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Abstract—The increasing scarcity and sensitivity of clinical 

data necessitate the development of high-quality synthetic 

datasets. This study evaluated the ability of Conditional Tabular 

GAN (CTGAN) to generate synthetic heart disease data that 

preserves the statistical properties and predictive patterns of the 

Cleveland Heart Disease dataset. It assessed the fidelity of 

numerical and categorical features, preservation of pairwise 

correlations, and predictive utility using Logistic Regression and 

Random Forest classifiers. Dimensionality reduction analysis 

using PCA and t-SNE further measured the global similarity 

between the real and synthetic datasets. The results obtained show 

that CTGAN successfully reproduces the general distribution and 

correlations, especially for key features such as age, talach, and old 

peak. However, some discrepancies remain in categorical 

attributes. Predictive modeling shows moderate transferability, 

indicating that synthetic data captures important patterns without 

completely replicating the original labels. These findings highlight 

the potential of CTGAN-generated synthetic data as a privacy-

preserving alternative for benchmarking and early algorithm 

development, while emphasizing the importance of feature-level 

and prediction validation in synthetic data research. 
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I. INTRODUCTION 

Cardiovascular diseases, particularly heart disease, remain a 
leading cause of global mortality, accounting for approximately 
17.9 million deaths annually according to the World Health 
Organization. Early identification and timely intervention are 
essential to reducing morbidity and mortality associated with 
these conditions. In recent years, machine learning (ML) 
techniques have attracted significant attention for their potential 
to support heart disease diagnosis and risk prediction, thereby 
enabling data-driven clinical decision-making [1]. 

Despite these advances, the robustness and generalizability 
of ML models in healthcare are often constrained by limitations 
inherent to real-world clinical data [2]. One of the primary 
challenges is the scarcity of large-scale, high-quality, and 
representative datasets. Publicly available resources, such as the 
UCI Heart Disease dataset, are typically limited in size and 
frequently exhibit class imbalance, which restricts their 
suitability for training reliable predictive models [3]. In addition, 

patient privacy regulations and ethical considerations impose 
further restrictions on data sharing and reuse [4]. These 
challenges collectively hinder reproducibility and limit the 
practical deployment of ML-based solutions in clinical settings 
[5]. 

To address data scarcity while mitigating privacy concerns, 
synthetic data generation has emerged as a promising 
alternative. Among existing approaches, Generative Adversarial 
Networks (GANs) have demonstrated strong capability in 
modeling complex data distributions. In particular, Conditional 
Tabular GAN (CTGAN) is designed to handle tabular datasets 
with both continuous and categorical variables, as well as class 
imbalance. These characteristics make CTGAN especially 
suitable for healthcare applications [6], where heterogeneous 
feature types and skewed data distributions are common. 

Although GAN-based synthetic data generation has been 
widely explored, most existing studies primarily emphasize 
downstream model performance, such as classification 
accuracy, while providing limited systematic evaluation of 
artificial data fidelity. In particular, the preservation of statistical 
properties and feature-level relationships in synthetic tabular 
data is often under-examined. Furthermore, there is insufficient 
empirical evidence regarding whether synthetic tabular data 
generated for heart disease prediction can offer comparable 
predictive utility to real clinical data while maintaining essential 
statistical and structural characteristics. 

To address these gaps, this study evaluates the quality and 
fidelity of CTGAN-generated synthetic heart disease data 
through a comprehensive assessment framework. The 
evaluation includes descriptive statistical comparisons, 
correlation structure analysis, distributional similarity testing, 
and utility-based evaluation using a logistic regression classifier 
implemented in Python. Rather than augmenting predictive 
pipelines, the study assesses whether synthetic data can serve as 
a statistically reliable substitute for real clinical data in 
downstream machine learning tasks. 

By integrating statistical fidelity analysis with predictive 
utility evaluation, this work provides empirical insights into the 
suitability of CTGAN-generated synthetic data for healthcare 
machine learning applications. The findings contribute to 
ongoing discussions on the role of synthetic data in clinical 
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artificial intelligence, particularly in scenarios involving 
sensitive or limited-access tabular datasets. 

The remainder of this paper is organized as follows. Section 
II reviews related work on synthetic data generation and 
evaluation in healthcare. Section III describes the dataset, 
CTGAN configuration, and the methodology for synthetic data 
generation and evaluation. Section IV presents the experimental 
results. Section V discusses the findings in relation to existing 
studies and outlines the limitations. Finally, Section VI 
concludes the paper and suggests directions for future research, 
followed by the Acknowledgments and References. 

II. LITERATURE REVIEW 

Heart disease prediction increasingly relies on machine 
learning (ML) and deep learning (DL), offering potential for 
timely diagnosis and improved clinical decision-making. 
However, challenges such as limited high-quality clinical data 
and persistent class imbalances drive the use of synthetic data 
generation. Generative Adversarial Networks (GANs) have 
emerged as a promising approach to generate realistic tabular 
datasets while preserving patient privacy. This literature review 
focuses on three areas: (1) ML and DL approaches for heart 
disease prediction, (2) GAN-based synthetic data generation in 
healthcare, and (3) assessment of the quality, utility, and privacy 
of synthetic data. Across these themes, this review highlights 
methodological advances, benchmarking strategies, and 
remaining gaps, thereby providing a foundation for this study. 

A. Heart Disease Prediction Using Deep Learning and 

Machine Learning 

Traditional machine learning (ML) models, such as logistic 
regression, decision trees, support vector machines (SVMs), k-
nearest neighbors (KNN), and random forests (RFs), have been 
widely used for heart disease prediction due to their 
interpretability and computational simplicity [7,8]. Recent 
studies demonstrate that classical ML models, particularly tree-
based methods, achieve high predictive performance across 
diverse datasets. For instance, Random Forest and Bagged Trees 
consistently produced 94–99% accuracy in multi-site 
validations, highlighting their reliability [15,16]. Nevertheless, 
these approaches often depend on manual feature engineering 
and may struggle to capture nonlinear relationships inherent in 
high-dimensional clinical data. 

To address these limitations, deep learning (DL) models, 
intense neural networks (DNNs), and backpropagation neural 
networks (BP-NNs) have been increasingly employed. When 
combined with feature selection techniques such as L1-
regularized LinearSVC or minimum redundancy maximum 
relevance (mRmR), these models consistently demonstrate 
improved predictive accuracy, often exceeding 98% [9,10]. 
These findings emphasize the importance of intelligent feature 
selection to optimize DL performance. 

DL models have also been applied to non-tabular data, such 
as cardiac sound signals. Using Mel-frequency cepstral 
coefficients (MFCC) extracted from heart sounds, DL classifiers 
achieved near-perfect test accuracy and F1-scores [11]. 
Similarly, mobile-based cardiac screening employing DL has 
shown promising results for accessible, non-invasive diagnosis 
[12]. These studies illustrate the potential of incorporating 

alternative data modalities to complement traditional clinical 
predictors. 

Ensemble and hybrid models have further enhanced 
prediction accuracy by combining multiple algorithms or data 
sources. For example, a DL ensemble integrating electronic 
medical record (EMR) and sensor data achieved 98.5% accuracy 
using information gain weighting [13]. Stacked ensembles of 
Extra Trees, XGBoost, and RF yielded robust accuracy around 
92–95% [14]. Hybrid frameworks combining KNN, XGBoost, 
and LSTM also outperformed individual classifiers across 
multiple datasets [20]. These results underscore the 
effectiveness of multi-model strategies in capturing 
complementary predictive patterns. 

Recent studies have explored additional predictors beyond 
standard clinical features. For example, SHAP analysis applied 
to Random Forest models identified novel biochemical markers, 
such as calcium and inflammation indicators, as relevant for 
cardiovascular risk [17]. Similarly, genomic data and 
psychological variables have been integrated within ML 
frameworks, improving predictive performance from 71.3% to 
85.1% [18, 19]. These findings suggest that incorporating 
diverse data types can enhance model generalizability and 
interpretability. 

Despite these promising results, generalizability remains 
limited. A systematic review found that only 10 out of 486 AI-
based cardiovascular models underwent meaningful external 
validation [21]. Common limitations include small sample sizes, 
class imbalance, and strict privacy regulations, which hinder 
robust training and evaluation. These challenges highlight the 
need for data augmentation strategies, such as synthetic data 
generation via Generative Adversarial Networks (GANs), to 
address data scarcity while maintaining privacy. The following 
sections explore recent advances in GAN-based tabular 
synthesis, benchmarking approaches for evaluating fidelity and 
fairness, and real-world applications of synthetic clinical data. 

B. Synthetic Data Generation in Healthcare using GANs, 
Disease Prediction using Deep Learning, and Machine 

Learning 

Recent work has introduced enhanced GAN variants tailored 
for the unique characteristics of clinical tabular datasets. CTAB-
GAN+ [22] incorporates task-aware loss functions, mixed-type 
variable encoders, and optional differential privacy 
mechanisms, improving F1-score performance under privacy 
constraints. STNG [23] integrates multiple generative 
approaches (Gaussian Copula, CopulaGAN, TVAE, 
Conditional GAN) with downstream validation via AutoML, 
demonstrating high fidelity across diverse medical datasets. 
SMOOTH-GAN [24] emphasizes clinically valid synthetic 
distributions while balancing privacy. In contrast, transformer-
based models such as TT GAN [25] and FCT GAN [26] further 
improve the modeling of complex inter-variable dependencies 
in heterogeneous datasets. These studies collectively highlight 
the trend toward domain-aware, privacy-conscious GAN 
architectures capable of generating realistic clinical data. 

To ensure synthetic data is not only realistic but also 
practical, several benchmarking frameworks have emerged. 
End-to-end pipelines [27] evaluate fidelity, privacy, and utility, 
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revealing that GANs remain competitive even compared to 
diffusion-based models. Comparative studies [28–30] have 
consistently shown that CTGAN and WGAN-GP preserve inter-
variable correlations and downstream classifier performance, 
while hybrid methods such as CTGAN-ENN [31] and BT-GAN 
[32] address class imbalance and subgroup fairness. Overall, 
these evaluations emphasize the need for multi-dimensional 
assessment (fidelity, utility, fairness) to validate synthetic 
tabular data for healthcare applications. 

Practical deployment of synthetic data requires attention to 
privacy and regulatory alignment. Studies using Bayesian 
networks and GANs on large datasets (e.g., CPRD) [33] stress 
ethical deployment with privacy risk mitigation, such as k-
anonymity and differential privacy. Alternative approaches 
generate synthetic data from summary statistics to avoid direct 
access to patient-level data [34], while pipelines such as EMR-
WGAN [35] provide hands-on workflows for real-world model 
development. Advanced models such as IGAMT [36] and DP-
CGANs [37] further ensure privacy, fairness, and high 
downstream utility, particularly for heterogeneous and irregular 
clinical tabular data. These studies highlight a growing emphasis 
on ethically aligned, privacy-preserving synthetic data 
generation suitable for clinical AI research. 

Despite the development of sophisticated GAN architectures 
and benchmarking strategies, questions remain regarding how to 
rigorously evaluate synthetic data quality and ensure it is both 
valuable and privacy-preserving in clinical contexts. The 
following section discusses evaluation frameworks, 
performance metrics, and architectural innovations that address 
these challenges. 

C. Evaluation of Synthetic Data Quality and Utility in 

Healthcare 

The evaluation of synthetic healthcare data revolves around 
three foundational pillars: fidelity, utility, and privacy. Fidelity 
ensures that synthetic data accurately replicates real-world 
distributions, utility reflects its usefulness in downstream 
analyses, and confidentiality safeguards sensitive patient 
information [38]. These dimensions were formalized in early 
frameworks and have since guided multiple evaluation 
standards. Preserving inter-variable correlations in time-series 
health data [39] and implementing domain-aware pipelines for 
EHRs [40] demonstrate practical strategies to maintain these 
dimensions. Comprehensive benchmarking studies [41,42] 
combine statistical similarity metrics (e.g., KS tests, Chi-square 
tests) with privacy assessments, such as membership inference 
attacks. SynthRO [43], using MIMIC-III/IV datasets, highlights 
the trade-offs between fidelity, utility, and privacy, emphasizing 
the need for balanced optimization in synthetic data generation. 

Performance of synthetic data varies across clinical domains, 
making context-aware evaluation essential. In oncology and 
diabetes datasets, a divide-and-conquer CTGAN approach 
achieved high fidelity (97.65% shape score) and strong 
classification metrics [44]. Conditional GANs tailored for 
cardiovascular data outperformed standard CTGAN and TVAE 
models in fidelity measures such as the Jaccard index and KS 
statistic [45]. Modeling survival curves in oncology trials further 
illustrates the challenge of replicating censored time-to-event 

data [46]. Comparative analyses [47,48] highlight that no single 
model universally outperforms others, reinforcing the 
importance of domain-specific benchmarks. Broader evaluation 
frameworks [49] also incorporate fairness and environmental 
cost alongside fidelity and utility, underscoring the increasing 
complexity of evaluation metrics in clinical applications. 

Architectural improvements in GAN-based models have 
targeted fidelity, usability, and privacy. Divide-and-conquer 
CTGAN [50] and MargCTGAN [51] enhance downstream 
classification performance and preserve marginal distributions, 
particularly for small clinical datasets. DP-CTGAN [52] 
integrates differential privacy directly into training to ensure 
privacy-conscious generation. Memory-efficient models such as 
MeTGAN [53] address high-cardinality categorical features 
while reducing computational overhead, and OCT-GAN [54] 
incorporates neural ordinary differential equations (NODEs) to 
handle class imbalance and multimodal distributions. 
Collectively, these innovations reflect a trend toward modular, 
scalable, and ethically aligned generative frameworks that meet 
the complex demands of healthcare data. 

Although Generative Adversarial Networks (GANs) have 
gained traction as a solution for data scarcity in healthcare, most 
existing studies focus primarily on augmenting training datasets 
to improve predictive model performance. While this utility-
based approach has achieved notable improvements in 
classification accuracy and robustness, there remains a lack of 
systematic assessment of GAN-generated data as a stand-alone 
substitute for real patient data. Evaluations frequently prioritize 
high-level utility metrics without thoroughly examining whether 
synthetic data preserves the intricate statistical and structural 
patterns inherent in clinical datasets. CTGAN, a GAN variant 
designed for mixed-type tabular data, shows promise in handling 
categorical and continuous variables with imbalanced 
distributions. 

However, limited studies have rigorously assessed its ability 
to maintain clinically meaningful inter-feature relationships, 
such as those among chest pain, ECG readings, and heart disease 
diagnosis, which are critical for interpretability and real-world 
applicability. This study addresses these gaps by conducting a 
comprehensive evaluation of CTGAN-generated synthetic data 
for heart disease prediction, focusing on statistical fidelity, 
multivariate structure, and downstream classification 
performance. By doing so, it provides deeper insights into the 
reliability and limitations of CTGAN in generating synthetic 
clinical data for sensitive domains like cardiovascular 
healthcare. 

III. METHODOLOGY 

To address the challenges posed by scarce and sensitive 
clinical datasets, synthetic data generation using Generative 
Adversarial Networks (GANs) has gained prominence in 
clinical research. Further leveraging Conditional Tabular GAN 
(CTGAN) models, this study generates synthetic medical data 
from benchmark datasets to evaluate heart disease prediction 
performance. The primary objective is to assess the quality of 
the artificial data by comparing its statistical properties and 
predictive utility with those of the original dataset. 
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A. Data Source and Preprocessing 

The Cleveland Heart Disease dataset was retrieved from the 
UCI Machine Learning Repository using the ucimlrepo Python 
package. This dataset [55] contains 303 patient records with 14 
attributes (13 features and one target). The target column, num, 

indicates heart disease diagnosis: 

• 0: Absence. 

• 1-4: Presence with increasing severity. 

The dataset contains 13 features and one target variable 
relevant to cardiac health (Table I). 

TABLE I  CLEVELAND HEART DISEASE DATASET FEATURES 

Feature Type Description 

age Integer Age in years 

sex Categorical Sex (1=male, 0=female) 

cp Categorical Chest pain type (1–4) 

trestbps Integer Resting blood pressure (mm Hg) 

chol Integer Serum cholesterol (mg/dl) 

fbs Categorical Fasting blood sugar >120 mg/dl 

restecg Categorical Resting ECG results (0–2) 

thalach Integer Maximum heart rate achieved 

exang Categorical Exercise-induced angina (1=yes, 0=no) 

oldpeak Integer ST depression induced by exercise 

slope Categorical Slope of peak exercise ST segment 

ca Integer Number of major vessels (0–3) 

thal Categorical 
Thalassemia (3=normal, 6=fixed defect, 

7=reversible defect) 

num Target Integer Diagnosis of heart disease 

Two columns, ca and thal, contained missing values, which 
were imputed using the mode of each column. Numerical 
features (age, trestbps, chol, thalach, oldpeak) were preserved in 
their original scale. In contrast, categorical features (sex, cp, fbs, 
restecg, exang, slope, ca, thal) were encoded to facilitate 
synthetic data generation. The missing values were handled as 
follows: 

df['ca'].fillna(df['ca'].mode()[0], inplace=True) 

df['thal'].fillna(df['thal'].mode()[0], inplace=True) 

B. Synthetic Data Generation Using CTGAN 

The CTGAN model was employed to generate synthetic 
medical records from the cleaned and preprocessed dataset 
(df_v2). This dataset consisted of 303 patient instances, 13 

predictive features, and one target variable. All preprocessing 
steps, including missing value imputation, categorical encoding, 
and 1st-to-99th percentile clipping, were completed before 
training. 

1) CTGAN configuration: Fig. 1 shows a screenshot of the 

Jupyter Notebook code used to train the CTGAN model on the 

Cleveland Heart Disease dataset. The figure illustrates the setup 

of model parameters, categorical feature specification, and the 

output progress of generator and discriminator losses during 

training. 

 
Fig. 1. Screenshot of CTGAN training code and output progress for the 

cleveland heart disease dataset. 

2) Model training: The CTGAN was trained directly on the 

cleaned dataset. Since categorical variables in df_v2 were 

encoded as integers, CTGAN automatically inferred their 

discrete nature during training. Training completed 

successfully, with stable Wasserstein losses for both the 

generator (≈ –0.85) and discriminator (≈ –0.04), indicating 

balanced adversarial optimization without signs of divergence 

or mode collapse. 

3) Synthetic data generation: After training, a synthetic 

dataset of equal size to the original (n = 303) was generated. 

Matching the sample size allowed direct pairwise comparison 

of statistical properties and predictive utility between real and 

synthetic datasets. The synthetic data was generated as follows: 

num_samples = df_v2.shape[0] 

synthetic_data = ctgan.sample(num_samples) 

synthetic_df = pd.DataFrame(synthetic_data, 
columns=df_v2.columns) 

To ensure structural and semantic consistency with the real 
dataset, categorical variables were rounded and cast to integer 
types. At the same time, numeric features (e.g., chol, oldpeak) 
were clipped to medically valid ranges to prevent unrealistic 
values. These adjustments ensured that the synthetic dataset 
adhered to clinically plausible ranges while preserving statistical 
fidelity. 

C. Statistical Evaluation of Synthetic Data 

To assess the fidelity of the synthetic dataset, multiple 
statistical analyses were performed to compare distributions and 
inter-feature relationships between the real and synthetic 
datasets, as detailed below. 

Kolmogorov–Smirnov (KS) tests and Wasserstein distances 
were computed for continuous features (age, trestbps, chol, 
thalach, oldpeak) to quantify distributional differences between 
real and synthetic datasets. Features with significant KS p-
values (<0.05) or elevated Wasserstein distances were flagged 
as exhibiting moderate deviations. 

Correlation analysis was performed to compare pairwise 
feature relationships between the real and synthetic datasets. 
Features showing substantial deviations in Pearson correlation 
coefficients were highlighted to identify potential discrepancies 
in the underlying structure. 

Exploratory Data Analysis (EDA) was conducted to identify 
features with moderate or significant deviations based on 
distributional and proportional differences. 
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These analyses provide a quantitative foundation for 
evaluating whether the synthetic data preserves the statistical 
characteristics of the original dataset.  

D. Utility Evaluation of Synthetic Data 

To assess the practical utility of the synthetic dataset, 
predictive models were trained and evaluated on both the real 
and synthetic datasets. This evaluation measures whether the 
synthetic data preserves the predictive patterns present in the 
real dataset. 

1) Restoring target column for predictive modeling: The 

target column (num) was restored in both the real and synthetic 

datasets to enable predictive evaluation. Features and target 

were separated as follows: 

𝑋_𝑟𝑒𝑎𝑙, 𝑦_𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑋_𝑠𝑦𝑛𝑡ℎ,𝑦_𝑠𝑦𝑛𝑡ℎ 

Where  X_real contains all feature columns from the real 
dataset, y_real contains the target column (num) from the real 

dataset, X_synth contains all feature columns from the synthetic 
dataset, and y_synth contains the target column (num) from the 

artificial dataset. 

2) Dataset splitting: Both datasets were split into training 

and testing subsets using a 70:30 ratio to enable unbiased 

evaluation. Stratified sampling was applied to maintain the 

proportion of patients with and without heart disease (num) 

across subsets. The training data was used to fit the classifiers, 

and the testing data was used to evaluate predictive 

performance. The dataset splitting was implemented as follows: 

From sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(  

X, y, test_size=0.3, random_state=42, stratify=y) 

3) Predictive modeling: Two classifiers were employed: 

a) Logistic Regression (LR): A linear baseline model for 

binary classification. 

a) Random Forest (RF): an ensemble tree-based model 
capable of capturing non-linear relationships. Each model was 
incorporated into a pipeline with preprocessing for categorical 
and numerical features. Models were trained on the training 
subset and evaluated on the testing subset to ensure 

reproducible performance assessment. 

4) Performance metrics: Model performance was assessed 

using standard classification metrics: Accuracy, Precision, 

Recall (Sensitivity), F1-score, ROC-AUC, and the Confusion 

Matrix. This procedure provides a reproducible framework to 

quantify the predictive utility of the synthetic data. Results and 

corresponding visualizations are presented in the Results 

section. 

IV. RESULT 

A. Numerical Feature Fidelity 

The CTGAN-generated synthetic dataset was first evaluated 
for the fidelity of continuous features relative to the original 
Cleveland Heart Disease dataset. Table II presents a comparison 

of numeric features, including mean, standard deviation, 
percentage difference, and overall fidelity rating for each 
feature. 

TABLE II COMPARISON OF NUMERIC FEATURES BETWEEN REAL AND 

SYNTHETIC DATA 

Feature 
Real 

μa 

Synth 

μa 

Real 

σa 

Synth 

σa 
Δ%b Fidelityc 

age 54.42 51.68 8.88 8.55 5.04% M 

trestbps 131.62 124.78 17.17 20.99 5.20% M 

chol 246.29 207.42 48.82 46.49 15.78% W 

thalach 149.68 162.95 22.44 19.96 8.87% M 

oldpeak 1.03 0.99 1.12 1.06 3.53% S 

aμ and σ denote the mean and standard deviation of the respective datasets.  

bΔ% represents the percentage difference between the real and synthetic mean values.  

cFidelity ratings are categorized as Strong (S), Moderate (M), or Weak (W).  

Fig. 2 presents kernel density estimates (KDEs) of numeric 
features, comparing real and synthetic datasets. 

 
Fig. 2. KDE comparison of numeric feature distributions (real vs. synthetic). 

B. Categorical Feature Fidelity 

Categorical features were evaluated for fidelity by 
calculating the maximum proportional differences between the 
real and synthetic datasets. Table III highlights the top features 
with their corresponding fidelity assessments, indicating which 
variables were well-preserved and which exhibited larger 
deviations. 

TABLE III CATEGORICAL FEATURE FIDELITY BETWEEN REAL AND 

SYNTHETIC DATASETS 

Feature Max % Difference Fidelity 

sex 3.96% Strong 

cp 7.59% Moderate 

fbs 22.11% Weak 

restecg 10.56% Weak 

exang 0.33% Strong 

slope 17.16% Weak 

ca 11.22% Weak 

thal 11.88% Weak 
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C. Distributional Similarity 

To further evaluate the fidelity of numeric features, 
Kolmogorov–Smirnov (KS) tests and Wasserstein distances 
were calculated, providing quantitative measures of 
distributional similarity between the real and synthetic datasets. 
Table IV summarizes these results, highlighting features with 
the most significant discrepancies. 

TABLE IV DISTRIBUTIONAL SIMILARITY OF NUMERIC FEATURES 

BETWEEN REAL AND SYNTHETIC DATASETS 

Feature KS Statistic KS p-value 
Wasserstein 

Distance 

age 0.1782 0.0001 2.74 

trestbps 0.2937 0.0000 7.17 

chol 0.3597 0.0000 38.87 

thalach 0.2607 0.0000 13.27 

D. Feature Correlation Analysis 

Pairwise feature correlations were analyzed to assess 
whether the CTGAN-generated synthetic dataset preserved the 
relationships observed in the original dataset. Table V lists the 
top five feature pairs exhibiting the most considerable absolute 
differences in correlation. 

TABLE V COMPARISON OF PAIRWISE FEATURE CORRELATIONS 

BETWEEN REAL AND SYNTHETIC DATASETS 

Feature 1 Feature 2 Real Corr 
Synthetic 

Corr 
|Δ|a 

age ca 0.365 -0.042 0.41 

oldpeak slope 0.575 0.273 0.30 

restecg chol 0.166 0.442 0.28 

trestbps fbs 0.170 -0.104 0.27 

ca num 0.521 0.288 0.23 

a|Δ| = absolute difference in means 

Fig. 3 visualizes these differences in a heatmap, providing 
an intuitive overview of how inter-feature relationships are 
maintained or altered in the synthetic dataset. 

 
Fig. 3. Heatmap of correlation differences between real and synthetic 

datasets. 

E. Predictive Utility Evaluation 

To evaluate the predictive utility of the CTGAN-generated 
synthetic dataset, Logistic Regression and Random Forest 
classifiers were trained on one dataset and tested on the other. 
This setup assesses whether the synthetic data preserves the 
predictive patterns of the original dataset. Table VI summarizes 
the classification performance metrics (Accuracy, Precision, 
Recall, F1-score) for each training-testing scenario. 

TABLE VI PREDICTIVE PERFORMANCE OF CLASSIFIERS TRAINED ON 

SYNTHETIC VS. REAL DATASETS 

Train → 
Test 

Model Accuracy Precision Recall F1 

Synthetic 
→ Real 

Logistic 
Regression 

0.560 0.566 0.560 0.561 

Synthetic 
→ Real 

Random 
Forest 

0.560 0.608 0.560 0.561 

Real → 
Synthetic 

Logistic 
Regression 

0.615 0.557 0.615 0.571 

Real → 
Synthetic 

Random 
Forest 

0.582 0.464 0.582 0.500 

Train → 
Test 

Model Accuracy Precision Recall F1 

To demonstrate the evaluation procedures used in this study, 
confusion matrices were generated programmatically in Python 
within a Jupyter Notebook environment. The implementation 
includes model predictions, confusion matrix computation, and 
visualization using Seaborn heatmaps. Fig. 4 provides a 
snapshot of the evaluation code, illustrating the end-to-end 
process used to assess classifier performance across real and 
synthetic datasets. 

 
Fig. 4. Code snippet used to generate confusion matrices for real and 

synthetic dataset evaluation. 

The resulting confusion matrices for both Logistic 
Regression and Random Forest classifiers, trained and evaluated 
on real and synthetic datasets, are presented in Fig. 5 and Fig. 6. 
These matrices provide a clear visualization of correct versus 
incorrect predictions for each class, allowing detailed inspection 
of model behavior and cross-domain generalization 
(synthetic→real and real→synthetic). They serve as direct 
evidence of the evaluation phase and illustrates how well 
predictive patterns are preserved in the synthetic data. 

 
Fig. 5. Confusion matrices for Logistic Regression and Random Forest 

classifiers (TSTR). 
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Fig. 6. Confusion matrices for Logistic Regression and Random Forest 

classifiers (TRTS). 

E. Feature Importance Comparison 

Random Forest feature importance was computed 
independently for the real and synthetic datasets to evaluate 
whether CTGAN preserved the relative influence of key 
predictive features. Fig. 7 and Fig. 8 depict the comparison, 
allowing assessment of how closely the synthetic data replicates 
feature-level patterns learned from the real dataset. 

 
Fig. 7. Random forest feature importance on real data . 

 

Fig. 8. Random forest feature importance on synthetic data . 

F. Dimensionality Reduction Analysis 

Table VII summarizes quantitative distance metrics derived 
from PCA and t-SNE embeddings, while Fig. 9 and Fig. 10 
present scatter plots illustrating the spatial overlap between 
synthetic and real samples in the reduced feature space. 

TABLE VII DIMENSIONALITY REDUCTION-BASED SIMILARITY BETWEEN 

REAL AND SYNTHETIC DATASETS 

Method Distance 

PCA 1.013 

t-SNE 6.952 

Avg min dist (synthetic → real) 2.022 

 
Fig. 9. t-SNE scatter plots showing synthetic and real samples in feature 

space. 

 
Fig. 10. PCA scatter plots showing synthetic and real samples in feature 

space. 

V. DISCUSSION 

The present study evaluated how effectively CTGAN-
generated synthetic data replicates the statistical structure, 
feature relationships, and predictive utility of the Cleveland 
Heart Disease dataset. Findings indicate that, although CTGAN 
preserves several overarching patterns, particularly in 
continuous variables, it does not fully reproduce finer-grained 
distributional characteristics or certain categorical feature 
relationships. These discrepancies affect downstream model 
performance and indicate areas where synthetic data diverges 
most from clinical signals. 

Numerical features such as age, trestbps, and oldpeak 
exhibited moderate to strong fidelity, with percentage 
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differences in means generally below 6%, whereas features such 
as cholesterol (chol) demonstrated weaker fidelity. Categorical 
features, including fbs, slope, ca, and thal, exhibited higher 
variability, reflecting the challenges of modeling sparse or 
complex discrete distributions in tabular GANs. Similar 
challenges in preserving categorical distributions and marginal 
fidelity have been reported in CTGAN-based studies on clinical 
tabular data in papers 44 and 45, suggesting that these 
limitations are not dataset-specific but intrinsic to current GAN-
based tabular synthesis approaches. 

Correlation analyses further indicated that, although 
significant pairwise relationships were preserved, some feature 
interactions deviated in synthetic data, particularly those 
involving high-variance or multi-level categorical variables. 
This finding aligns with prior comparative evaluations, which 
show that no single synthetic data generator consistently 
preserves all inter-feature dependencies across domains and 
datasets in papers 47 and 48. Importantly, this contextualizes the 
observed correlation drift as a known trade-off rather than an 
implementation flaw. 

Predictive evaluations demonstrated that classifiers trained 
on synthetic data partially generalized to real data, and vice 
versa. Logistic Regression and Random Forest classifiers 
achieved moderate accuracy (≈56–61%) when cross-tested 
between real and synthetic datasets. Although predictive 
performance did not fully match that of models trained and 
tested on the original dataset, these results indicate that synthetic 
data retains essential structure relevant to downstream 
modeling. Similar observations have been reported in clinical 
benchmarking studies, where high fidelity does not always 
translate into equivalent downstream performance, as reported 
in paper 44. Confusion matrices highlight that synthetic data 
remains somewhat distinguishable from real data, reflecting 
subtle discrepancies that warrant further improvement. 

PCA and t-SNE analyses suggests that synthetic samples 
occupy a feature space broadly similar to real data, although 
differences remain. Random Forest feature importance 
comparisons indicate that the most influential predictors, 
thalach, oldpeak, age, and cholesterol (chol), are consistently 
identified in both datasets. This consistency suggests that 
CTGAN preserves dominant predictive signals even when fine-
grained distributions differ, supporting its utility for exploratory 
analysis and preliminary modeling tasks. 

Despite these encouraging results, several limitations were 
noted. Discrete or sparse categorical features were reproduced 
less faithfully, resulting in reduced predictive alignment for 
some combinations of features. Additionally, multi-class ROC 
AUC metrics were not consistently computable, limiting certain 
aspects of discrimination evaluation. These challenges reflect 
broader issues reported in synthetic healthcare data evaluation, 
where fidelity and utility must be balanced and remain sensitive 
to feature type and dataset complexity in paper 49. 

These limitations also highlight potential avenues for future 
improvement. Hybrid architectures, conditional GAN variants, 
and feature-specific regularization approaches may enhance 
fidelity for challenging features. Integrating domain knowledge 
into the generation process may further reduce discrepancies, 
particularly for clinically relevant variables. 

This study provides a systematic, multi-faceted evaluation of 
CTGAN-generated synthetic heart disease data, encompassing 
feature-level fidelity, correlation preservation, predictive utility, 
and global feature-space similarity. The findings provide 
practical guidance for researchers aiming to leverage synthetic 
data for privacy-preserving modeling or for augmenting limited 
clinical datasets. By situating the observed strengths and 
limitations within established comparative findings in papers 44, 
45, 47, 48, and 49, this work offers practical guidance for 
researchers considering synthetic tabular data for privacy-
preserving modeling or data augmentation, while maintaining 
transparency about current methodological constraints. 

VI. CONCLUSION 

CTGAN demonstrated potential for generating synthetic 
tabular data suitable for preliminary modeling and exploratory 
analysis in privacy-sensitive contexts. The synthetic dataset 
retained many essential characteristics of the original data and 
supported predictive performance within a comparable range, 
indicating its usefulness for low-risk, non-diagnostic 
applications. Despite observable limitations, the results suggest 
that CTGAN can serve as a supportive tool for data 
augmentation, early-stage model development, and constrained-
data environments. 

While certain categorical features and multi-feature 
interactions exhibited lower fidelity, the synthetic data 
preserved sufficient structure to support exploratory modeling, 
feature importance analysis, and preliminary predictive tasks, 
cross-dataset evaluations using Logistic Regression and 
Random Forest indicated that synthetic samples retained 
meaningful relationships with the target variable, offering 
practical utility when access to real clinical data is limited or 
restricted. 

Importantly, this work presents a transparent and 
reproducible framework for evaluating synthetic tabular data in 
healthcare that integrates feature-level fidelity analysis, 
correlation preservation, predictive utility assessment, and 
dimensionality reduction techniques. The findings highlight the 
role of CTGAN-generated data as a complementary resource for 
dataset augmentation, algorithm benchmarking, and exploratory 
research under privacy constraints. 

Future work may further enhance data fidelity through 
hybrid GAN architectures, domain-informed conditional 
generation, and targeted improvements for sparse or complex 
categorical features. Overall, this study demonstrates that GAN-
based synthetic data can provide a practical balance between 
data utility and privacy considerations for healthcare analytics. 
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