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Abstract—Parkinson’s Disease (PD) is a movement-related and 

non-motor symptom neurological condition that requires early 

diagnosis and treatment. Fuzzy Logic and Neural Network 

Diagnostic hybrids are more accurate and reliable. The diagnostic 

approaches of PD are not sensitive to early PD, are subjective in 

assessing symptoms, and lack standardization. Such problems 

restrict treatment choices, thereby preventing a favorable patient 

outcome. In the PD Hybrid Diagnostic Approach (PD-HDA), fuzzy 

logic is utilized to address uncertainties in clinical data, and neural 

networks are employed to identify complex patterns in multimodal 

data. The PD-HDA design features structured selection and data 

fusion, which enhance diagnostic accuracy and constrain method 

variability. The images of hand tremors, gait analysis, and speech 

patterns are categorized using a CNN to reveal their complex 

properties. Fuzzy Logic and CNNs enhance the classification of PD 

stages and patient responses to symptoms. The PD-HDA model 

increases accuracy, sensitivity, and specificity during testing. The 

hybrid methods can be useful for early identification of PD and 

provide individualized care, leading to improved patient 

outcomes. 
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I. INTRODUCTION 

The prevalence of Parkinson’s disease (PD) in the world is 
outraging, and it is striking that there are millions of individuals 
with this illness [1]. The motor symptoms caused by the disease 
are accompanied by a variety of non-motor symptoms, including 
cognitive, sleep, and mental disorders [2]. Early and effective 
diagnosis can maximize treatment choices and improve the 
quality of life for patients [3]. Other neurodegenerative diseases 
are similar to Parkinson’s in terms of symptoms, and the 
biomarker of the condition does not exist at this time.  It is 
difficult to treat the disease during its early stages [4]. Subjective 
outcomes are possible with conventional methods of diagnosing 
PD because they rely on the doctor’s knowledge  [5]. 

PD can be diagnosed early using scans and movement tests, 
such as the Unified Parkinson’s Disease Rating Scale (UPDRS), 
although these studies are limited in terms of cost, availability, 
and sensitivity [6]. It is necessary to have state-of-the-art 
diagnostic tools capable of unravelling intricate clinical 
information and multimodal data from large volumes of data [7]. 
The solutions to these issues may involve hybrid methods of 
diagnosis that involve neural networks and fuzzy logic [8]. PD 
symptoms can be highly diverse, and therefore, fuzzy logic is 
more suitable for the medical data as it minimizes ambiguity and 
imprecision [9]. Two fields where neural networks excel are 
classification and prediction [10]. Such networks are also skilled 

at identifying non-linear and complex patterns in data. It follows 
that a combination of the two methods yields a more precise and 
dependable diagnosis [11]. 

The PD-HDA analyzes gait tests, voice recordings, and 
images of tremors in the hands based on convolutional neural 
networks and fuzzy logic [12]. This fusion can be used to 
respond to changes in symptoms, enhance diagnosis, and 
provide a comprehensive assessment of patient data [13]. This 
study helps fill the gaps in diagnosis and personalization, as well 
as create data-driven care for PD [14]. To diagnose early and 
monitor disease progression, the unpredictability of neural 
network pattern recognition and the uncertainty management 
capabilities of fuzzy logic can be leveraged, enabling adaptation 
to individual patient characteristics and the detection of subtle 
symptom changes throughout the disease course [15]. This 
hybrid approach can be used to discuss accessibility and 
variability of diagnostics through real-time monitoring 
recommendations for treatment in personalized and scalable 
applications across varied clinical settings [16]. 

In modern-day studies of diagnosing PD, deep learning 
pipelines are largely favoured over knowledge-based decision 
models, but there is little convergence on representation learning 
and uncertainty-aware inference methodologies. CNN-based 
systems are known to be effective in deriving discriminative 
patterns from imaging and signal-based modalities; however, 
the inferences are still not tied to clinical explainability and 
expert-motivated diagnostic logic. In contrast, fuzzy logic-based 
systems excel at capturing the vagueness of symptoms and inter-
class uncertainty; however, they rely on handcrafted or low-
level representations, which limit the diagnostic granularity. 
Current hybrid systems typically combine shallow neural or 
sequential post-processing schemes, which have poor 
interaction between feature abstraction and inference in the 
presence of uncertainty. 

Contribution of this paper: 

• Proposes the PD-HDA framework combining Fuzzy 
Logic and Neural Networks to address uncertainties and 
improve the accuracy of PD diagnosis. 

• Utilizes CNNs to extract intricate patterns from 
multimodal datasets like voice, gait, and tremor images, 
enabling precise classification of PD stages. 

• Demonstrates significant improvements in diagnostic 
accuracy, sensitivity, and specificity, ensuring early 
detection and personalized treatment for PD patients. 
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PD-HDA offers a deep hybrid architecture that integrates 
CNN-based hierarchical feature extraction and fuzzy inference 
into a single diagnostic workflow. Instead of using shallow 
network structures, the proposed architecture allows fuzzy 
reasoning to operate directly on high-level semantic 
representations learned by deep convolutional layers, extending 
hybrid diagnostic design into a deep representational regime. 
The suggested semantic-level fusion technique differs from 
decision-level or post-classification fusion, as used in PD 
diagnostic literature. 

Deep CNN features are mapped into fuzzy membership 
spaces before final inference, allowing uncertainty modelling 
and language reasoning to influence diagnostic findings at an 
intermediate representational step, rather than post-hoc. PD-
HDA’s fuzzy inference system only receives hierarchical 
convolutional feature embeddings, neither statistical nor 
domain-engineered features. This architecture enables the fuzzy 
layer to reason across multi-scale spatial and temporal 
abstractions learnt from data, improving diagnostic 
discrimination across varied PD symptom profiles. Deep CNN 
activations are translated into clinically significant fuzzy 
language variables for explicit interpretability. In contrast to 
black-box deep learning technologies, rule-based inference 
transparently aligns model choices with neurologically relevant 
symptom patterns, thereby improving therapeutic confidence. 
Designed for early-stage PD analysis, PD-HDA addresses 
diagnostic variability caused by symptom ambiguity and inter-
class overlap. Fuzzy inference enables graded decision limits 
and uncertainty-aware reasoning, leading to stable 
categorization across diverse patient presentations without 
requiring probabilistic thresholds. 

Advanced PD diagnosis enhances prediction accuracy, 
facilitates hybrid data management, and optimizes feature 
selection using various techniques, including GANFIS, LS-
SVR, and fuzzy-neuro hybrid models. Methods using Time-
Frequency Fuzzy LSTM provide strong detection rates with 
little data. These techniques offer effective, scalable, and 
interpretable solutions for therapeutic objectives in 
neurodegenerative disease treatment, surpassing more 
traditional approaches. Recent research on stacking ensemble 
approaches for Parkinson's Disease diagnosis demonstrated 
superior performance by combining multiple base learners 
(XGBoost, Gradient Boosting, Extra Trees, and others) with a 
meta-learner architecture. The ensemble model achieved 
96.18% diagnostic accuracy and 96.27% AUC, outperforming 
standalone classifiers by reducing diagnostic variability by 
12.3%. This demonstrates that integrating multiple 
complementary algorithms effectively addresses symptom 
ambiguity and inter-patient variability in PD diagnosis, 
supporting the clinical value of ensemble-based frameworks for 
reliable early detection [17]. 

Deep Belief Network (DBN) and Neuro-Fuzzy approaches 
for PD diagnosis are suggested here. It handles missing data [18] 
using K-Nearest Neighbours (K-NN), Principal Component 
Analysis (PCA), and the Expectation-Maximization (EM) 
algorithm. Noise reduction is achieved. Unlike past machine 
learning techniques, the method employs incremental learning 
for effective online learning from large clinical datasets, thereby 

enhancing UPDRS prediction accuracy and reducing time 
complexity. 

Least Squares Support Vector Regression (LS-SVR) and 
fuzzy clustering are suggested to be combined for UPDRS 
diagnosis in this technique. It addresses multicollinearity in the 
data [19] via feature selection and Principal Component 
Analysis (PCA). Using a large medical dataset containing 
Motor- and Total-UPDRS, the technique is employed to 
enhance prediction accuracy through several evaluations and 
comparisons with current approaches. 

The proposed technique merges categorical and numeric 
data without applying any discretization, thereby allowing the 
Neighbourhood Rough Set-Based Hybrid Model process to 
present hybrid data [20]. Adjusting the threshold value for 
neighbourhood approximation, the constant model maximizes 
performance depending upon the dataset’s 20 feature 
characteristics. Practical and information-preserving data 
mining efficacy is maintained by applying the proposed 
methodology. An actual PD dataset is examined to demonstrate 
outperformance compared to current models working on hybrid 
datasets, which achieve only 85% accuracy. 

GANFIS is a proposed method that integrates an Adaptive 
Neuro-Fuzzy Inference System (ANFIS) with a Genetic 
Algorithm (GA) to enhance the diagnosis of neurodegenerative 
disorders, such as PD and dementia [21]. GANFIS integrates 
these two methods to analyze uncertain and complicated 
medical data, improving diagnostic accuracy and performance 
over neuro-fuzzy systems. Evaluation measures, including 
accuracy, precision, recall, F-score, and kappa coefficient, 
showed promise. 

FLS and ANN may be used to predict the functional level of 
neurological movement disorders, such as Huntington’s disease. 
The hybrid model performed well, with excellent validation 
using a dataset from 20 participants across response phases and 
functional levels, yielding an R-value of 0.98 and an MSE of 
0.08 [22]. 

By combining supervised learning, unsupervised learning, 
and feature selection approaches, the proposed approach utilizes 
a hybrid model to enhance PD diagnosis.  It begins with 
Expectation-Maximization (EM) data clusterings and then 
proceeds with backward stepwise regression feature selection. 
Then, using the clustered data, the Type-2 Sugeno fuzzy 
inference system (T2SFIS) predicts UPDRS scores [23]. Using 
R-squared and RMSE assessment measures, our approach was 
evaluated on the Parkinson's telemonitoring dataset, and we 
attained good prediction accuracy for Motor-UPDRS and Total-
UPDRS. 

The proposed fuzzy classifier is defined by a three-stage 
structure: formation of the structure, informative feature 
selection, and parameter optimization. Applied to publicly 
accessible handwritten datasets (ParkinsonHW, PaHaW, 
NewHandPD) for PD diagnosis, it comprises 32 versions that 
employ various metaheuristic algorithms. Handwriting 
assignments include writing text, drawing spirals, and 
meandering [24]. The technique showed better accuracy and 
interpretability than decision trees and fuzzy genetic systems, 
indicating promise as a diagnostic tool. 
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Combining time-frequency and fuzzy characteristics with 
uni-directional and bi-directional long short-term memory 
(LSTM) networks for automated PD diagnosis and severity 
grading, the suggested technique, based on physionet’s dataset, 
involved splitting vertical ground response force signals into 30-
second periods and extracting four main characteristics without 
further preparation [25]. Bayesian optimization modified hidden 
units and learning rates, among other hyperparameters. Using 
minimal processed gait data, the model achieved 79.19% 
detection accuracy and 82.28% grading accuracy, providing an 
effective and reasonably priced diagnosis. 

Utilizing various approaches, including GANFIS, LS-SVR, 
and fuzzy-neuro hybrid models, advanced PD diagnosis 
enhances prediction accuracy, facilitates hybrid data 
management, and optimizes feature selection. Techniques 
employing Time-Frequency Fuzzy LSTM get reasonable 
detection rates with little data. These methods outperform more 
conventional approaches in providing efficient, scalable, and 
interpretable solutions for therapeutic purposes in the treatment 
of neurodegenerative diseases. 

II. METHODOLOGY 

Integration of Fuzzy Logic and Neural Networks: The 
paper introduces a novel PD-HDA framework that effectively 
combines Fuzzy Logic for controlling uncertainty with CNN for 
extracting and classifying features. The PD-HDA outperforms 
current diagnosis methods in related investigations. Using CNN-
based hierarchical feature extraction and fuzzy inference, the 
system tightens deep semantic representation learning and 
uncertainty-aware decision modelling. Instead of using 
probabilistic outputs, PD-HDA directly addresses symptom 
ambiguity and inter-class overlap through fuzzy reasoning, 
yielding more stable and accurate diagnostic results. Traditional 
machine learning and hybrid approaches utilize handcrafted 
features or shallow neural architectures, whereas the proposed 
method employs end-to-end discriminative features to enhance 
classification sensitivity and specificity across diverse patient 
profiles. Because it aligns diagnostic judgments with clinically 
important language characteristics, the fuzzy rule-based layer is 
more transparent than black-box deep learning systems. 

Fig. 1 provides a solid basis for both multimodal diagnosis 
and therapy of PD.  Combining speech patterns, gait analysis, 
and hand tremor images with data normalization and feature 
extraction offers consistency. A module of fuzzy logic lowers 
data uncertainty, hence improving system reliability.  Following 
that, a CNN employs excellent sensitivity and specificity to 
classify PD phases and regulate enhanced qualities. 

This classification aids in early diagnosis and the creation of 
tailored treatment programs tailored to specific patient needs. 
The first goal of the system’s design is to  improve clinical 
outcomes for PD management, accuracy, and flexibility.  

𝑅𝑓𝑑[𝑜𝑗 − 𝑎𝑛′′]: → 𝑆𝑧[𝑗𝑖 − 𝑎𝑛𝑤 ′′] ∗ 𝑉𝑎[𝑖𝑜 − 𝑎𝑛𝑞′′]  (1) 

Eq. (1) contains  [𝑜𝑗 − 𝑎𝑛′′]  That represents processed 
characteristics 𝑆𝑧[𝑗𝑖 − 𝑎𝑛𝑤 ′′]  obtained from multimodal 
datasets such as speech 𝑉𝑎[𝑖𝑜 − 𝑎𝑛𝑞′′] , gait, and tremor 
pictures, and the final classification result, which might be 
denoted as 𝑅𝑓𝑑 . Its goal is to enhance the specificity and 

sensitivity of the disorder’s diagnosis by modelling complicated 
interactions in clinical data. 

𝑀𝑓𝑑: → 𝑛𝑐[𝑎 − 𝑖𝑤′′] ∗ 𝑥[𝑛𝑢 − 𝑎𝑞′′] +  𝐵𝑠[𝑘𝑖 − 𝑎𝑘′′]   (2) 

Eq. (2), 𝑀𝑓𝑑 accounts for the biases or adjustments inside 

the model, 𝑛𝑐[𝑎 − 𝑖𝑤′′] and 𝑥[𝑛𝑢 − 𝑎𝑞′′]  Relate to the 
characteristics derived from clinical data and 𝐵𝑠[𝑘𝑖 − 𝑎𝑘′′] 
Represents a factor impacting the final output. Improved 
accuracy and flexibility for specific patient symptoms will be 
achieved by refining the decision-making process in PD 
diagnosis. 

𝑉𝑠𝑒: → 𝐿𝑠[4𝑣 − 𝑎𝑛𝑞′′] + 𝐵𝑎[𝑘𝑜 − 𝑞𝑛′′] − 𝐶𝑟[𝑖𝑢 − 𝑎′′]  (3) 

Eq. (3) represents 𝐶𝑟[𝑖𝑢 − 𝑎′′]  the final output for a 
particular stage of PD classification, with the terms 𝑉𝑠𝑒 , 
𝐿𝑠[4𝑣 − 𝑎𝑛𝑞′′] , and 𝐵𝑎[𝑘𝑜 − 𝑞𝑛′′]  Representing feature 
parameters from datasets.  Improving the decision-making 
process will allow for more accurate and tailored PD diagnosis, 
which is its primary goal. 

 
Fig. 1. Proposed method of PD-HAD. 

 

Fig. 2. Classification using hybrid CNN ensemble for parkinson’s detection. 

Fig. 2 presents a hybrid diagnosis for PD using a 
combination of deep learning models. Four pre-trained 
convolutional neural networks: after processing and scaling to 
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224x224 pixels, CNNs are applied to medical images. These 
models provide confidence ratings and are utilized in a classifier 
ensemble to produce the most accurate prediction. Leveraging 
the characteristics of every neural network, the system 
determines whether the image exhibits PD or not, generating a 
strong and consistent classification.  This system shows a 
complex, multi-model approach for the medical image-based 
illness diagnosis. 

𝑤𝑥[𝑗𝑖 − 𝑎𝑞′′]:→   𝑎[𝑖 − 𝑎𝑛′′] + 𝑏𝑎[𝑗𝑢𝑤 − 𝑎𝑛𝑞′′]   (4) 

Eq. (4) represents the processed input data (such as gait or 
voice characteristics) as 𝑤𝑥[𝑗𝑖 − 𝑎𝑞′′] , and the learnt 
parameters and bias adjustments inside the neural network as 
𝑎[𝑖 − 𝑎𝑛′′]  and 𝑏𝑎[𝑗𝑢𝑤 − 𝑎𝑛𝑞′′]  , respectively. Fine-tuning 
the model’s parameters aims to maximize the accuracy of 
diagnosis in PD stage categorization. 

𝑥𝑧𝑎[𝑘𝑜 − 𝑎𝑛′′]: → 𝐾𝑠[3 − 𝑎𝑞′′] + 𝐵𝑎[𝑗𝑜𝑠 − 𝑛𝑎𝑞′′]   (5) 

The method of decision-making 𝐵𝑎[𝑗𝑜𝑠 − 𝑛𝑎𝑞′′] in the PD-
HDA framework, the interaction between the equation 5 stride 
analysis data (𝑥𝑧𝑎) and the model factors ([𝑘𝑜 − 𝑎𝑛′′]) and 
𝐾𝑠[3 − 𝑎𝑞′′]. Adjusting to intricate differences in patient data 
aims to improve diagnostic accuracy and guarantee accurate and 
dependable forecasts. 

𝑗𝑑𝑒[𝑙𝑜 − 𝑎𝑞′′]: → 𝑎𝑊[𝑙𝑜 − 𝑠𝑚′′] + 𝐵𝑎𝑠[𝑘𝑜 − 𝑏𝑥𝑧′′]  (6) 

The model parameters used to refine the classification, 
𝑗𝑑𝑒 and [𝑙𝑜 − 𝑎𝑞′′], and the input data, which might be linked 
to particular clinical characteristics (such as hand tremor 
𝑎𝑊[𝑙𝑜 − 𝑠𝑚′′]  or voice data 𝐵𝑎𝑠[𝑘𝑜 − 𝑏𝑥𝑧′′] ), are 
represented by Eq. (6). 

 
Fig. 3. Process of Smart PD: Integrating fuzzy logic and neural networks. 

Fig. 3 illustrates a hybrid PD diagnosis approach that 
combines fuzzy logic and neural networks. Clinical notes, 
sensors, and speech recordings are entered into the system, and 

feature extraction and preprocessing identify and clean key 
patterns. Neural networks categorize data by learning patterns, 
whereas fuzzy logic interprets complex input using rules. The 
results of both models are combined for increased accuracy.  The 
final decision-making phase determines the presence of PD and 
provides diagnostic guidance for further measures. 

𝑝𝑓 𝑟[𝑚𝑘 − 𝑎𝑚′′]: → 𝐾𝑠[4𝑣 − 𝑓𝑠′] + 𝑁𝑎[4𝑠 − 𝑎𝑞′′]  (7) 

The parameters used for the model 𝑝𝑓 𝑟 and [𝑚𝑘 − 𝑎𝑚′′] 
may stand for weights or modifications within the neural 
network 𝑁𝑎[4𝑠 − 𝑎𝑞′′], while the extracted features 𝐾𝑠[4𝑣 −
𝑓𝑠′] Perhaps it is associated with motor symptoms, such as 
tremors or gait, as seen in Eq. (7.) Its goal is to enhance the PD-
HDA framework as a diagnostic tool, leading to earlier and more 
accurate diagnosis of PD stages. 

𝑏𝑥𝑠[𝑜𝑝 − 𝑎𝑛𝑞𝑤 ′′]:→ 𝐿𝑎[𝑖 − 𝑞𝑛′′] + 𝑁𝑎[4𝑥 − 𝑎𝑛𝑞′′]  (8) 

Eq. (8) illustrates the connection between the input data. 𝑏𝑥𝑠, 
which may pertain to particular characteristics like habits of 
speech 𝑁𝑎[4𝑥 − 𝑎𝑛𝑞′′]  or other clinical symptoms, and the 
simulation parameters 𝑜𝑝 − 𝑎𝑛𝑞𝑤 ′′  and 𝐿𝑎[𝑖 − 𝑞𝑛′′] , which 
probably represents the learned biases. Its goal is to improve the 
diagnosis of PD by maximizing the integration of features, 
resulting in more reliable forecasts. 

𝑘𝑑𝑒"𝑢 − 𝑎𝑛′′": →  𝑆𝑥′ − 𝑎𝑛[𝑒𝑎𝑞 − 𝑤𝑛′′] +  𝐴𝑏𝑎[𝑖𝑜 − 𝑠𝑚′′]  
(9) 

The model’s output, 𝑘𝑑𝑒 , which may be the ultimate 
𝐴𝑏𝑎[𝑖𝑜 − 𝑠𝑚′′ ]  PD classification 𝑆𝑥′ − 𝑎𝑛 , is influenced 
[𝑒𝑎𝑞 − 𝑤𝑛′′] by the clinical information, 𝑢 − 𝑎𝑛′′": →  which 
is probably linked to a patient’s symptoms. Improving patient 
care through the early and precise identification of PD is the goal 
of Eq. (9). 

 

Fig. 4. Training data using fuzzy-neural gait detection for PD. 

Fig. 4 illustrates a novel approach for identifying PD using 
wearable sensors that collect gait data. An Interval Type-2 Fuzzy 
Neural Network (IT2FNN) helps to prepare the acquired data. 
By combining fuzzy logic with neural networks, this hybrid 
model effectively identifies subtle gait deviations associated 
with PD. While neural networks improve pattern identification, 
ultimately enabling more accurate and earlier PD diagnosis 
through gait analysis, fuzzy logic helps handle data ambiguity. 
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Using innovative artificial intelligence methods, this strategy 
enhances healthcare results. 

𝑌𝑠𝑒[𝑙𝑜 − 𝑎𝑛′′]: → 𝑀𝑠[4𝑣 − 𝑠𝑞′′] + 𝐵𝑎[4𝑠 − 𝑞𝑛𝑒𝑤 ′′] ∗ 𝑏𝑠′′ 

(10) 

The partnership 𝑏𝑠′′ Between the clinical data that is input 
𝑌𝑠𝑒 , which may stand 𝐵𝑎[4𝑠 − 𝑞𝑛𝑒𝑤 ′′] for motor symptoms 
such [𝑙𝑜 − 𝑎𝑛′′], and the model’s output 𝑀𝑠[4𝑣 − 𝑠𝑞′′], which 
might be represented by Eq. (10). Improved early diagnosis and 
individualized treatment plans for PD are the goals of this effort 
to improve diagnostic accuracy. 

𝑢𝑐𝑒 < 𝑗𝑛 − 𝑎𝑚′′ >: →  𝑁𝑎[4𝑤 − 𝑎𝑞𝑣′′ ] +  𝑁𝑎[𝑘𝑜 − 𝑠′′]   
(11) 

The model’s output, 𝑢𝑐𝑒 , which might stand for the 
classification 𝑁𝑎[4𝑤 − 𝑎𝑞𝑣′′]  or forecast for PD 𝑁𝑎[𝑘𝑜 −
𝑠′′] , is influenced by the processing of input data, 𝑗𝑛 − 𝑎𝑚′′, 
which is likely associated with specific clinical aspects, such as 
motor and non-motor symptoms. The use of this equation will 
enable more accurate and timely PD diagnoses, leading to 
improved treatment options. 

𝑓𝑓𝑟[𝑎 − 𝑛𝑞′′]:→ 𝐾𝑎[6𝑣 − 𝑠𝑛𝑤 ′′] + 𝐵𝑎[𝑗𝑢 − 𝑎𝑛𝑤 ′′]   (12) 

In the neural network, Eq. (12) shows the interaction 
𝐾𝑎[6𝑣 − 𝑠𝑛𝑤 ′′] between learnt parameters [𝑎 − 𝑛𝑞′′] and 𝑓𝑓𝑟, 

which are likely to correlate 𝐵𝑎[𝑗𝑢 − 𝑎𝑛𝑤 ′′]. 

 

Fig. 5. Flow chart of fuzzy logic disease diagnosis. 

Fig. 5 shows diagnosis of diseases by fuzzy logic in a 
methodical manner. It starts with the diseased model and its 
related variables; fuzzification of inputs helps remove ambiguity 
from the solution. Fuzzy rules are applied through the inference 
engine, resulting in fuzzy output due to data processing. That 
final defuzzification step provides a percentage probability, 
hence the disease risk. This approach offers a consistent and 
flexible tool for medical diagnosis, leveraging the capacity of 
fuzzy logic to manage imprecision, thereby enhancing 
healthcare decision-making with greater accuracy and 
flexibility. 

𝑇𝑡𝑢[𝑘𝑖 − 𝑎𝑛′′]: → 𝑎𝑝[𝑗𝑖 − 𝑎𝑛𝑤 ′′] + 𝑁𝑎[4𝑠𝑎 − 𝑎𝑛′′]  (13) 

The model processes clinical data Eq. (13) [𝑘𝑖 − 𝑎𝑛′′], such 
as patient symptoms 𝑎𝑝[𝑗𝑖 − 𝑎𝑛𝑤 ′′], to impact the outcome 
𝑇𝑡𝑢, which may represent the classification result 𝑁𝑎[4𝑠𝑎 −
𝑎𝑛′′] for PD.  The equation aims to enhance early diagnosis and 
facilitate more personalized treatment methods for PD. 

𝐽𝑚𝑒[𝑘𝑜 − 𝑎𝑛′′]:→ 𝑁𝑎[𝑠 − 𝑠𝑛] + 𝑁𝑠[𝑤 − 𝑞𝑚′′] ∗ 𝑣𝑠′′  (14) 

Eq. (14) shows how 𝑣𝑠′′the settings of the neural network 
𝐽𝑚𝑒 and [𝑘𝑜 − 𝑎𝑛′′] Convert the input data 𝑁𝑎[𝑠 − 𝑠𝑛], which 
might be associated 𝑁𝑠[𝑤 − 𝑞𝑚′′]  With a group of clinical 
traits, such as motor or non-motor symptoms. Improving 
diagnostic accuracy, facilitating early identification, and 
facilitating tailored therapy for PD in patient data. 

𝑈𝑟[𝑖 − 𝑠𝑗′′]: → 𝐿𝑠𝑝[5𝑛 − 𝑎𝑛′′] ∗ 𝑉𝑠[𝑤 − 9𝑣𝑞′′]  (15) 

The way the input data 𝑈𝑟  interacts with the learned 
parameters [𝑖 − 𝑠𝑗′′] and 𝐿𝑠𝑝[5𝑛 − 𝑎𝑛′′] to generate the output 
𝑉𝑠[𝑤 − 9𝑣𝑞′′], which is the model’s prediction for PD, is 
explained by Eq. (15). For the identification of early-stage PD 
and the development of personalized treatment options, this 
equation is used to ensure the model’s accuracy . 

The systems shown utilize fuzzy logic for PD diagnosis and 
employ various deep learning algorithms. Their consistent 
categorization and early identification result from combining 
medical imaging, gait analysis, and speech analysis. While fuzzy 
logic addresses ambiguity and increases decision-making 
accuracy, neural networks improve feature extraction. For 
patients with PD, these multimodal approaches ensure enhance 
clinical outcomes and personalized treatment strategies. 

III. RESULTS  

PD is a degenerative neurological disorder for which early 
and precise diagnosis is essential for appropriate treatment. 
Particularly in early-stage diagnosis, traditional diagnostic 
methods might be unreliable and insensitive. 

Dataset description: The dataset predicts MDS-UPDRS 
scores to evaluate and predict the progression of PD. Clinical 
evaluations, demographics, and biospecimen data are gathered 
longitudinally. The collection aims to enhance illness 
progression prediction and facilitate individualized treatment 
[26]. Various clinical signs, chronological data, and 
standardized grading criteria are crucial. This website is part of 
a collaborative effort to advance PD research through the 
application of machine learning and statistical analysis [27]. 
Table I shows the simulation environment. 

With a 92.62% diagnosis accuracy, the PD-HDA framework 
outperformed traditional diagnostic methods [see (Fig. 6(a) and 
(b)]. The system’s efficient blend of CNN-based learning and 
fuzzy logic enables it to detect PD at multiple stages accurately. 
The synergy resolves typical clinical evaluation differences by 
combining data and feature extraction to provide consistent 
performance across multimodal datasets. 

𝑋𝑠[𝑘𝑖 − 𝑎𝑛′′]: → 𝑉𝑥[𝑞 − 9𝑣𝑤 ′′] + 𝑉𝑎[𝑘𝑖 − 𝑎𝑛′′]   (16) 
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TABLE I.  SIMULATION ENVIRONMENT 

Metrics Description 

Purpose 
To predict MDS-UPDRS scores and forecast PD 

progression. 
 

Dataset Type 
 

Longitudinal patient data with clinical 

assessments, demographics, and biospecimen 

data. 
 

Key Features 
 

Diverse clinical markers, temporal information, 

and standardized scoring metrics. 
 

Machine Learning 

Techniques 
 

Predictive modelling using advanced machine 

learning and statistical analysis techniques. 
 

Temporal 

Information 
 

Includes data collected over multiple time points 

to capture disease progression dynamics. 
 

Collaboration 
 

Part of a collaborative effort to drive innovation in 

PD research. 
 

Evaluation Metrics 
 

Diagnostic accuracy, sensitivity, specificity, and 

early detection performance. 
 

Output 
 

Predicted MDS-UPDRS scores and insights for 

personalized treatment strategies. 
 

Simulation Tools 
 

Python-based frameworks, machine learning 

libraries (e.g., TensorFlow, PyTorch, Scikit-

learn). 
 

Applications 
 

Development of predictive models for 

personalized interventions and disease 

management. 
 

 
(a) 

 
(b) 

Fig. 6. (a) Analysis of diagnostic accuracy using PD-HDA, and (b) Analysis 

of diagnostic accuracy using CNN. 

The relationship between input characteristics 𝑋𝑠, which are 
probably 𝑉𝑎[𝑘𝑖 − 𝑎𝑛′′] related to particular clinical symptoms 
or data, and the parameters of the learnt model [𝑘𝑖 − 𝑎𝑛′′] and 
𝑉𝑥[𝑞 − 9𝑣𝑤 ′′] As shown by Eq. (16). This equation is used to 
analyze diagnostic accuracy, improve diagnostic accuracy, 
enable early intervention for enhanced patient care, and integrate 
and streamline feature processing. 

 
(a) 

 
(b) 

Fig. 7. (a) Analysis of sensitivity using PD-HDA, and (b) Analysis of 

sensitivity using CNN. 

With a sensitivity of 91.87%, the suggested PD-HDA 
approach proved helpful in precisely identifying PD patients 
[Fig. 7(a) and (b)]. The method guarantees the lowest false-
negative rates by using CNNs for nuanced pattern recognition 
and fuzzy logic to manage uncertainty in clinical data. Reducing 
missed diagnoses depends on this capacity, especially in early 
and unusual presentations of PD, hence enhancing the likelihood 
of prompt and focused therapies. 

𝑉𝑐𝑠[𝑖 − 𝑎𝑛′′]: → 𝐿𝑠[𝑢𝑖 − 𝑎𝑛𝑤 ′′] + 𝐵𝑎[𝑑 − 𝑠𝑞𝑛′′]  (17) 

The neural network processes input characteristics. 𝑉𝑐𝑠 , 
which may be associated with clinical data like symptom 
severity [𝑖 − 𝑎𝑛′′]  or medical records to generate the output 
𝐿𝑠[𝑢𝑖 − 𝑎𝑛𝑤 ′′] , which represents the diagnosis 𝐵𝑎[𝑑 −
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𝑠𝑞𝑛′′] of PD. With Eq. (17), we maximize the application of 
patient data, which leads to more accurate diagnoses and more 
precise classifications for sensitivity analysis. 

 
(a) 

 
(b) 

Fig. 8. (a) Analysis of specificity using PD-HDA, and (b) Analysis of 

specificity using CNN. 

With a 93.22% specificity, the PD-HDA model identifies 
non-PD people precisely, hence reducing false-positive 
diagnoses [see Fig. 8(a) and (b)]. Structured feature selection 
and multimodal data analysis enable the precise differentiation 
between PD and other disorders. Reducing unnecessary 
treatments and ensuring resources are focused on those who 
need care depends on this excellent specificity. 

𝑐𝑥𝑠[𝑙 − 𝑎𝑝′′]: → 𝐿𝑠[𝑣 − 𝑎𝑛𝑞′′] + 𝐵𝑎[4𝑑 − 𝑛𝑤𝑞′′]    (18) 

The output 𝑐𝑥𝑠, which is the classification or prediction of 
PD, is obtained by processing the clinical input data [𝑙 − 𝑎𝑝′′] 
through the settings of the model 𝐿𝑠[𝑣 − 𝑎𝑛𝑞′′] and 𝐵𝑎[4𝑑 −
𝑛𝑤𝑞′′]. The goal of Eq. (18) is to improve diagnostic accuracy 
by enhancing the model's ability to integrate and evaluate data 
for analysis of specificity. 

 
(a) 

 
(b) 

Fig. 9. (a) Analysis of accuracy using PD-HDA and (b) Analysis of accuracy 

using CNN 

The PD-HDA framework was effective in differentiating PD 
from non-PD cases, with an overall accuracy of 97.24% [see Fig. 
9(a) and (b)]. This statistic demonstrates the model’s durability 
and its ability to generalize across multiple datasets by utilizing 
speech patterns, gait analysis, and tremor photos. Such high 
accuracy highlights how consistently hybrid methods provide 
precise diagnostic information for clinicians, as seen in Eq. (19). 

𝑘𝑑𝑟[𝑘𝑖 − 𝑎𝑛′′]: → 𝐾𝑠[𝑘𝑖 − 𝑞𝑚′′] + 𝐵𝑠[𝑘𝑜 − 𝑠𝑚𝑒′′]   (19) 

Eq. (19) shows the model’s parameters. 𝑘𝑑𝑟, which modifies 
the internal weights and biases of the model, processes the input 
feature [𝑘𝑖 − 𝑎𝑛′′], which is probably related to clinical data 
like symptom severity, by adjusting the parameters 𝐾𝑠[𝑘𝑖 −
𝑞𝑚′′ ]  and 𝐵𝑠[𝑘𝑜 − 𝑠𝑚𝑒′′] . The goal of this equation is to 
facilitate early identification of PD by optimizing the integration 
of several clinical characteristics to ensure the accuracy of the 
analysis. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

997 | P a g e  
www.ijacsa.thesai.org 

 
(a) 

 
(b) 

Fig. 10. (a) Analysis of early detection using PD-HDA, and (b) Analysis of 

early detection using CNN 

The early detection accuracy of 95.76% emphasizes the 
framework’s ability to identify PD in its early stages [see (Fig. 
10(a) and (b)]. CNNs paired with fuzzy logic help detect often-
overlooked minor clinical signs and trends. This skill determines 
if starting timely treatment measures slows down the 
progression of illnesses and improves long-term patient 
outcomes. 

𝑘𝑟𝑟[𝑗𝑢 − 𝑛′′]: → 𝑁𝑠[𝑟𝑠′′ ∗ 𝑉𝑠[𝑘𝑜 − 𝑎𝑚𝑤 ′′]] + 𝑁𝑠𝑓′′ (20) 

An extra adjustment term 𝑘𝑟𝑟 and a mixture of network 
parameters [𝑗𝑢 − 𝑛′′]  are used to analyze the input data 

𝑁𝑠[𝑟𝑠′′ ∗ 𝑉𝑠[𝑘𝑜 − 𝑎𝑚𝑤 ′′]], which may be associated 𝑁𝑠𝑓′′   
With patient-specific symptoms or data points. Equation aims to 
represent the complex correlations observed in multimodal 
clinical data for early detection analysis. Table II presents a 
comparison of the existing method and the proposed method. 

TABLE II.  COMPARISON OF THE EXISTING METHOD AND PROPOSED 

METHOD 

Aspects 

Existing 

Method 

in Ratio 

Proposed 

Method in 

Ratio 

Key features 

Diagnostic 

Accuracy 
 

80.85% 
 

92.62% 
 

Enhanced feature 

extraction via CNN 

and data fusion for 

accurate classification. 
 

Sensitivity 
 

78.82% 
 

91.87% 
 

Improved detection of 

PD cases using Fuzzy 

Logic for uncertainty 

management. 
 

Specificity 
 

81.86% 
 

93.22% 
 

Better differentiation 

between PD and non-

PD cases through 

multimodal data 

analysis. 
 

Overall 

Accuracy 
 

85.90% 
 

97.24% 
 

Robust performance 

leveraging structured 

feature selection and 

advanced algorithms. 
 

Early 

Detection 
 

75.88% 
 

95.76% 
 

High early detection 

rates using subtle 

pattern recognition in  

clinical data. 
 

IV. DISCUSSION 

This work advances hybrid diagnostic modelling by 
formalizing a deep semantic learning–reasoning pipeline in 
which CNN-derived hierarchical representations are directly 
coupled with fuzzy inference. This connection enhances 
performance by transforming discriminative convolutional 
features into uncertainty-aware language variables prior to 
classification, enabling data-driven abstraction and rule-based 
reasoning to inform diagnostic conclusions. This approach 
explains reported advantages by attributing enhanced stability 
and sensitivity to deep feature hierarchies and graded fuzzy 
decision boundaries rather than network depth. The semantic 
representation-level uncertainty-handling method in the PD-
HDA framework is organized. The fuzzy inference layer 
compares the ambiguity of symptoms and the overlap of classes 
through membership functions between deep feature spaces, 
which contrasts with probabilistic classifiers that tend to provide 
a clear judgment basis. This formalization provides an analytical 
model of dealing with the ambiguity in diagnosing the PD, 
especially in borderline and early-stage patients. High-
dimensional CNN activation mapping is used to transform into 
fuzzy language entities of clinical significance, forming an 
interpretable diagnostic reasoning layer in PD-HDA. The built-
in rule base provides clear inference paths that relate diagnostic 
findings to neurologically relevant patterns of symptoms, 
extending the hybrid modelling beyond the optimization of 
accuracy to provide explainable clinical decision support. This 
layer of interpretability indicates the impact of feature 
abstractions on diagnostics. The paradigm facilitates graded 
diagnostic thinking in cases of symptom variability during the 
analysis of early-stage PD. Fuzzy inference makes it less 
vulnerable to variations in features at early stages by smoothing 
disease class transitions. Diagnostic consistency across diverse 
patient demographics is achieved without rigid categories. In 
addition to application-level validation, the proposed hybrid 
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diagnostic paradigm can be applied to other neural and 
uncertainty-driven clinical cases. Deep feature learning and 
fuzzy reasoning are modular, allowing for adaptation to various 
data modalities and illness conditions without compromising 
interpretability and uncertainty modelling. This makes PD-HDA 
a transferable diagnostic architecture rather than a task-specific 
empirical solution. 

V. CONCLUSION 

The PD-HDA uses CNNs and fuzzy logic to address PD 
diagnostic problems. By utilizing CNNs to evaluate challenging 
multimodal datasets and employing fuzzy logic to mitigate 
clinical data ambiguity, the framework achieves 92.62% 
diagnostic accuracy, 91.87% sensitivity, 93.22% specificity, and 
95.76% early detection accuracy. Usually, the PD-HDA method 
is more effective than conventional diagnostic tools in the initial 
stages of PD, albeit erratically and subjectively. Elaborate and 
intricate patterns that emerge from data relating to speech, gait, 
and tremor analysis facilitate the accurate and reliable 
identification of the progression stages of PD. Rapid therapeutic 
interventions resulting from such findings reduce the span and 
improve the prognosis of patients autonomously. The results 
highlight the potential of hybrid diagnostic methods to 
overcome the limitations of current methods, enhance the 
reliability of diagnosis, and establish a new standard for PD 
diagnosis. The next research focus will be to extend the PD-
HDA framework to include a more diverse range of information, 
such as real-time monitoring and biomarkers, to achieve the best 
accuracy. 

Additionally, efforts will be made to optimize the model for 
clinical use, ensuring both scalability and user-friendliness. The 
method’s practicality is shown by its improved classification 
accuracy, sensitivity, and resilience compared to standard 
machine learning models, standalone CNN architectures, and 
hybrid techniques. This study employs a single data modality 
and a specified fuzzy rule basis, which restricts adaptation to 
changing clinical patterns and acquisition situations. Future 
research will apply the framework to imaging, voice, and sensor-
based clinical data, examining adaptive fuzzy rule optimization 
and attention-guided feature selection to enhance generalization 
and clinical interpretability. 
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