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Abstract—Accurate resource demand forecasts are necessary 

for sustainable healthcare systems to preserve flexibility and 

efficiency as well as to provide services in a professional manner. 

In this work, we propose an integrated Random Forest/Long 

Short-Term Memory (RF-LSTM) model for predicting Saudi 

Arabia's national healthcare resource demand. It combines non-

linear feature extraction and temporal sequence learning. The 

integrated model employs governmental epidemiological and 

operational data from 2020 to 2024 to capture both short-term 

and long-term volatility and sustainability trends. The results 

demonstrate significant improvements in predictive accuracy 

compared with single-model baselines, such as Autoregressive 

Integrated Moving Average (ARIMA), Random Forest (RF), and 

Long Short Term Memory (LSTM), with reductions in Mean 

Absolute Error (MAE) and Root Mean Square Error (RMSE) 

for up to 22% and 18% compared with ARIMA, and by 12% 

and 9% relative to the best single model, which is LSTM, 

respectively A statistical analysis using one-way ANOVA 

confirmed the robustness of the hybrid method. Furthermore, 

residual plots were examined to verify model assumptions and 

visually assess the uniformity of prediction errors, thereby 

validating the results. These findings suggest that integrated AI-

based prediction models can effectively facilitate capacity 

planning, enhance resource allocation, and contribute to 

achieving the objectives of Saudi Vision 2030 for a resilient, data-

driven healthcare system. 

Keywords—Predictive analytics; Hybrid modeling; digital 
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TABLE I.  ABBREVIATIONS 

AI Artificial Intelligence 

ML Machine Learning 

RF Random Forest 

LSTM Long Short-Term Memory 

ARIMA Autoregressive Integrated Moving Average 

MAE Mean Absolute Error 

RMSE Root Mean Square Error 

ICU Intensive Care Unit 

GCC Gulf Cooperation Council 

ANOVA Analysis of Variance 

MOH Ministry of Health 

I. INTRODUCTION 

The COVID-19 pandemic has driven increased use of 
predictive analytics in the healthcare sector, underscoring the 
importance of data-driven decision-making to enhance 
efficiency and resilience [1]. Prediction models and decision 
support systems have become essential tools for predicting 
healthcare demand and providing operational sustainability [2]. 
During the pandemic, machine learning (ML) and combined 
artificial intelligence (AI) approaches, such as Random Forest 
(RF) and Long Short-Term Memory (LSTM) networks, 
demonstrated promising results in estimating healthcare 
resource requirements [3]. These techniques align with the 
digital-health transformation targets and the broader 
sustainability objectives outlined in Saudi Vision 2030. [4]. 

This paper introduces a hybrid Random Forest-Long Short-
Term Memory (RF-LSTM) model that predicts healthcare 
demand in Saudi Arabia by combining non-linear feature 
extraction with sequential learning. The model, which uses 
local data from 2020 to 2024 [5], aims to facilitate future 
capacity planning aligned with the digital health transformation 
objectives outlined in Saudi Vision 2030. Governmental 
platforms, such as Tawakkalna and Seha, have enabled large-
scale data collection, patient monitoring, and healthcare 
management. These national digital efforts laid the framework 
for implementing AI-based decision support systems and data-
driven healthcare [6]. The abbreviations are given in Table I. 

 Although predicting healthcare demand in a pandemic 
context remains challenging, standard models, such as ARIMA 
and SARIMAX, properly account for seasonality but often fail 
to capture complex nonlinear patterns. On the other hand, 
regression models, like Random Forest (RF) and XGBoost, 
may not effectively exploit temporal relationships when trained 
on independent and identically distributed data [7]. 

Several studies have been conducted during the COVID-19 
pandemic to achieve optimal predictive outcomes; however, 
only a limited number have offered a comprehensive analysis 
of integrating various ML algorithms to enhance results and 
improve prediction accuracy. In other words, by integrating the 
essential and practical characteristics of multiple algorithms, it 
is possible to improve model performance and achieve superior 
results. 

To address these limitations, researchers have introduced a 
novel hybrid machine learning algorithm, the Random Forest 
Long Short-Term Memory (RF-LSTM) model, that combines 
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the strengths of both approaches. The RF feature identifies 
non-linear relationships among epidemiological and contextual 
variables, whereas the LSTM component handles sequential 
patterns and temporal dependencies [8,9]. This proposed model 
has the advantage of being applied to various time-series data. 

Unlike existing hybrid approaches, this study provides a 
distinctive methodological contribution using national-level 
data in Saudi Arabia that merges ML and deep-learning models 
in parallel or through residual correction. The proposed 
framework introduces a sequential RF-to-LSTM integration, 
where Random Forest outputs are engineered as temporal 
features and injected directly into the LSTM sequence-learning 
stage. This design enhances the model’s ability to capture 
short-term nonlinear interactions and long-term temporal 
dependencies simultaneously.  In addition, the study utilizes an 
exclusively Saudi, multivariate national dataset (2020–2024) 
that incorporates epidemiological indicators, ICU and bed 
utilization, vaccination progress, mobility patterns, and policy-
response variables. No previous research has integrated this 
combination within a unified, sustainability-driven prediction 
pipeline. The framework is supported through lag-window 
engineering, rolling statistical smoothing, and rigorous 
statistical validation (ANOVA, Tukey HSD), offering a 
transparent and reproducible methodological advancement. It 
introduces a sequential feature-injection architecture, in which 
Random Forest is employed as a nonlinear feature 
transformation mechanism rather than a parallel predictor or 
ensemble component. Specifically, RF-derived representations 
are generated from multivariate epidemiological and 
operational indicators and subsequently restructured into 
temporally ordered sequences that serve as inputs to the LSTM 
network. This design enables the LSTM to simultaneously 
learn long-range temporal dependencies and nonlinear cross-
sectional interactions—capabilities that are not fully captured 
by existing parallel or ensemble-based RF–LSTM approaches 
reported in the literature. By embedding RF outputs directly 
within the temporal learning pipeline, the proposed model 
establishes a structurally distinct hybrid architecture explicitly 
tailored to national-level healthcare demand forecasting under 
high volatility and resource-constrained conditions. 

II. RELATED WORK AND RESEARCH GAPS 

Research on epidemic and healthcare prediction has 
progressed from traditional statistical models to hybrid AI 
approaches that emphasize both predictive accuracy and 
operational sustainability [10]. 

Traditional time-series models such as ARIMA and 
SARIMA have been widely used for COVID-19 forecasting 
due to their simplicity and interpretability. However, their 
performance significantly deteriorates when dealing with 
nonlinear dynamics, sudden structural changes, and 
multivariate dependencies in healthcare indicators. Kufel et al. 
[10] and Roy et al. [11] demonstrated that while ARIMA 
models can capture seasonality, they fail to adapt to regime 
changes and complex epidemic waves. Logistic Patient 
Information-Based Algorithm (LPIBA) is a sophisticated 
algorithm employed to forecast the number of 
coronavirus mortalities and infections. Although LPIBA 
demonstrated superior performance compared to ARIMA, it 

exhibits limitations when comprehensive data is lacking or 
when collecting certain features is impractical [12]. Another 
model, the Prophet model, is a robust algorithm when data is 
missing. It is an open-source model that exhibits strong 
performance with time-series data [13]. 

Traditional models, such as ARIMA and SARIMA, have 
failed to capture the nonlinear relationships and dynamic shifts 
present in epidemiological data. In contrast, Hybrid models 
that combine ensemble learners such as Random Forest with 
sequential deep learning techniques like LSTM have shown 
strong potential due to their enhanced accuracy and resilience 
[11]. Logistic Patient Information-Based Algorithm (LPIBA) is 
a sophisticated algorithm employed to forecast the number of 
coronavirus mortalities and infections. Although LPIBA 
demonstrated superior performance compared to ARIMA, it 
exhibits limitations when comprehensive data is lacking or 
when collecting certain features is impractical [12]. Another 
model, the Prophet model, is a robust algorithm when data is 
missing. It is an open-source model that exhibits strong 
performance with time-series data [13]. 

A. Hybrid AI-Based Forecasting Models 

Recent studies have explored hybrid architecture 
integrating ensemble learning and deep neural networks. 
Borges and Nascimento (2022) proposed a two-stage Prophet–
LSTM model for ICU demand forecasting during COVID-19. 
Their model improved short-term prediction accuracy by 
combining Prophet’s trend extraction with LSTM’s temporal 
learning. However, a major limitation was the high sensitivity 
of Prophet to sudden policy changes and under-reporting 
issues, which caused reduced performance during extreme 
outbreak waves [14]. Punia et al. (2020) developed a Random 
Forest–LSTM hybrid architecture, where RF was used for 
nonlinear feature extraction and LSTM for sequence modeling. 
Their approach significantly improved demand forecasting 
accuracy across multiple datasets. Nevertheless, the model 
showed limited generalization capability when applied to new 
regions with different healthcare dynamics, highlighting a lack 
of regional adaptability [15]. Furthermore, Kaur and Singh 
(2023) proposed a hybrid CNN–LSTM model focused on 
sustainable healthcare management. Although their model 
captured spatial and temporal patterns effectively, it struggled 
with real-world missing data and exhibited instability when 
trained on noisy policy-related variables [16]. 

Similarly, Rahman and Lee (2024) introduced an RF–GRU 
hybrid model for sustainable healthcare demand prediction in 
Asian countries. Their results demonstrated improved 
performance over standalone models; however, their 
framework required extensive hyperparameter tuning and 
suffered from high computational complexity, making large-
scale deployment challenging [17]. In Saudi Arabia, Alabbad 
et al. (2022) developed a machine learning model for ICU 
length-of-stay prediction using Saudi Arabian clinical data. 
Although their work highlighted the importance of local 
datasets, their model was limited to a single outcome variable 
and did not address broader national healthcare capacity 
forecasting [18]. International efforts, such as the COVID-19 
Forecast Hub, have also demonstrated the effectiveness of 
ensemble models in predicting mortality and hospitalisation 
rates [19]. 
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Overall, these studies indicate the growing awareness of 
sustainability-driven forecasting in the healthcare industry. 
Hybrid ML models, including those that integrate ensemble 
and sequential learning, improve their strength and 

comprehension in the presence of real-world uncertainty.  
However, their potential for long-term healthcare prediction at 
the national level is underexplored, emphasizing the 
importance of integrated frameworks that incorporate 
predictive analytics into national healthcare decision-support 
systems [20]. 

TABLE II.  COMPARATIVE ANALYSIS WITH RELATED STUDIES 

Study Model MAE RMSE Notes 

[2] Alshammari et al., 2023 Hybrid DLI (RF-LSTM) 0.205 0.840 
Combined ensemble and sequential networks, to enhance multi-

regional stability and predictive accuracy. 

[16] Kaur & Singh, 2023 Hybrid AI Forecasting (CNN-LSTM) 0.210 0.790 
Focused on sustainable healthcare forecasting, we achieved 

strong generalization but lacked local calibration. 

[17] Rahman & Lee, 2024 AI Predictive Analytics (RF+GRU) 0.198 0.745 
Integrated tree-based and gated recurrent models for sustainable 

policy analytics with moderate variance reduction. 

[24] Alshammari et al., 2024 RF 0.214 0.809 
Baseline random forest model with strong interpretability but  

limited temporal adaptability. 

[25] Li et al., 2024 LSTM 0.230 0.900 
Temporal dependencies were captured but showed higher error  

variance during non-stationary periods. 

This work (RF-LSTM) Hybrid AI Forecasting 0.188 0.737 

Achieved the lowest MAE (0.188) and RMSE (0.737), 

indicating superio r accuracy and variance stability across 

national healthcare datasets. 
 

In Table II, a comparative analysis with other hybrid 
predicting studies was summarized to complement the baseline 
model comparison presented earlier. 

The comparison results further validate that the proposed 
hybrid RF-LSTM framework attains substantial enhancements 
in both predictive accuracy and robustness, surpassing prior 
methodologies by adeptly merging short-term dynamics with 
long-term sustainability factors. 

B. Identified Weaknesses in Existing Hybrid Studies 

Most hybrid models focus on regional or hospital-level 
datasets. Few studies attempt national healthcare demand 
forecasting using government operational data, which limits 
scalability for policy-level planning. Moreover, many hybrid 
approaches use parallel architecture, where ML and DL 
components run independently. This limits deep integration 
between nonlinear feature extraction and temporal sequence 
learning. In addition, several models assume smooth data 
patterns, while real-world healthcare data includes reporting 
delays, missing values, and abrupt policy shifts. Existing 
models often lack robust preprocessing pipelines to handle 
these challenges. 

According to the cost and complexity, Hybrid deep 
architectures (CNN-LSTM, RF-GRU) frequently require 
extensive training time and computational resources, which 
limit their deploy ability in real-time healthcare decision-
support systems. A significant number of studies focus on 
short-term forecasting without integrating sustainability 
indicators and long-term healthcare system resilience. 

C. Research Gap and Motivation 

From the previous studies, it becomes clear that although 
hybrid models such as Prophet–LSTM, CNN–LSTM, and RF–
GRU have improved forecasting accuracy, they still face 
critical limitations in terms of national scalability, long-term 
sustainability, and operational integration. 

Therefore, there exists a clear research gap in developing a 
sequential hybrid model that: 

• Integrates static nonlinear learning with temporal 
sequence modeling, 

• Utilizes large scale national healthcare datasets, and 

• Supports sustainable healthcare planning within the 
context of Saudi Vision. 

This study addresses these gaps by proposing a sequential 
RF-LSTM architecture, where Random Forest outputs are 
embedded as engineered features into the LSTM network. This 
ensures stronger integration between spatial-contextual 
learning and temporal dynamics while maintaining 
interpretability and operational feasibility. 

III. MATERIALS AND METHODS 

A. Dataset 

The database consists of local-level  daily healthcare 
indicators in Saudi Arabia during the period (2020–2024). It is 
generated by the Ministry of Health (MOH) Coronavirus Open 
Data Portal, and the World Health Organization (WHO) 
Dashboard was used as a secondary source to support the 
dataset, as it provides regularly updated healthcare indicators 
[5, 21]. 

• The dataset comprises the following information: 

• Confirmed COVID-19 cases and recovery rates. 

• ICU and hospital bed occupancy rates. 

• Vaccination rates. 

• Policy and mobility indicators. 

Additional variables such as holidays and weather 
information. 

B. Data Preprocessing 

Linear interpolation was used to supplement missing data 
points. Outliers were identified and excluded using the 
interquartile range (IQR) approach and eliminating all 
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observations below Q1 - 1.5 × IQR or above Q3 + 1.5 × IQR. 
The process thoroughly addressed errors, including reporting 
spikes and inconsistencies, ensuring consistent data for model 
training. Continuous data were normalized to the [0, 1] 
interval, whereas categorical variables (e.g., policy constraints 
and weather conditions) were one-hot encoded. Additionally, 
lagged features were generated with delays of 1 to 14 days to 
record temporal dependencies, representing short-term effects 
[22]. 7 and 14-day rolling averages recognized medium-term 
trends and minimized daily fluctuations. Lagged 
transformations are also applied to ICU capacity and 
vaccination rates to preserve the temporal structure and 
enhance sequential learning in the hybrid model. 

1)  Handling missing values: As shown in Eq. (1), missing 

values are estimated using linear interpolation by assuming a 

linear trend between the previous and next observations. 

x̂ₜ = x + (
xt+1− 𝑥𝑡−1

2
)                        (1) 

Where: 

• x̂ₜ is the interpolated value at time t 

• 𝑥𝑡−1 is the previous known observation 

• xt+1is the next known observation 

• t represents the current time index 

This method was selected due to its effectiveness in 
preserving temporal continuity in epidemiological time-series 
data. 

Outlier Detection: 

Lower Bound = Q1 − 1.5 × IQR                   (2) 

Upper Bound = Q3 + 1.5 × IQR                   (3) 

Where: IQR= Q3 – Q1                         (4) 

The Interquartile Range (IQR) method was applied to 
detect and remove extreme outliers, Eq. (2), and Eq. (3). 

Where: 

•  Q1: First quartile (25th percentile) 

• Q3: Third quartile (75th percentile) 

• IQR: Interquartile range, representing the spread of the 
middle 50% of the data 

The 1.5 multiplier was adopted as the standard threshold 
for statistical outlier detection, based on Tukey’s conventional 
method. The interpolation process [Eq. (1)] and the IQR-based 
outlier detection [Eq. (2–4)] contribute to stabilizing the dataset 
before training the RF–LSTM model. 

2) Normalization and encoding: As shown in Equation 

(5), Min–Max normalization rescales the variables into the 

range [0,1] to ensure uniform feature scaling and improve 

training stability. 

x′ =
x−xmin

(xmax−Xmin
)
                                   (5) 

Categorical weather/policy indicators were one-hot 
encoded. 

Where: 

•  X is the original feature value 

•  Xmin and Xmax are the minimum and maximum 
values of the feature 

•  X' is the normalized value 

3) Lag and rolling features: Lagged features preserve 

short-term temporal dependencies by directly shifting past 

values into the current input space. In this study, lag orders k = 

1 to 14 days were used to capture immediate epidemiological 
dynamics and short-term variations in healthcare demand, 

where Xt-k denotes the observation at time step t-k as shown 

in Eq. (6). 

Xt ,k
(lag) =  xₜ−ₖ         K=1,..,14                     (6) 

The rolling mean in Equation (7) was applied to smooth 
short-term fluctuations and captured medium-term trends. 
Here, (w) denotes the window size, which was set to 7 and 14 
days in this study, and Xt-i represents the previous 
observations within the defined window. This transformation 
reduces noise and enhances the stability of the learning process 
for the sequential RF-LSTM framework. 

𝑋𝑡
(𝑤) =  (

1

w
) Σi=0

w−1
𝑋𝑡−𝑖

           (7) 

C. Model Architecture 

The proposed hybrid framework operates in two sequential 
stages, summarized in Algorithm 1: RF for static feature 
learning and LSTM for sequence modeling. 

1)  Random Forest (RF) regressor: The Random Forest 

regressor predicts healthcare demand by averaging the outputs 

of multiple decision trees, as expressed in Equation (8). At 

each time step t, the feature vector Xt, including lagged and 

rolling statistical features, is provided to all B trees. Each tree 

generates a prediction ℎ𝑏(𝑋ₜ) , and the final RF prediction 

Ŷ𝑅𝐹ₜ = is obtained by computing their Mean. In the proposed 

hybrid framework, these RF predictions serve as engineered 

static features. They are subsequently injected into the LSTM 

network to enhance temporal learning and improve the 

stability of long-horizon forecasting. 

RF regression: 

Ŷ𝑅𝐹,ₜ = (
1

𝐵
) 𝛴 ℎ𝑏(𝑋ₜ)        (8) 

Where: 

B is the number of trees 

hb (.) is the prediction of tree b 

This integration allows the model to combine the non-linear 
representational power of ensemble learning with the 
sequential modeling capability of LSTM networks. 
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2) Long Short-Term Memory (LSTM) network: To model 

temporal dependencies, the LSTM network links residual and 

RF prediction sequences. The Adam Optimiser is used for 

training, with early termination to prevent overfitting. 

Additionally, sequence normalisation and dropout 

regularisation improve model generalisation [23]. 

The LSTM captures sequential dependencies using the 
following equations: 

𝑓𝑡 = 𝜎 (𝑊𝑓 [ℎₜ−1,𝑥ₜ] +  𝑏𝑓)                         (9) 

𝑖𝑡 = 𝜎 (𝑊𝑖 [ℎₜ−1,𝑥ₜ] + 𝑏𝑖)                        (10) 

𝐶̃ₜ = tanh (𝑊𝐶[ℎ𝑡−1,𝑥𝑡] ] + 𝑏𝑐                     (11) 

LSTM Prediction: 

ŶLSTM,t =: g(ht)                             (12) 

The LSTM network was employed to model complex 
temporal dependencies within the healthcare demand data. At 
each time step t, the input vector xt includes temporal features 
and the Random Forest prediction Ŷ𝑅𝐹 , ₜ, which is treated as an 
additional engineered feature. The forget gate in Eq. (9) 
controls the retention of historical information, while the input 
gate in Eq. (10) regulates the incorporation of new temporal 
patterns and external signals. The candidate memory state in 
Eq. (11) updates the internal memory based on current and 
previous inputs. Finally, the output layer generates the 
predicted healthcare demand ŶLSTM,tas described in Eq. (12). 
This mechanism enables the proposed hybrid model to 
effectively capture both short-term dynamics and long-term 
dependencies in national healthcare demand patterns. 

Algorithm 1: Sequential RF-LSTM Hybrid Framework 

Input: 

    xt   ← Preprocessed feature matrix at time t 

    yt  ← Target healthcare demand variable 

Output: 

    ŷt  ← Final hybrid forecast 

Stage 1: Data Preparation 

    1: Generate lagged features (t − 1 … t − 14) 

    2: Compute rolling statistics (7-day and 14-day windows) 

    3: Apply Min–Max normalization to continuous variables 

    4: Encode categorical variables using one-hot encoding 

Stage 2: Random Forest Feature Learning 

    5: Initialize Random Forest regressor 

    6: Train RF on (xt, yt) 

    7: Generate static predictions: 

           ŷRF,t = RF(xt) 

Stage 3: Sequential Data Construction 

    8: Augment features: 

           St = [xt , ŷRF,t] 

    9: Construct time-series sequences: 

           for t = 1 to T − L do 

               Create input sequence S_(t:t+L) 

               Assign target y_(t+L) 

           end for 

Stage 4: LSTM Sequence Learning 

   10: Initialize LSTM model 

   11: Configure hyperparameters: 

           - Hidden units = 64 

           - Dropout = 0.2 

           - Optimizer = Adam 

   12: Train LSTM on constructed sequences 

   13: Apply early stopping based on validation loss 

Stage 5: Hybrid Prediction 

   14: Predict final output: 

           ŷt = LSTM(St) 

Return: 

   ŷt 

 

Algorithm 1 summarizes the sequential workflow of the 
proposed RF-LSTM hybrid framework for national healthcare 
demand forecasting. In Stage 1, the raw epidemiological and 
operational indicators are transformed into a learning-ready 
feature set through lag generation, rolling-window statistics, 
normalization, and one-hot encoding. This step ensures that 
both short-term dynamics (through lagged features) and 
medium-term trends (through rolling averages) are explicitly 
represented. In Stage 2, a Random Forest regressor is trained 
on these features to capture nonlinear interactions among the 
input variables, yielding static predictions that reflect the 
baseline healthcare demand. 

In Stage 3, the Random Forest predictions are concatenated 
with the original preprocessed features to construct enriched 
sequences that combine both engineered static information and 
temporal patterns. These augmented sequences are then 
reshaped into input windows suitable for sequence learning. In 
Stage 4, an LSTM network is trained on these sequences using 
the Adam optimizer, early stopping, and dropout regularization 
to learn long-range temporal dependencies while preventing 
overfitting. Finally, in Stage 5, the trained LSTM model 
produces the hybrid forecast ŷ, which integrates the strengths 
of both components: the interpretability and robustness of 
Random Forest and the temporal adaptability of LSTM. This 
sequential design is particularly suitable for national-level 
healthcare forecasting, where complex nonlinear relationships 
and time-dependent dynamics must be modeled 
simultaneously. 

where, L represents the sequence length (look-back 
window), which defines the number of past time steps used as 
input to the LSTM, in this study, L = 14 days was selected 
based on epidemiological considerations and prior forecasting 
literature. 

This hybrid architecture enhances prediction stability and 
responsiveness to changes in national healthcare data by 
leveraging the complementary advantages of both components, 
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the LSTM for dynamic sequence modeling and the RF for 
interpretable static learning. This kind of combination is 
consistent with the latest advances in time-series prediction that 
adopt explainable ML. The sequential RF-LSTM method is 
described in Algorithm 1, which begins with preprocessing and 
lag creation, followed by model training and residual 
integration. 

Fig. 1 illustrates the complete architecture of the proposed 
sequential RF–LSTM hybrid model, designed specifically to 
address the complex, nonlinear, and time-dependent nature of 
national healthcare demand in Saudi Arabia. This architecture 
stems from its structured, task-specific division of learning 
responsibilities across model stages. 

 
Fig. 1. The structure of the proposed RF-LSTM hybrid model for healthcare 

demand forecasting. 

In the first stage, the Random Forest (RF) module extracts 
nonlinear and static patterns from heterogeneous healthcare 
indicators, including ICU occupancy, hospital bed utilization, 
vaccination rates, mobility signals, and policy measures. This 
is particularly important because healthcare systems’ data 
exhibit irregular interactions and nonlinear dependencies across 
variables, which traditional linear or purely sequential models 
fail to represent adequately. 

D. Training and Evaluation Protocol 

1) Loss function for training: The hybrid RF–LSTM 

model was trained using the Mean Squared Error (MSE) as the 

objective function, defined as: 

𝑀𝑆𝐸 = (
1

𝑛
) 𝛴 (𝑦ₜ −  ŷₜ)2                       (13) 

where, yt and ŷₜ  represent the actual and predicted 
healthcare demand at time t, respectively, and n is the total 
number of observations. The Adam optimizer was employed to 
minimize the loss function in (13), enabling stable, efficient 
convergence during training while preventing overfitting 
through early stopping mechanisms. 

2) Performance evaluation metrics: After training, the 

proposed model’s performance was assessed using three 

standard forecasting metrics: Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and Coefficient of 

Determination (R2). 

The Mean Absolute Error (MAE) is expressed as: 

𝑀𝐴𝐸 = (
1

𝑛
)𝛴 |𝑦ₜ −  ŷₜ|                     (14) 

The Root Mean Square Error (RMSE) is defined as: 

𝑅𝑀𝑆𝐸 = 𝑠𝑞𝑟𝑡 ((
1

𝑛
) 𝛴 (𝑦ₜ −  ŷₜ)2)                (15) 

In addition, the coefficient of determination (R2) is given 
by: 

𝑅2 = 1 −
𝛴(𝑦ₜ − ŷₜ)2

𝛴 (𝑦ₜ − ȳ)2                          (16) 

where denotes the mean of the observed healthcare demand 
values. 

Eq. (13) was used as the loss function during the training 
phase to minimize the squared difference between actual and 
forecast healthcare demand values. Subsequently, Eq. (14)– 
(16) were applied for post-training evaluation. MAE provides 
an intuitive measure of average prediction error, RMSE 
emphasizes large deviations, which are critical in healthcare 
resource planning, and R2 quantifies the model’s explanatory 
power in capturing variations in national healthcare demand 
patterns. 

3) Statistical testing: To statistically validate the observed 

performance differences among the compared forecasting 

models, a one-way Analysis of Variance (ANOVA) was 

conducted using the F-statistic defined in Equation (17). The 

test examined whether variations in predictive errors across 

models were statistically significant at α = 0.05. Following 

ANOVA, a Tukey HSD post hoc test was applied to identify 

pairwise differences among individual models. This statistical 

framework ensured that the superior performance of the 

proposed RF–LSTM hybrid model was not due to random 

variation but represented a statistically significant 

improvement over benchmark models.: 

𝐹 =
𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑘
𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛

𝑁−𝑘

                              (17) 

followed by Tukey HSD for pairwise comparison. 

Baseline comparators included: 

ARIMA/SARIMAX (statistical models) 

Random Forest (RF) (tree ensemble) 

Long Short-Term Memory (LSTM) (deep learning). 

Residual analysis was employed to evaluate the errors and 
their distribution over prediction horizons. Moreover, Residual 
diagrams demonstrate the differences between predicted and 
observed values, while error variance measures the strength 
under variable demand conditions. These analyses provided 
valuable insights into the model's reliability during both 
outbreak peaks and intervals of stability. 
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IV. RESULTS 

A. Quantitative Performance 

The RF-LSTM hybrid model achieved the lowest MAE and 
RMSE, and a near-perfect R2 of 0.9995. The MAE and RMSE 
(Table III) values represent the average and squared variances 
between the expected and actual healthcare demand, however. 
Lower values indicate more accurate and consistent 
predictions, whereas higher R2 values indicate a more precise 
overall model fit. 

Moreover, the RF-LSTM achieved the lowest RMSE 
(0.737), demonstrating enhanced robustness against demand 
fluctuations. Lower RMSE values further reflect greater 
forecast stability and reduced sensitivity to demand 
fluctuations, reaffirming the model's advantage in dynamic 
healthcare environments. 

TABLE III.  CORE PERFORMANCE METRICS 

Model MAE RMSE R2 

ARIMA 0.265 0.955 0.9978 

RF 0.214 0.809 0.9990 

LSTM 0.245 0.910 0.9985 

RF–LSTM (proposed) 0.188 0.737 0.9995 

The hybrid RF-LSTM model achieved the lowest MAE 
(0.188), indicating minimal average discrepancy between 
predicted and actual healthcare demand. (Fig. 2) illustrates 
performance enhancements of 22% and 12% compared to the 
ARIMA and LSTM models, thereby validating the hybrid 
model's superior predictive accuracy. 

 
(a) 

 
(b) 

Fig. 2. Comparison of MAE (a) and RMSE (b) Across the proposed hybrid 

RF-LSTM model and other models. 

B. Model Performance During Peak Demand 

To further evaluate the robustness of the proposed model 
under critical stress conditions, its behavior during a simulated 
peak healthcare demand period was analyzed. Fig. 3 illustrates 
the temporal prediction performance of all models during a 30-
day high-demand interval. The RF–LSTM hybrid model 
exhibits stronger stability and closer alignment with the actual 
demand curve compared with ARIMA, standalone RF, and 
standalone LSTM models. 

Unlike ARIMA, which shows delayed adaptation to sudden 
demand spikes, and LSTM, which occasionally overshoots in 
highly volatile phases, the proposed hybrid model maintains 
smoother and more accurate tracking of temporal changes. This 
improved performance is attributed to the integration of 
nonlinear feature extraction from the RF stage with the 
temporal learning capacity of the LSTM stage. 

 
Fig. 3. Model behavior during a simulated peak demand period. 

C. Hyperparameter Sensitivity Analysis 

1) Effect of RF ensemble size: The impact of the Random 

Forest ensemble size on the hybrid model performance is 

shown in (Fig. 4). As the number of trees increases from 100 

to 200, a clear decreasing trend in RMSE is observed, 

indicating improved stability and reduced variance. Beyond 

200 trees, only marginal improvements were observed while 

computational cost increased significantly. Therefore, an 

ensemble sized 200 trees was selected for the final model 

configuration. 

 
Fig. 4. Effect of RF ensemble size on hybrid RF–LSTM RMSE. 
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2) Effect of sequence length L on hybrid RF–LSTM MAE 

performance: To analyze the influence of sequence length on 

temporal modeling, experiments were conducted using 

sequence lengths of 7, 10, and 14 days. 
As shown in Fig. 5, increasing the sequence length results 

in a consistent reduction in MAE. Shorter sequences limit the 
model’s ability to capture medium-term dependencies, whereas 
longer sequences allowing L = 14 significantly enhance 
temporal learning. A sequence length of 14 days was selected 
as the optimal input configuration, balancing prediction 
accuracy and computational efficiency. 

 
Fig. 5. Effect of sequence length L on hybrid RF–LSTM MAE performance. 

D. Error Distribution and Robustness 

Analysis of the error distribution and variance revealed that 
the hybrid approach reduces variability compared to individual 
models. Residual plots showed narrower confidence intervals, 
thereby verifying enhanced stability during both outbreak 
surges and low rates. These results support previous studies on 
hybrid models, explaining that they are strong enough to 
manage changes in systems [2,15,20]. The suggested 
framework demonstrated superior performance relative to both 
regional and global standards while maintaining clarity and 
scalability. 

V. DISCUSSION 

The hybrid RF-LSTM model efficiently integrates two 
complementary methodologies: ensemble feature extraction 
and advanced sequence modelling, allowing the system to 
manage complex, non-linear, and non-stationary healthcare 
data. From a healthcare perspective, implementing these 
models into local health visualizations enables the immediate 
detection of ICU incidents, facilitates flexible resource 
allocation, and supports strategic planning. This approach 
supports data-driven governance and long-lasting digital health 
systems. These findings are also consistent with worldwide 
trends, where hybrid ensemble and deep learning architectures 
are improving pandemic preparedness and operational 
resilience. 

The above approaches correspond with the latest 
international initiatives to utilise AI-based prediction in 
healthcare systems. The suggested RF-LSTM framework fits 
with this model because it combines explainable ensemble 
learning (RF) with temporal adaptability (LSTM). This makes 
it a good compromise between ease of understanding and 
predictive accuracy. This combination enables the model to 

leverage Random Forests' feature-level transparency and 
LSTMs' sequential learning capabilities, making it especially 
suitable for healthcare systems characterized by dynamic, 
diverse data sources. 

Fig. 6 demonstrates the variation in MAE over time for 
ARIMA, RF, LSTM, and RF-LSTM models at different 
prediction horizons (7, 10, and 14 days). It shows that the 
prediction errors of all models gradually increase as the 
prediction horizon lengthens. Nonetheless, the hybrid RF-
LSTM consistently maintains the lowest MAE and displays a 
more natural decline in performance. This indicates that the 
hybrid model can effectively handle longer prediction periods, 
providing better reliability and resilience against cumulative 
errors, thereby enhancing its robustness. The distinct separation 
between the curves indicates that the hybrid model generalizes 
more effectively in unstable healthcare scenarios. 

 
Fig. 6. Temporal variation of MAE across forecasting horizons (7-day, 10-

day, and 14-day ahead) for ARIMA, RF, LSTM, and RF-LSTM models, 

showing the superior stability and accuracy of the hybrid approach. 

The RF-LSTM model is more stable and can be applied in 
a broader range of situations due to its hybrid architecture. 
Random Forest reduces non-linear variance, and LSTM detects 
temporal consistency. In combination, they reduce overfitting 
and adapt to changes in epidemic and operational dynamics. In 
practical healthcare environments, this improvement can help 
hospital administrators prepare for surges in ICU demand, use 
staff effectively, and balance national medical resources during 
crises. 

Overall, the results show that the proposed RF-LSTM 
model not only enhances predictive accuracy but also helps 
healthcare operations stay resilient and sustainable. The model 
demonstrates both technical dependability and practical value 
for national healthcare forecasting by enhancing data 
utilization, resource management, and the operation of early 
warning systems. 

A. Limitations and Future Work 

Although the suggested model performs well, several 
limitations require attention. First, it depends on continuous 
and accurate updates from national health datasets for optimal 
performance, which may not always be complete or timely. 
Second, the model's two-stage training process increases 
computational costs. Third, the RF-LSTM captures complex 
temporal dynamics; however, its ability to handle larger, more 
diverse regional datasets remains to be confirmed. 
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On the other Hand, Future research may target these 
limitations by exploring an advanced ensemble method that 
combines attention techniques with Graph Neural Networks 
(GNNs) to capture correlations across multidimensional 
healthcare data more effectively. The goal of this approach is 
to enhance the model's generalizability and interpretability 
across a broader range of healthcare settings within the Gulf 
Cooperation Council (GCC) region. Incorporating additional 
sustainability criteria, both environmental and operational, 
could also help optimize predictive analytics to better align 
with Saudi Arabia's Vision 2030 objectives. 

VI. CONCLUSION 

This study presented a hybrid Random Forest–Long Short-
Term Memory (RF–LSTM) model designed to improve 
national healthcare demand forecasting in Saudi Arabia 
through an integrated approach that combines non-linear 
feature extraction with advanced sequence learning. Motivated 
by the data-driven transformation goals of Saudi Vision 2030, 
the proposed model leverages a comprehensive, exclusively 
Saudi dataset (2020–2024) that includes epidemiological 
indicators, ICU and bed utilization, vaccination progress, 
mobility metrics, and policy-response variables. By 
engineering Random Forest outputs as temporal features and 
feeding them directly into the LSTM architecture, the 
framework captures both short-term non-linear interactions and 
long-term temporal dependencies in a unified predictive 
pipeline. 

The findings demonstrate that the hybrid RF–LSTM model 
consistently outperforms traditional and single-model 
baselines—including ARIMA, RF, and LSTM—across 
multiple forecasting horizons. The model maintains lower error 
rates and enhanced stability as prediction windows lengthen, 
highlighting its robustness against cumulative uncertainty and 
rapidly changing healthcare conditions. From an operational 
standpoint, the model offers practical value for strategic 
planning, enabling earlier detection of ICU trends, more 
flexible allocation of healthcare resources, and improved 
resilience of national decision-support systems. Its alignment 
with international AI-healthcare initiatives reinforces its 
relevance within broader global efforts to strengthen pandemic 
preparedness and digital-health infrastructure. While the model 
achieves strong performance, certain limitations remain, 
including reliance on continuous dataset updates, increased 
computational requirements due to its two-stage architecture, 
and the need to validate performance across more diverse 
regional datasets. Future research should explore integrating 
attention mechanisms, graph neural networks, and expanded 
sustainability metrics to enhance generalizability, 
interpretability, and alignment with Vision 2030 objectives. 

Overall, the proposed RF–LSTM framework provides both 
methodological innovation and operational significance, 
offering a scalable and data-driven solution for national 
healthcare forecasting. It represents a meaningful contribution 
toward building resilient, intelligent, and sustainable healthcare 
systems in Saudi Arabia and beyond. 
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