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Abstract—The increasing scarcity and sensitivity of clinical
data necessitate the development of high-quality synthetic
datasets. This study evaluated the ability of Conditional Tabular
GAN (CTGAN) to generate synthetic heart disease data that
preserves the statistical properties and predictive patterns of the
Cleveland Heart Disease dataset. It assessed the fidelity of
numerical and categorical features, preservation of pairwise
correlations, and predictive utility using Logistic Regression and
Random Forest classifiers. Dimensionality reduction analysis
using PCA and t-SNE further measured the global similarity
between the realand synthetic datasets. The results obtained show
that CTGAN successfully reproduces the general distribution and
correlations, especially for key features such as age, talach, and old
peak. However, some discrepancies remain in categorical
attributes. Predictive modeling shows moderate transferability,
indicating that synthetic data captures important patterns without
completely replicating the original labels. These findings highlight
the potential of CTGAN-generated synthetic data as a privacy-
preserving alternative for benchmarking and early algorithm
development, while emphasizing the importance of feature-level
and prediction validation in synthetic data research.

Keywords—Conditional Tabular GAN (CTGAN); correlation
analysis; dimensionality reduction; feature importance; heart
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I INTRODUCTION

Cardiovascular diseases, particularly heart disease, remain a
leading cause of global mortality, accounting for approximately
17.9 million deaths annually according to the World Health
Organization. Early identification and timely intervention are
essential to reducing morbidity and mortality associated with
these conditions. In recent years, machine learning (ML)
techniques have attracted significant attention for their potential
to support heart disease diagnosis and risk prediction, thereby
enabling data-driven clinical decision-making [1].

Despite these advances, the robustness and generalizability
of ML models in healthcare are often constrained by limitations
inherent to real-world clinical data [2]. One of the primary
challenges is the scarcity of large-scale, high-quality, and
representative datasets. Publicly available resources, such as the
UCI Heart Disease dataset, are typically limited in size and
frequently exhibit class imbalance, which restricts their
suitability fortrainingreliable predictivemodels [3]. In addition,
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patient privacy regulations and ethical considerations impose
further restrictions on data sharing and reuse [4]. These
challenges collectively hinder reproducibility and limit the
practical deployment of ML-based solutions in clinical settings
[5].

To address datascarcity while mitigating privacy concerns,
synthetic data generation has emerged as a promising
alternative. Amongexistingapproaches, Generative Adversarial
Networks (GANs) have demonstrated strong capability in
modeling complex data distributions. In particular, Conditional
Tabular GAN (CTGAN) is designed to handle tabular datasets
with both continuous and categorical variables, as well as class
imbalance. These characteristics make CTGAN especially
suitable for healthcare applications [6], where heterogeneous
feature types and skewed data distributions are common.

Although GAN-based synthetic data generation has been
widely explored, most existing studies primarily emphasize
downstream model performance, such as classification
accuracy, while providing limited systematic evaluation of
artificial data fidelity. In particular, the preservation of statistical
properties and feature-level relationships in synthetic tabular
data is often under-examined. Furthermore, there is insufficient
empirical evidence regarding whether synthetic tabular data
generated for heart disease prediction can offer comparable
predictive utility to real clinical data while maintaining essential
statistical and structural characteristics.

To address these gaps, this study evaluates the quality and
fidelity of CTGAN-generated synthetic heart disease data
through a comprehensive assessment framework. The
evaluation includes descriptive statistical comparisons,
correlation structure analysis, distributional similarity testing,
and utility-based evaluation using a logistic regression classifier
implemented in Python. Rather than augmenting predictive
pipelines, the study assesses whether synthetic data can serve as
a statistically reliable substitute for real clinical data in
downstream machine learning tasks.

By integrating statistical fidelity analysis with predictive
utility evaluation, this work provides empirical insights into the
suitability of CTGAN-generated synthetic data for healthcare
machine learning applications. The findings contribute to
ongoing discussions on the role of synthetic data in clinical
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artificial intelligence, particularly in scenarios involving
sensitive or limited-access tabular datasets.

The remainder ofthis paper is organized as follows. Section
II reviews related work on synthetic data generation and
evaluation in healthcare. Section III describes the dataset,
CTGAN configuration, and the methodology for synthetic data
generation and evaluation. Section IV presents the experimental
results. Section V discusses the findings in relation to existing
studies and outlines the limitations. Finally, Section VI
concludes the paper and suggests directions for future research,
followed by the Acknowledgments and References.

II. LITERATURE REVIEW

Heart disease prediction increasingly relies on machine
learning (ML) and deep learning (DL), offering potential for
timely diagnosis and improved clinical decision-making
However, challenges such as limited high-quality clinical data
and persistent class imbalances drive the use of synthetic data
generation. Generative Adversarial Networks (GANs) have
emerged as a promising approach to generate realistic tabular
datasets while preserving patient privacy. This literature review
focuses on three areas: (1) ML and DL approaches for heart
disease prediction, (2) GAN-based synthetic data generation in
healthcare,and (3) assessment of the quality, utility, and privacy
of synthetic data. Across these themes, this review highlights
methodological advances, benchmarking strategies, and
remaining gaps, thereby providing a foundation for this study.

A. Heart Disease Prediction Using Deep Learning and
Machine Learning

Traditional machine learning (ML) models, such as logistic
regression, decision trees, support vector machines (SVMs), k-
nearest neighbors (KNN), and random forests (RFs), have been
widely used for heart disease prediction due to their
interpretability and computational simplicity [7,8]. Recent
studies demonstrate that classical ML models, particularly tree-
based methods, achieve high predictive performance across
diverse datasets. For instance, Random Forest and Bagged Trees
consistently produced 94-99% accuracy in multi-site
validations, highlighting their reliability [15,16]. Nevertheless,
these approaches often depend on manual feature engineering
and may struggle to capture nonlinear relationships inherent in
high-dimensional clinical data.

To address these limitations, deep learning (DL) models,
intense neural networks (DNNs), and backpropagation neural
networks (BP-NNs) have been increasingly employed. When
combined with feature selection techniques such as Ll1-
regularized LinearSVC or minimum redundancy maximum
relevance (mRmR), these models consistently demonstrate
improved predictive accuracy, often exceeding 98% [9,10].
These findings emphasize the importance of intelligent feature
selection to optimize DL performance.

DL models have also been applied to non-tabular data, such
as cardiac sound signals. Using Mel-frequency cepstral
coefficients (MFCC) extracted from heart sounds, DL classifiers
achieved near-perfect test accuracy and Fl-scores [11].
Similarly, mobile-based cardiac screening employing DL has
shown promising results for accessible, non-invasive diagnosis
[12]. These studies illustrate the potential of incorporating
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alternative data modalities to complement traditional clinical
predictors.

Ensemble and hybrid models have further enhanced
prediction accuracy by combining multiple algorithms or data
sources. For example, a DL ensemble integrating electronic
medicalrecord (EMR) andsensor dataachieved 98.5% accuracy
using information gain weighting [13]. Stacked ensembles of
Extra Trees, XGBoost, and RF yielded robustaccuracy around
92-95% [14]. Hybrid frameworks combining KNN, XGBoost,
and LSTM also outperformed individual classifiers across
multiple datasets [20]. These results underscore the
effectiveness of multi-model strategies in capturing
complementary predictive patterns.

Recent studies have explored additional predictors beyond
standard clinical features. For example, SHAP analysis applied
to Random Forest models identified novel biochemical markers,
such as calcium and inflammation indicators, as relevant for
cardiovascular risk [17]. Similarly, genomic data and
psychological variables have been integrated within ML
frameworks, improving predictive performance from 71.3% to
85.1% [18, 19]. These findings suggest that incorporating
diverse data types can enhance model generalizability and
interpretability.

Despite these promising results, generalizability remains
limited. A systematic review found thatonly 10 out 0of 486 Al-
based cardiovascular models underwent meaningful external
validation[2 1]. Common limitationsinclude small samplesizes,
class imbalance, and strict privacy regulations, which hinder
robust training and evaluation. These challenges highlight the
need for data augmentation strategies, such as synthetic data
generation via Generative Adversarial Networks (GANSs), to
address data scarcity while maintaining privacy. The following
sections explore recent advances in GAN-based tabular
synthesis, benchmarking approaches for evaluating fidelity and
fairness, and real-world applications of synthetic clinical data.

B. Synthetic Data Generation in Healthcare using GANs,
Disease Prediction using Deep Learning, and Machine
Learning

Recentworkhasintroduced enhanced GAN variants tailored
forthe unique characteristics of clinical tabular datasets. CTAB-
GAN+ [22] incorporates task-aware loss functions, mixed-type
variable encoders, and optional differential privacy
mechanisms, improving F1-score performance under privacy
constraints. STNG [23] integrates multiple generative
approaches (Gaussian Copula, CopulaGAN, TVAE,
Conditional GAN) with downstream validation via AutoML,
demonstrating high fidelity across diverse medical datasets.
SMOOTH-GAN [24] emphasizes clinically valid synthetic
distributions while balancing privacy. In contrast, transformer-
based models such as TT GAN [25] and FCT GAN [26] further
improve the modeling of complex inter-variable dependencies
in heterogeneous datasets. These studies collectively highlight
the trend toward domain-aware, privacy-conscious GAN
architectures capable of generating realistic clinical data.

To ensure synthetic data is not only realistic but also
practical, several benchmarking frameworks have emerged.
End-to-end pipelines [27] evaluate fidelity, privacy, and utility,
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revealing that GANs remain competitive even compared to
diffusion-based models. Comparative studies [28—30] have
consistently shownthat CTGAN and WGAN-GP preserve inter-
variable correlations and downstream classifier performance,
while hybrid methods such as CTGAN-ENN [31] and BT-GAN
[32] address class imbalance and subgroup fairness. Overall,
these evaluations emphasize the need for multi-dimensional
assessment (fidelity, utility, fairness) to validate synthetic
tabular data for healthcare applications.

Practical deployment of synthetic data requires attention to
privacy and regulatory alignment. Studies using Bayesian
networks and GANs on large datasets (e.g., CPRD) [33] stress
ethical deployment with privacy risk mitigation, such as k-
anonymity and differential privacy. Alternative approaches
generate synthetic data from summary statistics to avoid direct
accessto patient-level data [34], while pipelines such as EMR-
WGAN [35] provide hands-on workflows for real-world model
development. Advanced models suchas IGAMT [36] and DP-
CGANs [37] further ensure privacy, fairness, and high
downstream utility, particularly for heterogeneous and irregular
clinical tabulardata. These studies highlighta growing emphasis
on ethically aligned, privacy-preserving synthetic data
generation suitable for clinical Al research.

Despite the development of sophisticated GAN architectures
and benchmarking strategies, questionsremain regarding how to
rigorously evaluate synthetic data quality and ensureit is both
valuable and privacy-preserving in clinical contexts. The
following section discusses evaluation frameworks,
performance metrics, and architectural innovations that address
these challenges.

C. Evaluation of Synthetic Data Quality and Utility in
Healthcare

The evaluation of synthetic healthcare data revolves around
three foundational pillars: fidelity, utility, and privacy. Fidelity
ensures that synthetic data accurately replicates real-world
distributions, utility reflects its usefulness in downstream
analyses, and confidentiality safeguards sensitive patient
information [38]. These dimensions were formalized in early
frameworks and have since guided multiple evaluation
standards. Preserving inter-variable correlations in time-series
health data [39] and implementing domain-aware pipelines for
EHRs [40] demonstrate practical strategies to maintain these
dimensions. Comprehensive benchmarking studies [41,42]
combine statistical similarity metrics (e.g., KS tests, Chi-square
tests) with privacy assessments, such as membership inference
attacks. SynthRO [43], using MIMIC-III/IV datasets, highlights
the trade-offs between fidelity, utility, and privacy, emphasizing
the need for balanced optimization in synthetic data generation.

Performance of synthetic datavaries across clinicaldomains,
making context-aware evaluation essential. In oncology and
diabetes datasets, a divide-and-conquer CTGAN approach
achieved high fidelity (97.65% shape score) and strong
classification metrics [44]. Conditional GANSs tailored for
cardiovascular data outperformed standard CTGAN and TVAE
models in fidelity measures such as the Jaccard index and KS
statistic[45]. Modeling survival curves in oncology trials further
illustrates the challenge of replicating censored time-to-event
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data [46]. Comparative analyses [47,48] highlight that no single
model universally outperforms others, reinforcing the
importance of domain-specific benchmarks. Broader evaluation
frameworks [49] also incorporate fairness and environmental
cost alongside fidelity and utility, underscoring the increasing
complexity of evaluation metrics in clinical applications.

Architectural improvements in GAN-based models have
targeted fidelity, usability, and privacy. Divide-and-conquer
CTGAN [50] and MargCTGAN [51] enhance downstream
classification performance and preserve marginal distributions,
particularly for small clinical datasets. DP-CTGAN [52]
integrates differential privacy directly into training to ensure
privacy-conscious generation. Memory-efficient models suchas
MeTGAN [53] address high-cardinality categorical features
while reducing computational overhead, and OCT-GAN [54]
incorporates neural ordinary differential equations (NODEs) to
handle class imbalance and multimodal distributions.
Collectively, these innovations reflect a trend toward modular,
scalable, and ethically aligned generative frameworks that meet
the complex demands of healthcare data.

Although Generative Adversarial Networks (GANs) have
gained traction as a solution for data scarcity in healthcare, most
existing studies focus primarily on augmenting training datasets
to improve predictive model performance. While this utility-
based approach has achieved notable improvements in
classification accuracy and robustness, there remains a lack of
systematic assessment of GAN-generated data as a stand-alone
substitute for real patient data. Evaluations frequently prioritize
high-level utility metrics without thoroughly examining whether
synthetic data preserves the intricate statistical and structural
patterns inherent in clinical datasets. CTGAN, a GAN variant
designed for mixed-typetabular data, shows promise in handling
categorical and continuous variables with imbalanced
distributions.

However, limited studies have rigorously assessed its ability
to maintain clinically meaningful inter-feature relationships,
such as thoseamongchest pain, ECGreadings,and heart disease
diagnosis, which are critical forinterpretability and real-world
applicability. This study addresses these gaps by conducting a
comprehensive evaluation of CTGAN-generated synthetic data
for heart disease prediction, focusing on statistical fidelity,
multivariate structure, and downstream classification
performance. By doingso, it provides deeper insights into the
reliability and limitations of CTGAN in generating synthetic
clinical data for sensitive domains like cardiovascular
healthcare.

III. METHODOLOGY

To address the challenges posed by scarce and sensitive
clinical datasets, synthetic data generation using Generative
Adversarial Networks (GANs) has gained prominence in
clinical research. Further leveraging Conditional Tabular GAN
(CTGAN) models, this study generates synthetic medical data
from benchmark datasets to evaluate heart disease prediction
performance. The primary objective is to assess the quality of
the artificial data by comparing its statistical properties and
predictive utility with those of the original dataset.
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A. Data Source and Preprocessing

The Cleveland Heart Disease dataset was retrieved from the
UCI Machine Learning Repository using the ucimlrepo Python
package. This dataset [55] contains 303 patient records with 14
attributes (13 features and one target). The target column, num,
indicates heart disease diagnosis:

e 0: Absence.
e 1-4: Presence with increasing severity.

The dataset contains 13 features and one target variable
relevant to cardiac health (Table I).

TABLE I CLEVELAND HEART DISEASE DATASET FEATURES
Feature Type Description
age Integer Age in years
sex Categorical Sex (1=male, 0O=female)
cp Categorical Chest pain type (1-4)
trestbps Integer Resting blood pressure (mm Hg)
chol Integer Serum cholesterol (mg/dl)
fbs Categorical Fasting blood sugar>120 mg/dl
restecg Categorical Resting ECG results (0-2)
thalach Integer Maximum heart rate achieved
exang Categorical Exercise-induced angina (1=yes, 0=no)
oldpeak Integer ST depression induced by exercise
slope Categorical Slope of peak exercise ST segment
ca Integer Number of major vessels (0-3)
thal Categorical ";“ililjz::iﬁlea ds‘f:;(;nnal, 6=fixed defect,
num Target Integer | Diagnosis of heart disease

Two columns, ca and thal, contained missing values, which
were imputed using the mode of each column. Numerical
features (age, trestbps, chol, thalach, oldpeak) were preserved in
their original scale. In contrast, categorical features (sex, cp, fbs,
restecg, exang, slope, ca, thal) were encoded to facilitate
synthetic data generation. The missing values were handled as
follows:

dff'ca'].fillna(df'ca'l.mode()[0], inplace=True)
dff'thal'].fillna(df]'thal'l.mode()[0], inplace=True)

B. Synthetic Data Generation Using CTGAN

The CTGAN model was employed to generate synthetic
medical records from the cleaned and preprocessed dataset
(df_wv2). This dataset consisted of 303 patient instances, 13
predictive features, and one target variable. All preprocessing
steps, including missing value imputation, categorical encoding,
and 1st-to-99th percentile clipping, were completed before
training.

1) CTGAN configuration: Fig. 1 shows a screenshot of the
Jupyter Notebook code used to train the CTGAN model on the
Cleveland Heart Disease dataset. The figureillustratesthe setup
of model parameters, categorical feature specification, and the
output progress of generator and discriminator losses during
training.
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chgan, Fit(df_vz)

Gen. (-0.85) | Discrin. (-0.04): 1oox NI 1208/1208 [e0:S8co0:08, 20.57it/s]

Fig. 1. Screenshot of CTGAN training code and output progress for the
cleveland heart disease dataset.

2) Modeltraining: The CTGAN was trained directly onthe
cleaned dataset. Since categorical variables in df v2 were
encoded as integers, CTGAN automatically inferred their
discrete nature during training. Training completed
successfully, with stable Wasserstein losses for both the
generator (= —0.85) and discriminator (= —0.04), indicating
balanced adversarial optimization without signs of divergence
or mode collapse.

3) Synthetic data generation: After training, a synthetic
datasetof equal size to the original (n = 303) was generated.
Matching the sample size allowed direct pairwise comparison
of statistical properties and predictive utility betweenreal and
synthetic datasets. The synthetic data was generated as follows:

num_samples = df v2.shape[0]
synthetic_data = ctgan.sample(num_samples)

synthetic_df =
columns=df v2.columns)

pd.DataFrame(synthetic_data,

To ensure structural and semantic consistency with the real
dataset, categorical variables were rounded and cast to integer
types. At the same time, numeric features (e.g., chol, oldpeak)
were clipped to medically valid ranges to prevent unrealistic
values. These adjustments ensured that the synthetic dataset
adheredto clinically plausible ranges while preserving statistical
fidelity.

C. Statistical Evaluation of Synthetic Data

To assess the fidelity of the synthetic dataset, multiple
statistical analyses were performed to compare distributions and
inter-feature relationships between the real and synthetic
datasets, as detailed below.

Kolmogorov—Smirnov (KS) tests and Wasserstein distances
were computed for continuous features (age, trestbps, chol,
thalach, oldpeak) to quantify distributional differences between
real and synthetic datasets. Features with significant KS p-
values (<0.05) or elevated Wasserstein distances were flagged
as exhibiting moderate deviations.

Correlation analysis was performed to compare pairwise
feature relationships between the real and synthetic datasets.
Features showing substantial deviations in Pearson correlation
coefficients were highlighted to identify potential discrepancies
in the underlying structure.

Exploratory Data Analysis (EDA)was conducted to identify
features with moderate or significant deviations based on
distributional and proportional differences.
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These analyses provide a quantitative foundation for
evaluating whether the synthetic data preserves the statistical
characteristics of the original dataset.

D. Utility Evaluation of Synthetic Data

To assess the practical utility of the synthetic dataset,
predictive models were trained and evaluated on both the real
and synthetic datasets. This evaluation measures whether the
synthetic data preserves the predictive patterns present in the
real dataset.

1) Restoring target column for predictive modeling: The
target column (num) was restored in both the real and synthetic
datasets to enable predictive evaluation. Features and target
were separated as follows:

X real,y_real and X_synth,y_synth

Where X real contains all feature columns from the real
dataset,y real contains the target column (num) from thereal
dataset, X synth contains all feature columns from the synthetic
dataset,andy synthcontainsthe targetcolumn (num) fromthe
artificial dataset.

2) Dataset splitting: Both datasets were split into training
and testing subsets using a 70:30 ratio to enable unbiased
evaluation. Stratified sampling was applied to maintain the
proportion of patients with and without heart disease (num)
across subsets. The training data was used to fit the classifiers,
and the testing data was used to evaluate predictive
performance. The dataset splitting was implemented as follows:

From sklearn.model selection import train_test split
X train, X_test,y train,y_test=train_test split(
X, y, test_size=0.3, random_state=42, stratify=y)

3) Predictive modeling: Two classifiers were employed:

a) Logistic Regression (LR): A linear baseline model for
binary classification.

a) Random Forest (RF): an ensemble tree-based model
capable of capturing non-linear relationships. Each model was
incorporated into a pipeline with preprocessing for categorical
and numerical features. Models were trained on the training
subset and evaluated on the testing subset to ensure
reproducible performance assessment.

4) Performance metrics: Model performance was assessed
using standard classification metrics: Accuracy, Precision,
Recall (Sensitivity), F1-score, ROC-AUC, and the Confusion
Matrix. This procedure provides a reproducible framework to
quantify the predictive utility of the synthetic data. Results and
corresponding visualizations are presented in the Results
section.

IV. RESuULT

A. Numerical Feature Fidelity

The CTGAN-generated synthetic dataset was first evaluated
for the fidelity of continuous features relative to the original
Cleveland Heart Disease dataset. Table Il presents a comparison
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of numeric features, including mean, standard deviation,
percentage difference, and overall fidelity rating for each

feature.

TABLE I1 COMPARISON OF NUMERIC FEATURES BETWEEN REAL AND
SYNTHETIC DATA

Feature R:f' Syl:f,th R::" Sy:ath A%® | Fidelity*
age 5442 | 5168 | 888 | 855 5.04% | M
trestbps | 131.62 | 12478 | 17.17 | 2099 | 520% | M
chol 24629 | 20742 | 48.82 | 4649 | 1578% | W
thalach | 149.68 | 162.95 | 2244 | 1996 | 887% | M
oldpeak | 1.03 | 099 | 112 | 1.06 353% | S

‘i and o denote the mean and standard deviation of the respective datasets.
A% represents the percentage difference between the real and synthetic mean values.

‘Fidelity ratings are categorized as Strong (S), Moderate (M), or Weak (W).

Fig. 2 presents kernel density estimates (KDEs) of numeric
features, comparing real and synthetic datasets.

Distribution: trestaps
Fpn o~

syrmatic v2 AN
azss f

Listrbution: 292

rrrrrr

s

Fig.2. KDE comparison of numeric feature distributions (real vs. synthetic).

B. Categorical Feature Fidelity

Categorical features were evaluated for fidelity by
calculating the maximum proportional differences between the
real and synthetic datasets. Table III highlights the top features
with their corresponding fidelity assessments, indicating which
variables were well-preserved and which exhibited larger
deviations.

TABLE 111 CATEGORICAL FEATURE FIDELITY BETWEEN REAL AND
SYNTHETIC DATASETS
Feature Max % Difference Fidelity

sex 3.96% Strong

cp 7.59% Moderate

fbs 22.11% Weak

restecg 10.56% Weak

exang 0.33% Strong

slope 17.16% Weak

ca 11.22% Weak

thal 11.88% Weak
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C. Distributional Similarity

To further evaluate the fidelity of numeric features,
Kolmogorov—Smirnov (KS) tests and Wasserstein distances
were calculated, providing quantitative measures of
distributional similarity between the real and synthetic datasets.
Table IV summarizes these results, highlighting features with
the most significant discrepancies.

TABLE IV DISTRIBUTIONAL SIMILARITY OF NUMERIC FEATURES
BETWEEN REAL AND SYNTHETIC DATASETS
Feature KS Statistic KS p-value Wa‘s serstein
Distance
age 0.1782 0.0001 2.74
trestbps 0.2937 0.0000 7.17
chol 0.3597 0.0000 38.87
thalach 0.2607 0.0000 13.27

D. Feature Correlation Analysis

Pairwise feature correlations were analyzed to assess
whetherthe CTGAN-generated synthetic dataset preserved the
relationships observed in the original dataset. Table V lists the
top five feature pairs exhibiting the most considerable absolute
differences in correlation.
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TABLE VI PREDICTIVE PERFORMANCE OF CLASSIFIERS TRAINED ON
SYNTHETIC VS. REAL DATASETS

Trr?:;ta Model Accuracy | Precision Recall F1

Synthetic | Logistic | 56, 0.566 0560 | 0.561

— Real Regression

Synthetic | Random | 55, 0.608 0.560 0.561

— Real Forest

Real — | Logistic

Synthetic | Regression 0.615 0.557 0.615 0.571

Real — | Random

Synthetic | Forest 0.582 0.464 0.582 0.500

%:e;n | Model Accuracy | Precision | Recall F1

To demonstrate the evaluation procedures used in this study,
confusion matrices were generated programmatically in Python
within a Jupyter Notebook environment. The implementation
includes model predictions, confusion matrix computation, and
visualization using Seaborn heatmaps. Fig. 4 provides a
snapshot of the evaluation code, illustrating the end-to-end
process used to assess classifier performance across real and
synthetic datasets.

Lot a5 ple

TABLE V COMPARISON OF PAIRWISE FEATURE CORRELATIONS
BETWEEN REAL AND SYNTHETIC DATASETS
Feature 1 Feature 2 Real Corr Synthetic A2
Corr
age ca 0.365 -0.042 041
oldpeak slope 0.575 0.273 0.30
restecg chol 0.166 0.442 0.28
trestbps fbs 0.170 -0.104 0.27
ca num 0.521 0.288 0.23

“|A| = absolute difference in means

Fig. 3 visualizes these differences in a heatmap, providing

an intuitive overview of how inter-feature relationships are
maintained or altered in the synthetic dataset.

010002 03 A18 011 208 113 A1E

o can [ oon 0.5 D

o037 005 03 017

02 017 DL B AT AL 014 AL 40

[
.

o 0w 022 032 B0 620 4005 015 [BFE 030 s 02 g
wam-008 €20 €37 015 615 031 c17 [BH 040 a1

Fig.3. Heatmap of correlation differences between real and synthetic
datasets.

E. Predictive Utility Evaluation

To evaluate the predictive utility ofthe CTGAN-generated
synthetic dataset, Logistic Regression and Random Forest
classifiers were trained on one dataset and tested on the other.
This setup assesses whether the synthetic data preserves the
predictive patterns of the original dataset. Table VI summarizes
the classification performance metrics (Accuracy, Precision,
Recall, F1-score) for each training-testing scenario.

Fig. 4. Code snippet used to generate confusion matrices for real and
synthetic dataset evaluation.

The resulting confusion matrices for both Logistic
Regressionand Random Forest classifiers, trained and evaluated
on real and synthetic datasets, are presented in Fig. 5 and Fig, 6.
These matrices provide a clear visualization of correct versus
incorrect predictions for each class,allowing detailed inspection
of model behavior and cross-domain generalization
(synthetic—real and real—synthetic). They serve as direct
evidence of the evaluation phase and illustrates how well
predictive patterns are preserved in the synthetic data.

Confusion Matrices: Train on Synthetic - Test on Real

Logistic Regression Randem Forest

= ) ' ! ’ ’

" H o s s [ [~ n 1 s a [ >
= s o 1 3 [ s - o 1 1 2 [

2 1 2
Periched L] Peaticteat o)

Fig. 5. Confusion matrices for Logistic Regression and Random Forest
classifiers (TSTR).
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Confusion Matrices: Train on Real = Test en Synthetic

Randam Farest

a4

Logistic Regression

True Label
>
=

T abel

= 0 0 [ 1 o .0 1 o a n -5
4 i 1 2 3 4

2 El
Predicted Label Pradicted Lahel

Fig. 6. Confusion matrices for Logistic Regression and Random Forest
classifiers (TRTS).

E. Feature Importance Comparison

Random Forest feature importance was computed
independently for the real and synthetic datasets to evaluate
whether CTGAN preserved the relative influence of key
predictive features. Fig. 7 and Fig. 8 depictthe comparison,
allowing assessment of how closely the synthetic data replicates
feature-level patterns learned from the real dataset.

Random Forest Feature Importance — Real Data

thalach

0.00 0.02 0.04 .06 0.08 010 012 014
Importance

Fig. 7. Random forest feature importance on real data.

Random Forest Feature Importance — Synthetic Data

aldpeak

thalach

0.00 002 0.04 0.06 0.08 010 012 014
Importance

Fig. 8. Random forest feature importance on synthetic data.

F. Dimensionality Reduction Analysis

Table VII summarizes quantitative distance metrics derived
from PCA and t-SNE embeddings, while Fig. 9 and Fig. 10
present scatter plots illustrating the spatial overlap between
synthetic and real samples in the reduced feature space.
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TABLE VII DIMENSIONALITY REDUCTION-BASED SIMILARITY BETWEEN
REAL AND SYNTHETIC DATASETS
Method Distance

PCA 1.013

t-SNE 6.952

Avg min dist (synthetic — real) 2.022

t-SNE: Real vs Synthetic Data
o L ] ® Real
20 °® ‘ > ‘.‘/ ) . '.",, \. . Synthetic

ee® " 0 \f' o

%8

10

t-SNE 2

t-SNE 1

Fig.9. t-SNE scatter plots showing synthetic and real samples in feature
space.

PCA: Real vs Synthetic Data

L] ® Real
Synthetic

-3

—44

-4 =2 0 2
PCL

Fig. 10. PCA scatter plots showing synthetic and real samples in feature
space.

V. DISCUSSION

The present study evaluated how effectively CTGAN-
generated synthetic data replicates the statistical structure,
feature relationships, and predictive utility of the Cleveland
Heart Disease dataset. Findings indicate that, although CTGAN
preserves several overarching patterns, particularly in
continuous variables, it does not fully reproduce finer-grained
distributional characteristics or certain categorical feature
relationships. These discrepancies affect downstream model
performance and indicate areas where synthetic data diverges
most from clinical signals.

Numerical features such as age, trestbps, and oldpeak
exhibited moderate to strong fidelity, with percentage
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differences in means generally below 6%, whereas features such
as cholesterol (chol) demonstrated weaker fidelity. Categorical
features, including fbs, slope, ca, and thal, exhibited higher
variability, reflecting the challenges of modeling sparse or
complex discrete distributions in tabular GANs. Similar
challenges in preserving categorical distributions and marginal
fidelity have been reported in CTGAN-based studies on clinical
tabular data in papers 44 and 45, suggesting that these
limitations are not dataset-specific but intrinsic to current GAN-
based tabular synthesis approaches.

Correlation analyses further indicated that, although
significant pairwise relationships were preserved, some feature
interactions deviated in synthetic data, particularly those
involving high-variance or multi-level categorical variables.
This finding aligns with prior comparative evaluations, which
show that no single synthetic data generator consistently
preserves all inter-feature dependencies across domains and
datasetsin papers 47 and48. Importantly, this contextualizes the
observed correlation drift as a known trade-off rather than an
implementation flaw.

Predictive evaluations demonstrated that classifiers trained
on synthetic data partially generalized to real data, and vice
versa. Logistic Regression and Random Forest classifiers
achieved moderate accuracy (=56-61%) when cross-tested
between real and synthetic datasets. Although predictive
performance did not fully match that of models trained and
tested on the original dataset, these resultsindicate that synthetic
data retains essential structure relevant to downstream
modeling. Similar observations have been reported in clinical
benchmarking studies, where high fidelity does not always
translate into equivalent downstream performance, as reported
in paper 44. Confusion matrices highlight that synthetic data
remains somewhat distinguishable from real data, reflecting
subtle discrepancies that warrant further improvement.

PCA and t-SNE analyses suggests that synthetic samples
occupy a feature space broadly similar to real data, although
differences remain. Random Forest feature importance
comparisons indicate that the most influential predictors,
thalach, oldpeak, age, and cholesterol (chol), are consistently
identified in both datasets. This consistency suggests that
CTGAN preserves dominant predictive signals even when fine-
grained distributions differ, supporting its utility for exploratory
analysis and preliminary modeling tasks.

Despite these encouraging results, several limitations were
noted. Discrete or sparse categorical features were reproduced
less faithfully, resulting in reduced predictive alignment for
some combinations of features. Additionally, multi-class ROC
AUC metrics were not consistently computable, limiting certain
aspects of discrimination evaluation. These challenges reflect
broaderissues reported in synthetic healthcare data evaluation,
where fidelity and utility must be balanced and remain sensitive
to feature type and dataset complexity in paper 49.

These limitations also highlight potential avenues for future
improvement. Hybrid architectures, conditional GAN variants,
and feature-specific regularization approaches may enhance
fidelity for challenging features. Integrating domain knowledge
into the generation process may further reduce discrepancies,
particularly for clinically relevant variables.

Vol. 16, No. 12, 2025

This study providesa systematic, multi-faceted evaluation of
CTGAN-generated synthetic heart disease data, encompassing
feature-level fidelity, correlation preservation, predictive utility,
and global feature-space similarity. The findings provide
practical guidance for researchers aiming to leverage synthetic
data for privacy-preserving modeling or for augmenting limited
clinical datasets. By situating the observed strengths and
limitations within established comparative findings in papers 44,
45, 47, 48, and 49, this work offers practical guidance for
researchers considering synthetic tabular data for privacy-
preserving modeling or data augmentation, while maintaining
transparency about current methodological constraints.

VI. CONCLUSION

CTGAN demonstrated potential for generating synthetic
tabular data suitable for preliminary modeling and exploratory
analysis in privacy-sensitive contexts. The synthetic dataset
retained many essential characteristics of the original data and
supported predictive performance within a comparable range,
indicating its wusefulness for low-risk, non-diagnostic
applications. Despite observable limitations, the results suggest
that CTGAN can serve as a supportive tool for data
augmentation, early-stage model development, and constrained-
data environments.

While certain categorical features and multi-feature
interactions exhibited lower fidelity, the synthetic data
preserved sufficient structure to support exploratory modeling,
feature importance analysis, and preliminary predictive tasks,
cross-dataset evaluations using Logistic Regression and
Random Forest indicated that synthetic samples retained
meaningful relationships with the target variable, offering
practical utility when access to real clinical data is limited or
restricted.

Importantly, this work presents a transparent and
reproducible framework for evaluating synthetic tabular data in
healthcare that integrates feature-level fidelity analysis,
correlation preservation, predictive utility assessment, and
dimensionality reduction techniques. The findings highlight the
role of CTGAN-generated data as a complementary resource for
dataset augmentation, algorithm benchmarking, and exploratory
research under privacy constraints.

Future work may further enhance data fidelity through
hybrid GAN architectures, domain-informed conditional
generation, and targeted improvements for sparse or complex
categorical features. Overall, this study demonstrates that GAN-
based synthetic data can provide a practical balance between
data utility and privacy considerations for healthcare analytics.
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