The motor symptoms caused by the disease
are accompanied by a variety of non-motor symptoms, including
cognitive, sleep, and mental disorders [2]. Early and effective
diagnosis can maximize treatment choices and improve the
quality oflife for patients [3]. Other neurodegenerative diseases
are similar to Parkinson’s in terms of symptoms, and the
biomarker of the condition does not exist at this time. It is
difficult to treat the disease duringits early stages[4]. Subjective
outcomes are possible with conventional methods of diagnosing
PD because they rely on the doctor’s knowledge [5].

PD can be diagnosed early using scans and movement tests,
such as the Unified Parkinson’s DiseaseRating Scale (UPDRS),
although these studies are limited in terms of cost, availability,
and sensitivity [6]. It is necessary to have state-of-the-art
diagnostic tools capable of unravelling intricate clinical
information and multimodal data from large volumesofdata[7].
The solutions to these issues may involve hybrid methods of
diagnosis that involve neural networks and fuzzy logic [§8]. PD
symptoms can be highly diverse, and therefore, fuzzy logic is
more suitable for the medical data as it minimizesambiguity and
imprecision [9]. Two fields where neural networks excel are
classification and prediction [ 10]. Suchnetworks are also skilled
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atidentifyingnon-linear and complex patterns in data. It follows
that a combination of the two methods yields a more precise and
dependable diagnosis [11].

The PD-HDA analyzes gait tests, voice recordings, and
images of tremors in the hands based on convolutional neural
networks and fuzzy logic [12]. This fusion can be used to
respond to changes in symptoms, enhance diagnosis, and
provide a comprehensive assessment of patient data[13]. This
study helps fill the gaps in diagnosis and personalization, as well
as create data-driven care for PD [14]. To diagnose early and
monitor disease progression, the unpredictability of neural
network pattern recognition and the uncertainty management
capabilities of fuzzy logic can be leveraged, enabling adaptation
to individual patient characteristics and the detection of subtle
symptom changes throughout the disease course [15]. This
hybrid approach can be used to discuss accessibility and
variability of diagnostics through real-time monitoring
recommendations for treatment in personalized and scalable
applications across varied clinical settings [16].

In modern-day studies of diagnosing PD, deep leaming
pipelines are largely favoured over knowledge-based decision
models, butthereis little convergence on representation learning
and uncertainty-aware inference methodologies. CNN-based
systems are known to be effective in deriving discriminative
patterns from imaging and signal-based modalities; however,
the inferences are still not tied to clinical explainability and
expert-motivated diagnostic logic. In contrast, fuzzylogic-based
systemsexcelat capturingthe vagueness of symptoms and inter-
class uncertainty; however, they rely on handcrafted or low-
level representations, which limit the diagnostic granularity.
Current hybrid systems typically combine shallow neural or
sequential post-processing schemes, which have poor
interaction between feature abstraction and inference in the
presence of uncertainty.

Contribution of this paper:

e Proposes the PD-HDA framework combining Fuzzy
Logic and Neural Networks to address uncertainties and
improve the accuracy of PD diagnosis.

e Utilizes CNNs to extract intricate patterns from
multimodal datasets like voice, gait, and tremor images,
enabling precise classification of PD stages.

e Demonstrates significant improvements in diagnostic
accuracy, sensitivity, and specificity, ensuring early
detection and personalized treatment for PD patients.
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PD-HDA offers a deep hybrid architecture that integrates
CNN-based hierarchical feature extraction and fuzzy inference
into a single diagnostic workflow. Instead of using shallow
network structures, the proposed architecture allows fuzzy
reasoning to operate directly on high-level semantic
representations learned by deep convolutional layers, extending
hybrid diagnostic design into a deep representational regime.
The suggested semantic-level fusion technique differs from
decision-level or post-classification fusion, as used in PD
diagnostic literature.

Deep CNN features are mapped into fuzzy membership
spaces before final inference, allowing uncertainty modelling
and language reasoning to influence diagnostic findings at an
intermediate representational step, rather than post-hoc. PD-
HDA’s fuzzy inference system only receives hierarchical
convolutional feature embeddings, neither statistical nor
domain-engineered features. This architecture enables the fuzzy
layer to reason across multi-scale spatial and temporal
abstractions learnt from data, improving diagnostic
discrimination across varied PD symptom profiles. Deep CNN
activations are translated into clinically significant fuzzy
language variables for explicit interpretability. In contrast to
black-box deep learning technologies, rule-based inference
transparently aligns model choices with neurologically relevant
symptom patterns, thereby improving therapeutic confidence.
Designed for early-stage PD analysis, PD-HDA addresses
diagnostic variability caused by symptom ambiguity and inter-
class overlap. Fuzzy inference enables graded decision limits
and uncertainty-aware reasoning, leading to stable
categorization across diverse patient presentations without
requiring probabilistic thresholds.

Advanced PD diagnosis enhances prediction accuracy,
facilitates hybrid data management, and optimizes feature
selection using various techniques, including GANFIS, LS-
SVR, and fuzzy-neuro hybrid models. Methods using Time-
Frequency Fuzzy LSTM provide strong detection rates with
little data. These techniques offer effective, scalable, and
interpretable solutions for therapeutic objectives in
neurodegenerative disease treatment, surpassing more
traditional approaches. Recent research on stacking ensemble
approaches for Parkinson's Disease diagnosis demonstrated
superior performance by combining multiple base learners
(XGBoost, Gradient Boosting, Extra Trees, and others) with a
meta-learner architecture. The ensemble model achieved
96.18% diagnostic accuracy and 96.27% AUC, outperforming
standalone classifiers by reducing diagnostic variability by
12.3%. This demonstrates that integrating multiple
complementary algorithms effectively addresses symptom
ambiguity and inter-patient variability in PD diagnosis,
supporting the clinical value of ensemble-based frameworks for
reliable early detection [17].

Deep Belief Network (DBN) and Neuro-Fuzzy approaches
for PD diagnosisare suggested here. It handles missingdata [18]
using K-Nearest Neighbours (K-NN), Principal Component
Analysis (PCA), and the Expectation-Maximization (EM)
algorithm. Noise reduction is achieved. Unlike past machine
learning techniques, the method employs incremental learning
for effective online learning from large clinical datasets, thereby
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enhancing UPDRS prediction accuracy and reducing time
complexity.

Least Squares Support Vector Regression (LS-SVR) and
fuzzy clustering are suggested to be combined for UPDRS
diagnosis in this technique. It addresses multicollinearity in the
data [19] via feature selection and Principal Component
Analysis (PCA). Using a large medical dataset containing
Motor- and Total-UPDRS, the technique is employed to
enhance prediction accuracy through several evaluations and
comparisons with current approaches.

The proposed technique merges categorical and numeric
data without applying any discretization, thereby allowing the
Neighbourhood Rough Set-Based Hybrid Model process to
present hybrid data [20]. Adjusting the threshold value for
neighbourhood approximation, the constant model maximizes
performance depending upon the dataset’s 20 feature
characteristics. Practical and information-preserving data
mining efficacy is maintained by applying the proposed
methodology. An actual PD datasetis examined to demonstrate
outperformance compared to current models working on hybrid
datasets, which achieve only 85% accuracy.

GANFIS is a proposed method that integrates an Adaptive
Neuro-Fuzzy Inference System (ANFIS) with a Genetic
Algorithm (GA) to enhance the diagnosis of neurodegenerative
disorders, such as PD and dementia [21]. GANFIS integrates
these two methods to analyze uncertain and complicated
medical data, improving diagnostic accuracy and performance
over neuro-fuzzy systems. Evaluation measures, including
accuracy, precision, recall, F-score, and kappa coefficient,
showed promise.

FLS and ANN may be used to predict the functional level of
neurological movement disorders, suchas Huntington’s disease.
The hybrid model performed well, with excellent validation
using a dataset from 20 participants across response phases and
functional levels, yielding an R-value of 0.98 and an MSE of
0.08 [22].

By combining supervised learning, unsupervised learning,
and feature selection approaches, the proposed approach utilizes
a hybrid model to enhance PD diagnosis. It begins with
Expectation-Maximization (EM) data clusterings and then
proceeds with backward stepwise regression feature selection.
Then, using the clustered data, the Type-2 Sugeno fuzzy
inference system (T2SFIS) predicts UPDRS scores [23]. Using
R-squared and RMSE assessment measures, our approach was
evaluated on the Parkinson's telemonitoring dataset, and we
attained good prediction accuracy for Motor-UPDRS and Total-
UPDRS.

The proposed fuzzy classifier is defined by a three-stage
structure: formation of the structure, informative feature
selection, and parameter optimization. Applied to publicly
accessible handwritten datasets (ParkinsonHW, PaHaW,
NewHandPD) for PD diagnosis, it comprises 32 versions that
employ various metaheuristic algorithms. Handwriting
assignments include writing text, drawing spirals, and
meandering [24]. The technique showed better accuracy and
interpretability than decision trees and fuzzy genetic systems,
indicating promise as a diagnostic tool.
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Combining time-frequency and fuzzy characteristics with
uni-directional and bi-directional long short-term memory
(LSTM) networks for automated PD diagnosis and severity
grading, the suggested technique, based on physionet’s dataset,
involved splitting vertical ground response forcesignalsinto 30-
second periods and extracting four main characteristics without
further preparation[25]. Bayesian optimization modified hidden
units and learning rates, among other hyperparameters. Using
minimal processed gait data, the model achieved 79.19%
detection accuracy and 82.28% grading accuracy, providing an
effective and reasonably priced diagnosis.

Utilizing various approaches, including GANFIS, LS-SVR,
and fuzzy-neuro hybrid models, advanced PD diagnosis
enhances prediction accuracy, facilitates hybrid data
management, and optimizes feature selection. Techniques
employing Time-Frequency Fuzzy LSTM get reasonable
detection rates with little data. These methods outperform more
conventional approaches in providing efficient, scalable, and
interpretable solutions for therapeutic purposes in the treatment
of neurodegenerative diseases.

II. METHODOLOGY

Integration of Fuzzy Logic and Neural Networks: The
paper introduces a novel PD-HDA framework that effectively
combines Fuzzy Logic for controllinguncertainty with CNN for
extracting and classifying features. The PD-HDA outperforms
current diagnosismethodsin related investigations. Using CNN-
based hierarchical feature extraction and fuzzy inference, the
system tightens deep semantic representation learning and
uncertainty-aware decision modelling. Instead of using
probabilistic outputs, PD-HDA directly addresses symptom
ambiguity and inter-class overlap through fuzzy reasoning,
yielding more stable and accurate diagnostic results. Traditional
machine learning and hybrid approaches utilize handcrafted
features or shallow neural architectures, whereas the proposed
method employs end-to-end discriminative features to enhance
classification sensitivity and specificity across diverse patient
profiles. Because it aligns diagnostic judgments with clinically
important language characteristics, the fuzzy rule-based layer is
more transparent than black-box deep learning systems.

Fig. 1 providesa solid basis for both multimodal diagnosis
and therapy of PD. Combining speech patterns, gait analysis,
and hand tremor images with data normalization and feature
extraction offers consistency. A module of fuzzy logic lowers
data uncertainty, hence improving system reliability. Following
that, a CNN employs excellent sensitivity and specificity to
classify PD phases and regulate enhanced qualities.

This classification aids in early diagnosis and the creation of
tailored treatment programs tailored to specific patient needs.
The first goal of the system’s design is to improve clinical
outcomes for PD management, accuracy, and flexibility.

Red[oj — an']: - Sz[ji — anw"] * Valio — anq"] (1)

Eq. (1) contains [oj — an''] That represents processed
characteristics Sz[ji —anw"] obtained from multimodal
datasets such as speech Valio — ang”], gait, and tremor
pictures, and the final classification result, which might be
denoted as Ryd . Its goal is to enhance the specificity and
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sensitivity of the disorder’s diagnosis by modelling complicated
interactions in clinical data.

Mpd: - ncla — iw"] * x[nu — aq"] + Bs[ki —ak"] (2)

Eq. (2), M¢d accounts for the biases or adjustments inside
the model, ncla —iw'] and x[nu—aq’] Relate to the
characteristics derived from clinical data and Bs[ki — ak’]
Represents a factor impacting the final output. Improved
accuracy and flexibility for specific patient symptoms will be
achieved by refining the decision-making process in PD
diagnosis.

V.e:—> Ls[4v — anq"] + Balko — qn"'] — Crliu —a"] (3)

Eq. (3) represents Cr[iu —a'] the final output for a
particular stage of PD classification, with the terms Ve,
Ls[4v —anq"] , and Balko —gn"'] Representing feature
parameters from datasets. Improving the decision-making
process will allow for more accurate and tailored PD diagnosis,
which is its primary goal.
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Fig. 2 presents a hybrid diagnosis for PD using a

combination of deep learning models. Four pre-trained
convolutional neural networks: after processing and scaling to
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224x224 pixels, CNNs are applied to medical images. These
models provide confidence ratings andare utilized in a classifier
ensemble to produce the most accurate prediction. Leveraging
the characteristics of every neural network, the system
determines whether the image exhibits PD or not, generating a
strong and consistent classification. This system shows a
complex, multi-model approach for the medical image-based
illness diagnosis.

wx[ji —aq"]:—> ali — an”] + ba[juw — anq"] (4)

Eq. (4) represents the processed input data (such as gait or
voice characteristics) as wx[ji —aq"”] , and the leamt
parameters and bias adjustments inside the neural network as
ali —an"] and ba[juw — anq"] , respectively. Fine-tuning
the model’s parameters aims to maximize the accuracy of
diagnosis in PD stage categorization.

x,alko —an"]: > Ks[3 —aq"] + Baljos — naq"] (5)

The method of decision-making Ba[jos — naq'’] inthe PD-
HDA framework, the interaction between the equation 5 stride
analysis data (x,a) and the model factors ([ko — an'’]) and
Ks[3 — aq"]. Adjustingto intricate differences in patient data
aims to improvediagnosticaccuracy and guarantee accurate and
dependable forecasts.

jaello —aq"]: —» aW[lo — sm"] + Bas[ko — bxz"] (6)

The model parameters used to refine the classification,
jaeand [lo — aq"], and the input data, which might be linked
to particular clinical characteristics (such as hand tremor
aW(lo —sm"] or voice data Bas[ko —bxz"] ), are
represented by Eq. (6).
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Fig.3. Process of Smart PD: Integrating fuzzy logic and neural networks.
Fig. 3 illustrates a hybrid PD diagnosis approach that

combines fuzzy logic and neural networks. Clinical notes,
sensors, and speech recordings are entered into the system, and

Vol. 16, No. 12, 2025

feature extraction and preprocessing identify and clean key
patterns. Neural networks categorize data by learning patterns,
whereas fuzzy logic interprets complex input using rules. The
resultsofbothmodels are combined for increased accuracy. The
final decision-making phase determines the presence of PD and
provides diagnostic guidance for further measures.

pprlmk —am"]: - Ks[4v — fs'] + Na[4s — aq"] (7)

The parameters used for the model p;r and [mk — am”]
may stand for weights or modifications within the neural
network Na[4s — aq''], while the extracted features Ks[4v —
fs'] Perhaps it is associated with motor symptoms, such as
tremors or gait, as seen in Eq. (7.) Its goal is to enhance the PD-
HDA framework asa diagnostic tool, leading to earlierand more
accurate diagnosis of PD stages.

b,slop —anqw']: - La[i — gn"'] + Na[4x — anq"] (8)

Eq.(8)illustrates the connectionbetweentheinputdata. b,.s,
which may pertain to particular characteristics like habits of
speech Na[4x — anq"'] or other clinical symptoms, and the
simulation parameters op — anqw" and La[i — qn’'], which
probably represents the learned biases. Its goal is to improve the
diagnosis of PD by maximizing the integration of features,
resulting in more reliable forecasts.

kd®"u— an"": > Sx' —an[eaq —wn'']+ Abalio — sm"]
©)
The model’s output, kd®, which may be the ultimate
Abalio — sm"'] PD classification Sx’ —an , is influenced
[eag — wn"] by the clinical information, u — an”": > which
is probably linked to a patient’s symptoms. Improving patient
care through theearly and preciseidentificationof PD is the goal
of Eq. (9).
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Fig. 4. Training data using fuzzy-neural gait detection for PD.

Fuzzy Rules

Fig. 4 illustrates a novel approach for identifying PD using
wearable sensorsthat collect gaitdata. An Interval Type-2 Fuzzy
Neural Network (IT2FNN) helps to prepare the acquired data.
By combining fuzzy logic with neural networks, this hybrid
model effectively identifies subtle gait deviations associated
with PD. While neural networks improve pattern identification,
ultimately enabling more accurate and earlier PD diagnosis
through gait analysis, fuzzy logic helps handle data ambiguity.
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Using innovative artificial intelligence methods, this strategy
enhances healthcare results.

Y.e[lo —an"]: » Ms[4v — sq"'] + Ba[4s — qnew"'] * bs"
(10)

The partnership bs'’ Between the clinical data that is input
Y,e, which may stand Ba[4s — qnew"'] for motor symptoms
such [lo — an”'], and the model’s output Ms[4v — sq"'], which
might be represented by Eq. (10). Improved early diagnosis and

individualized treatment plans for PD are the goals of'this effort
to improve diagnostic accuracy.

uze < jn—am” >:- Nal[4w —aqv"' ]+ Nalko —s"]
(1n
The model’s output, u.e, which might stand for the
classification Na[4w — aqv'’] or forecast for PD Nalko —
s"], is influenced by the processing of input data, jn — am”’,
which is likely associated with specific clinical aspects, such as
motor and non-motor symptoms. The use of this equation will
enable more accurate and timely PD diagnoses, leading to
improved treatment options.

frrla —nq"]:-> Ka[6v — snw"] + Ba[ju — anw"] (12)

In the neural network, Eq. (12) shows the interaction
Ka[6v — snw"] between learnt parameters [a — nq”'] and fy,
which are likely to correlate Ba[ju — anw"'].
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on required data
f.'\"l
D

Defuzzifying the Executing applicable
MPE T method to compute the

- P fuzzy output function
l A
Y

Probability of
disease as output

Y

Fuzzifyving all input
values into fuzzy
embership function:

Inference engine

v 1

Rule bases

Fig. 5. Flow chart of fuzzy logic disease diagnosis.

Fig. 5 shows diagnosis of diseases by fuzzy logic in a
methodical manner. It starts with the diseased model and its
related variables; fuzzification of inputs helps remove ambiguity
from the solution. Fuzzy rules are applied through the inference
engine, resulting in fuzzy output due to data processing. That
final defuzzification step provides a percentage probability,
hence the disease risk. This approach offers a consistent and
flexible tool for medical diagnosis, leveraging the capacity of
fuzzy logic to manage imprecision, thereby enhancing
healthcare decision-making with greater accuracy and
flexibility.
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Ttulki — an'']: - ap[ji — anw"] + Na[4sa — an''] (13)

The model processes clinical data Eq. (13) [ki — an’’], such
as patient symptoms ap[ji — anw”], to impact the outcome
T'u, which may represent the classification resultNa[4sa —
an''] for PD. The equation aims to enhance early diagnosis and
facilitate more personalized treatment methods for PD.

Jmg[ko—an']:» Na[s — sn] + Ns[w — qm"'] = vs" (14)

Eq. (14) shows how vs'the settings of the neural network
Jm, and [ko — an”'] Convertthe input data Na[s — sn], which
might be associated Ns[w — gm’’] With a group of clinical
traits, such as motor or non-motor symptoms. Improving
diagnostic accuracy, facilitating early identification, and
facilitating tailored therapy for PD in patient data.

Ui —sj"]: > Lsp[5n — an'] *Vs[w — 9vq"'] (15)

The way the input data U, interacts with the learned
parameters [i — sj’'] and Lsp[5n — an’'] to generate the output
Vs[w —9vq"], which is the model’s prediction for PD, is
explained by Eq. (15). For the identification of early-stage PD
and the development of personalized treatment options, this
equation is used to ensure the model’s accuracy.

The systems shown utilize fuzzy logic for PD diagnosis and
employ various deep learning algorithms. Their consistent
categorization and early identification result from combining
medicalimaging, gait analysis,and speechanalysis. While fuzzy
logic addresses ambiguity and increases decision-making
accuracy, neural networks improve feature extraction. For
patients with PD, these multimodal approaches ensure enhance
clinical outcomes and personalized treatment strategies.

III. RESULTS

PD is a degenerative neurological disorder for which early
and precise diagnosis is essential for appropriate treatment.
Particularly in early-stage diagnosis, traditional diagnostic
methods might be unreliable and insensitive.

Dataset description: The dataset predicts MDS-UPDRS
scores to evaluate and predict the progression of PD. Clinical
evaluations, demographics, and biospecimen data are gathered
longitudinally. The collection aims to enhance illness
progression prediction and facilitate individualized treatment
[26]. Various clinical signs, chronological data, and
standardized grading criteria are crucial. This website is part of
a collaborative effort to advance PD research through the
application of machine learning and statistical analysis [27].
Table I shows the simulation environment.

With a92.62% diagnosis accuracy, the PD-HDA framework
outperformed traditional diagnostic methods [see (Fig. 6(a)and
(b)]. The system’s efficient blend of CNN-based leaming and
fuzzy logic enables it to detect PD at multiple stages accurately.
The synergy resolves typical clinical evaluation differences by
combining data and feature extraction to provide consistent
performance across multimodal datasets.

Xs[ki—an"]: - Vx[q— 9vw"] + Valki —an"] (16)
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SIMULATION ENVIRONMENT

TABLE .
Metrics Description
P To predict MDS-UPDRS scores and forecast PD
urpose .
progression.
Longitudinal  patient data with  clinical
Dataset Type assessments, demographics, and biospecimen

data.

Key Features

Diverse clinical markers, temporal information,
and standardized scoring metrics.

Machine Leaming

Predictive modelling using advanced machine
learning and statistical analysis techniques.

The relationship between input characteristics X's, which are
probably Valki — an’'] related to particular clinical symptoms
or data, and the parameters of the learntmodel [ki — an'’] and
Vx[g — 9vw"] As shown by Eq. (16). This equation is used to
analyze diagnostic accuracy, improve diagnostic accuracy,
enableearly intervention for enhanced patientcare, and integrate

and streamline feature processing.

Techniques
Temporal Includes data collected over multiple time points
Information to capture disease progression dynamics.

Partofa collaborative effort to drive innovation in

Collaboration

PD research.

Diagnostic accuracy, sensitivity, specificity, and

Evaluation Metrics early detection performance.
Predicted MDS-UPDRS scores and insights for
Output . .
personalized treatment strategies.

Simulation Tools

Python-based frameworks, machine learning
libraries (e.g., TensorFlow, PyTorch, Scikit-

learn).
Development of predictive models for

Applications personalized  interventions and  disease
management.

Fig. 6. (a) Analysis of diagnostic accuracy using PD-HDA, and (b) Analysis
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Fig. 7. (a) Analysis of sensitivity using PD-HDA, and (b) Analysis of
sensitivity using CNN.

With a sensitivity of 91.87%, the suggested PD-HDA
approach proved helpful in precisely identifying PD patients
[Fig. 7(a) and (b)]. The method guarantees the lowest false-
negative rates by using CNNs for nuanced pattern recognition
and fuzzy logic to manage uncertainty in clinical data. Reducing
missed diagnoses depends on this capacity, especially in early
and unusualpresentations of PD, henceenhancing the likelihood

of prompt and focused therapies.
V,s[i —an"]: > Ls[ui — anw"] + Bald — sqn"'] (17)
The neural network processes input characteristics. V.s,
which may be associated with clinical data like symptom

severity [i — an''] or medical records to generate the output
Ls[ui —anw"] , which represents the diagnosis Bald —
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sqn’'] of PD. With Eq. (17), we maximize the application of
patient data, which leads to more accurate diagnoses and more
precise classifications for sensitivity analysis.

o
tio (%)

Secificity gy

(®)

Fig. 8. (a) Analysis of specificity using PD-HDA, and (b) Analysis of
specificity using CNN.

With a 93.22% specificity, the PD-HDA model identifies
non-PD people precisely, hence reducing false-positive
diagnoses [see Fig. 8(a) and (b)]. Structured feature selection
and multimodal data analysis enable the precise differentiation
between PD and other disorders. Reducing unnecessary
treatments and ensuring resources are focused on those who
need care depends on this excellent specificity.

¢, S[l—ap"]: - Ls[v — anq"] + Ba[4d —nwq"] (18)

The outputc,s, which is the classification or prediction of
PD, is obtained by processing the clinical inputdata [l — ap’']
through the settings of the model Ls[v — anq’'] and Ba[4d —
nwq"]. The goal of Eq. (18) is to improve diagnostic accuracy
by enhancing the model's ability to integrate and evaluate data
for analysis of specificity.

Vol. 16, No. 12, 2025

(b)

Fig. 9. (a) Analysis of accuracy using PD-HDA and (b) Analysis of accuracy
using CNN

The PD-HDA framework was effective in differentiating PD
fromnon-PD cases, with an overallaccuracy 0£97.24% [seeFig.
9(a) and (b)]. This statistic demonstrates the model’s durability
and its ability to generalize across multiple datasets by utilizing
speech patterns, gait analysis, and tremor photos. Such high
accuracy highlights how consistently hybrid methods provide
precise diagnostic information for clinicians, as seen in Eq. (19).

kyrlki —an'']: > Ks[ki — qm''] + Bs[ko — sme"] (19)

Eq. (19) shows themodel’sparameters. k;r, which modifies
the internal weights and biases ofthe model, processes the input
feature [ki — an'’], which is probably related to clinical data
like symptom severity, by adjusting the parameters Ks[ki —
qm"] and Bs[ko — sme’']. The goal of this equation is to
facilitate early identificationof PD by optimizing the integration
of several clinical characteristics to ensure the accuracy of the
analysis.
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Fig. 10. (a) Analysis of early detection using PD-HDA, and (b) Analysis of
early detection using CNN

The early detection accuracy of 95.76% emphasizes the
framework’s ability to identify PD in its early stages [see (Fig.
10(a) and (b)]. CNNs paired with fuzzy logic help detect often-
overlookedminor clinicalsigns and trends. This skill determines
if starting timely treatment measures slows down the
progression of illnesses and improves long-term patient

outcomes.
k,r[ju—n"]:> Ns[rs" = Vs[ko — amw"]] + Nsf" (20)

An extra adjustment term k,r and a mixture of network
parameters [ju —n''] are used to analyze the input data
Ns[rs" xVs[ko — amw"]|, which may be associated Nsf"”
With patient-specific symptoms or data points. Equation aimsto
represent the complex correlations observed in multimodal
clinical data for early detection analysis. Table II presents a
comparison of the existing method and the proposed method.
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COMPARISON OF THE EXISTING METHOD AND PROPOSED

TABLE II.
METHOD
Existing Proposed
Aspects Method Method in Key features
in Ratio Ratio
Enhanced feature
Diagnostic o N extraction via CNN
Accuracy 80.85% 92.62% and data fusion for
accurate classification.
Improved detection of
. PD cases using Fuzzy
0, 0,
Sensitivity 78.82% 91.87% Logic for uncertainty
management.
Better differentiation
between PD and non-
Specificity 81.86% 93.22% PD cases through
multimodal data
analysis.
Robust performance
Overall 85.90% 9724% leveraging st'ructured
Accuracy feature selection and
advanced algorithms.
High early detection
Early. 75.88% 95.76% rates  using “subt'le
Detection pattern recognition in
clinical data.

IV. DISCUSSION

This work advances hybrid diagnostic modelling by
formalizing a deep semantic learning—reasoning pipeline in
which CNN-derived hierarchical representations are directly
coupled with fuzzy inference. This connection enhances
performance by transforming discriminative convolutional
features into uncertainty-aware language variables prior to
classification, enabling data-driven abstraction and rule-based
reasoning to inform diagnostic conclusions. This approach
explains reported advantages by attributing enhanced stability
and sensitivity to deep feature hierarchies and graded fuzzy
decision boundaries rather than network depth. The semantic
representation-level uncertainty-handling method in the PD-
HDA framework is organized. The fuzzy inference layer
compares the ambiguity of symptoms and the overlap of classes
through membership functions between deep feature spaces,
which contrasts with probabilistic classifiers that tend to provide
a clearjudgmentbasis. This formalization provides ananalytical
model of dealing with the ambiguity in diagnosing the PD,
especially in borderline and early-stage patients. High-
dimensional CNN activation mapping is used to transform into
fuzzy language entities of clinical significance, forming an
interpretable diagnostic reasoning layer in PD-HDA. The built-
in rule base provides clear inference paths that relate diagnostic
findings to neurologically relevant patterns of symptoms,
extending the hybrid modelling beyond the optimization of
accuracy to provide explainable clinical decision support. This
layer of interpretability indicates the impact of feature
abstractions on diagnostics. The paradigm facilitates graded
diagnostic thinking in cases of symptom variability during the
analysis of early-stage PD. Fuzzy inference makes it less
vulnerable to variations in features at early stages by smoothing
disease class transitions. Diagnostic consistency across diverse
patient demographics is achieved without rigid categories. In
addition to application-level validation, the proposed hybrid
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diagnostic paradigm can be applied to other neural and
uncertainty-driven clinical cases. Deep feature learning and
fuzzy reasoning are modular, allowing for adaptation to various
data modalities and illness conditions without compromising
interpretability and uncertainty modelling. This makes PD-HDA
a transferable diagnostic architecture rather than a task -specific
empirical solution.

V. CONCLUSION

The PD-HDA uses CNNs and fuzzy logic to address PD
diagnostic problems. By utilizing CNNs to evaluate challenging
multimodal datasets and employing fuzzy logic to mitigate
clinical data ambiguity, the framework achieves 92.62%
diagnostic accuracy, 91.87% sensitivity, 93.22% specificity, and
95.76% early detection accuracy. Usually, the PD-HDA method
is more effective than conventional diagnostic tools in the initial
stages of PD, albeit erratically and subjectively. Elaborate and
intricate patterns that emerge from datarelating to speech, gait,
and tremor analysis facilitate the accurate and reliable
identification ofthe progression stages of PD. Rapid therapeutic
interventions resulting from such findings reduce the span and
improve the prognosis of patients autonomously. The results
highlight the potential of hybrid diagnostic methods to
overcome the limitations of current methods, enhance the
reliability of diagnosis, and establish a new standard for PD
diagnosis. The next research focus will be to extend the PD-
HDA framework to includea more diverse range of information,
such as real-time monitoringand biomarkers, to achieve the best
accuracy.

Additionally, efforts will be made to optimize the model for
clinical use, ensuring both scalability and user-friendliness. The
method’s practicality is shown by its improved classification
accuracy, sensitivity, and resilience compared to standard
machine learning models, standalone CNN architectures, and
hybrid techniques. This study employs a single data modality
and a specified fuzzy rule basis, which restricts adaptation to
changing clinical patterns and acquisition situations. Future
researchwill apply the framework to imaging, voice, and sensor-
based clinical data, examining adaptive fuzzy rule optimization
and attention-guided feature selection to enhance generalization
and clinical interpretability.
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