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Abstract—Accurate resource demand forecasts are necessary
for sustainable healthcare systems to preserve flexibility and
efficiency as well as to provide services in a professional manner.
In this work, we propose an integrated Random Forest/Long
Short-Term Memory (RF-LSTM) model for predicting Saudi
Arabia's national healthcare resource demand. It combines non-
linear feature extraction and temporal sequence learning. The
integrated model employs governmental epidemiological and
operational data from 2020 to 2024 to capture both short-term
and long-term volatility and sustainability trends. The results
demonstrate significant improvements in predictive accuracy
compared with single-model baselines, such as Autoregressive
Integrated Moving Average (ARIMA), Random Forest (RF), and
Long Short Term Memory (LSTM), with reductions in Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE)
for up to 22% and 18% compared with ARIMA, and by 12%
and 9% relative to the best single model, which is LSTM,
respectively A statistical analysis using one-way ANOVA
confirmed the robustness of the hybrid method. Furthermore,
residual plots were examined to verify model assumptions and
visually assess the uniformity of prediction errors, thereby
validating the results. These findings suggest that integrated Al-
based prediction models can effectively facilitate capacity
planning, enhance resource allocation, and contribute to
achieving the objectives of Saudi Vision 2030 for a resilient, data-
driven healthcare system.

Keywords—Predictive analytics; Hybrid modeling; digital
health; Saudi Arabia; COVID-19; decision support systems

TABLE . ABBREVIATIONS
Al Artificial Intelligence
ML Machine Learning
RF Random Forest
LSTM Long Short-Term Memory
ARIMA Autoregressive Integrated Moving Average
MAE Mean Absolute Error
RMSE Root Mean Square Error
ICU Intensive Care Unit
GCC Gulf Cooperation Council
ANOVA Analysis of Variance
MOH Ministry of Health

I.  INTRODUCTION

The COVID-19 pandemic has driven increased use of
predictive analytics in the healthcare sector, underscoring the
importance of data-driven decision-making to enhance
efficiency and resilience [1]. Prediction models and decision
support systems have become essential tools for predicting
healthcare demand and providing operational sustainability [2].
During the pandemic, machine leaming (ML) and combined
artificial intelligence (Al) approaches, such as Random Forest
(RF) and Long Short-Term Memory (LSTM) networks,
demonstrated promising results in estimating healthcare
resource requirements [3]. These techniques align with the
digital-health transformation targets and the broader
sustainability objectives outlined in Saudi Vision 2030. [4].

This paper introduces a hybrid Random Forest-Long Short-
Term Memory (RF-LSTM) model that predicts healthcare
demand in Saudi Arabia by combining non-linear feature
extraction with sequential learning. The model, which uses
local data from 2020 to 2024 [5], aims to facilitate future
capacity planning aligned with the digital health transformation
objectives outlined in Saudi Vision 2030. Governmental
platforms, such as Tawakkalna and Seha, have enabled large-
scale data collection, patient monitoring, and healthcare
management. These national digital efforts laid the framework
for implementing Al-based decision support systems and data-
driven healthcare [6]. The abbreviations are given in Table 1.

Although predicting healthcare demand in a pandemic
context remains challenging, standard models, such as ARIMA
and SARIMAX, properly account for seasonality but often fail
to capture complex nonlinear patterns. On the other hand,
regression models, like Random Forest (RF) and XGBoost,
may not effectively exploit temporal relationships when trained
on independent and identically distributed data [7].

Several studies have been conducted during the COVID-19
pandemic to achieve optimal predictive outcomes; however,
only a limited number have offered a comprehensive analysis
of integrating various ML algorithms to enhance results and
improve prediction accuracy. In other words, by integrating the
essential and practical characteristics of multiple algorithms, it
is possible to improve model performance and achieve superior
results.

To address these limitations, researchers have introduced a
novel hybrid machine learning algorithm, the Random Forest
Long Short-Term Memory (RF-LSTM) model, that combines
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the strengths of both approaches. The RF feature identifies
non-linear relationships among epidemiological and contextual
variables, whereas the LSTM component handles sequential
patterns and temporal dependencies [8,9]. This proposed model
has the advantage of being applied to various time-series data.

Unlike existing hybrid approaches, this study provides a
distinctive methodological contribution using national-level
data in Saudi Arabia that merges ML and deep-learning models
in parallel or through residual correction. The proposed
framework introduces a sequential RF-to-LSTM integration,
where Random Forest outputs are engineered as temporal
features and injected directly into the LSTM sequence-learning
stage. This design enhances the model’s ability to capture
short-term nonlinear interactions and long-term temporal
dependencies simultaneously. In addition, the study utilizes an
exclusively Saudi, multivariate national dataset (2020-2024)
that incorporates epidemiological indicators, ICU and bed
utilization, vaccination progress, mobility patterns, and policy-
response variables. No previous research has integrated this
combination within a unified, sustainability-driven prediction
pipeline. The framework is supported through lag-window
engineering, rolling statistical smoothing, and rigorous
statistical validation (ANOVA, Tukey HSD), offering a
transparent and reproducible methodological advancement. It
introduces a sequential feature-injection architecture, in which
Random Forest is employed as a nonlinear feature
transformation mechanism rather than a parallel predictor or
ensemble component. Specifically, RF-derived representations
are generated from multivariate epidemiological and
operational indicators and subsequently restructured into
temporally ordered sequences that serve as inputs to the LSTM
network. This design enables the LSTM to simultaneously
learn long-range temporal dependencies and nonlinear cross-
sectional interactions—capabilities that are not fully captured
by existing parallel or ensemble-based RF-LSTM approaches
reported in the literature. By embedding RF outputs directly
within the temporal leaming pipeline, the proposed model
establishes a structurally distinct hybrid architecture explicitly
tailored to national-level healthcare demand forecasting under
high volatility and resource-constrained conditions.

II.  RELATED WORK AND RESEARCH GAPS

Research on epidemic and healthcare prediction has
progressed from traditional statistical models to hybrid Al
approaches that emphasize both predictive accuracy and
operational sustainability [10].

Traditional time-series models such as ARIMA and
SARIMA have been widely used for COVID-19 forecasting
due to their simplicity and interpretability. However, their
performance significantly deteriorates when dealing with
nonlinear dynamics, sudden structural changes, and
multivariate dependencies in healthcare indicators. Kufel et al.
[10] and Roy et al. [11] demonstrated that while ARIMA
models can capture seasonality, they fail to adapt to regime
changes and complex epidemic waves. Logistic Patient
Information-Based Algorithm (LPIBA) is a sophisticated
algorithm employed to forecast the number of
coronavirus mortalities and infections. Although LPIBA
demonstrated superior performance compared to ARIMA, it
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exhibits limitations when comprehensive data is lacking or
when collecting certain features is impractical [12]. Another
model, the Prophet model, is a robust algorithm when data is
missing. It is an open-source model that exhibits strong
performance with time-series data [13].

Traditional models, such as ARIMA and SARIMA, have
failed to capture the nonlinear relationships and dynamic shifts
present in epidemiological data. In contrast, Hybrid models
that combine ensemble learners such as Random Forest with
sequential deep leaming techniques like LSTM have shown
strong potential due to their enhanced accuracy and resilience
[11]. Logistic Patient Information-Based Algorithm (LPIBA) is
a sophisticated algorithm employed to forecast the number of
coronavirus mortalities and infections. Although LPIBA
demonstrated superior performance compared to ARIMA, it
exhibits limitations when comprehensive data is lacking or
when collecting certain features is impractical [12]. Another
model, the Prophet model, is a robust algorithm when data is
missing. It is an open-source model that exhibits strong
performance with time-series data [13].

A. Hybrid Al-Based Forecasting Models

Recent studies have explored hybrid architecture
integrating ensemble leaming and deep neural networks.
Borges and Nascimento (2022) proposed a two-stage Prophet—
LSTM model for ICU demand forecasting during COVID-19.
Their model improved short-term prediction accuracy by
combining Prophet’s trend extraction with LSTM’s temporal
learning. However, a major limitation was the high sensitivity
of Prophet to sudden policy changes and under-reporting
issues, which caused reduced performance during extreme
outbreak waves [14]. Punia et al. (2020) developed a Random
Forest-LSTM hybrid architecture, where RF was used for
nonlinear feature extraction and LSTM for sequence modeling.
Their approach significantly improved demand forecasting
accuracy across multiple datasets. Nevertheless, the model
showed limited generalization capability when applied to new
regions with different healthcare dynamics, highlighting a lack
of regional adaptability [15]. Furthermore, Kaur and Singh
(2023) proposed a hybrid CNN-LSTM model focused on
sustainable healthcare management. Although their model
captured spatial and temporal patterns effectively, it struggled
with real-world missing data and exhibited instability when
trained on noisy policy-related variables [16].

Similarly, Rahman and Lee (2024) introduced an RF-GRU
hybrid model for sustainable healthcare demand prediction in
Asian countries. Their results demonstrated improved
performance over standalone models; however, their
framework required extensive hyperparameter tuning and
suffered from high computational complexity, making large-
scale deployment challenging [17]. In Saudi Arabia, Alabbad
et al. (2022) developed a machine learning model for ICU
length-of-stay prediction using Saudi Arabian clinical data.
Although their work highlighted the importance of local
datasets, their model was limited to a single outcome variable
and did not address broader national healthcare capacity
forecasting [18]. International efforts, such as the COVID-19
Forecast Hub, have also demonstrated the effectiveness of
ensemble models in predicting mortality and hospitalisation
rates [19].
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Overall, these studies indicate the growing awareness of
sustainability-driven forecasting in the healthcare industry.

Vol. 16, No. 12, 2025

comprehension in the presence of real-world uncertainty.
However, their potential for long-term healthcare prediction at

Hybrid ML models, including those that integrate ensemble the national level is underexplored, emphasizing the
and sequential learning, improve their strength and importance of integrated frameworks that incorporate
predictive analytics into national healthcare decision-support
systems [20].
TABLEII.  COMPARATIVE ANALYSIS WITH RELATED STUDIES
Study Model MAE RMSE Notes
[2] Alshammarietal, 2023 | Hybrid DLI (RF-LSTM) 0205 | 0840 | Combined ensemble and sequentialnetworks, to enhance multi-
regional stability and predictive accuracy.
[16] Kaur & Singh, 2023 | Hybrid Al Forecasting (CNN-LSTM) | 0210 | 0.790 | Focused on susainable healthcare forecasting, we achieved
strong generalization but lacked local calibration.
[17] Rahman & Lee, 2024 | Al Predictive Analytics (RF+GRU) 0.198 0745 | Integrated tree-based and gated recurrent models for sustainable
policy analytics with moderate variance reduction.
[24] Alshammari et al, 2024 | RF 0214 0.809 Bas_elme random forest mpdel with strong interpretability but
limited temporal adaptability.
[25] Li et al., 2024 LSTM 0230 0.900 Tempoml dePenden01es were captl'lred but showed higher error
variance during non-stationary periods.
Achieved the lowest MAE (0.188) and RMSE (0.737),
This work (RF-LSTM) Hybrid Al Forecasting 0.188 0.737 indicating superior accuracy and variance stability across
national healthcare datasets.

In Table II, a comparative analysis with other hybrid
predicting studies was summarized to complement the baseline
model comparison presented earlier.

The comparison results further validate that the proposed
hybrid RF-LSTM framework attains substantial enhancements
in both predictive accuracy and robustness, surpassing prior
methodologies by adeptly merging short-term dynamics with
long-term sustainability factors.

B. Identified Weaknesses in Existing Hybrid Studies

Most hybrid models focus on regional or hospital-level
datasets. Few studies attempt national healthcare demand
forecasting using government operational data, which limits
scalability for policy-level planning. Moreover, many hybrid
approaches use parallel architecture, where ML and DL
components run independently. This limits deep integration
between nonlinear feature extraction and temporal sequence
learning. In addition, several models assume smooth data
patterns, while real-world healthcare data includes reporting
delays, missing values, and abrupt policy shifts. Existing
models often lack robust preprocessing pipelines to handle
these challenges.

According to the cost and complexity, Hybrid deep
architectures (CNN-LSTM, RF-GRU) frequently require
extensive training time and computational resources, which
limit their deploy ability in real-time healthcare decision-
support systems. A significant number of studies focus on
short-term forecasting without integrating sustainability
indicators and long-term healthcare system resilience.

C. Research Gap and Motivation

From the previous studies, it becomes clear that although
hybrid models such as Prophet~-LSTM, CNN-LSTM, and RF-
GRU have improved forecasting accuracy, they still face
critical limitations in terms of national scalability, long-term
sustainability, and operational integration.

Therefore, there exists a clear research gap in developing a
sequential hybrid model that:

e Integrates static nonlinear learning with temporal
sequence modeling,

e Utilizes large scale national healthcare datasets, and

e Supports sustainable healthcare planning within the
context of Saudi Vision.

This study addresses these gaps by proposing a sequential
RF-LSTM architecture, where Random Forest outputs are
embedded as engineered features into the LSTM network. This
ensures stronger integration between spatial-contextual
leamning and temporal dynamics while maintaining
interpretability and operational feasibility.

III.  MATERIALS AND METHODS

A. Dataset

The database consists of local-level daily healthcare
indicators in Saudi Arabia during the period (2020-2024). It is
generated by the Ministry of Health (MOH) Coronavirus Open
Data Portal, and the World Health Organization (WHO)
Dashboard was used as a secondary source to support the

dataset, as it provides regularly updated healthcare indicators
[5,21].

e The dataset comprises the following information:
e Confirmed COVID-19 cases and recovery rates.
e ICU and hospital bed occupancy rates.

e Vaccination rates.

e Policy and mobility indicators.

Additional variables such as holidays and weather

information.
B. Data Preprocessing

Linear interpolation was used to supplement missing data
points. Outliers were identified and excluded using the
interquartile range (IQR) approach and eliminating all
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observations below QI - 1.5 x IQR or above Q3 + 1.5 x IQR.
The process thoroughly addressed errors, including reporting
spikes and inconsistencies, ensuring consistent data for model
training. Continuous data were normalized to the [0, 1]
interval, whereas categorical variables (e.g., policy constraints
and weather conditions) were one-hot encoded. Additionally,
lagged features were generated with delays of 1 to 14 days to
record temporal dependencies, representing short-term effects
[22]. 7 and 14-day rolling averages recognized medium-term
trends and minimized daily fluctuations. Lagged
transformations are also applied to ICU capacity and
vaccination rates to preserve the temporal structure and
enhance sequential learning in the hybrid model.

1) Handling missing values: As shown in Eq. (1), missing
values are estimated using linear interpolation by assuming a
linear trend between the previous and next observations.

fo=x+ (Bt (1)
Where:

e R is the interpolated value at time t

e x._, is the previous known observation

® X, ,is the next known observation

e trepresents the current time index

This method was selected due to its effectiveness in
preserving temporal continuity in epidemiological time-series
data.

Outlier Detection:

Lower Bound = Q1 — 1.5 x IQR 2)
Upper Bound = Q3 + 1.5 x IQR 3)
Where: IQR= Q3 — Ql 4

The Interquartile Range (IQR) method was applied to
detect and remove extreme outliers, Eq. (2), and Eq. (3).

Where:
e QI: First quartile (25th percentile)
e Q3: Third quartile (75th percentile)

e IQR: Interquartile range, representing the spread of the
middle 50% of the data

The 1.5 multiplier was adopted as the standard threshold
for statistical outlier detection, based on Tukey’s conventional
method. The interpolation process [Eq. (1)] and the IQR-based
outlier detection [Eq. (2—4)] contribute to stabilizing the dataset
before training the RF-LSTM model.

2) Normalization and encoding: As shown in Equation
(5), Min—Max normalization rescales the variables into the
range [0,1] to ensure uniform feature scaling and improve
training stability.

Xl — X—Xmin (5)
Xmax—Xmin
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Categorical indicators were one-hot

encoded.

Where:

weather/policy

e Xis the original feature value

e Xmin and Xmax are the minimum and maximum
values of the feature

e X'is the normalized value

3) Lag and rolling features: Lagged features preserve
short-term temporal dependencies by directly shifting past
values into the current input space. In this study, lag orders k =
1 to 14 days were used to capture immediate epidemiological
dynamics and short-term variations in healthcare demand,
where Xt-k denotes the observation at time step t-k as shown
in Eq. (6).

Xt,k(lag)z Xi_x K=1,.,14 (6)

The rolling mean in Equation (7) was applied to smooth
short-term fluctuations and captured medium-term trends.
Here, (w) denotes the window size, which was set to 7 and 14
days in this study, and Xt-i represents the previous
observations within the defined window. This transformation
reduces noise and enhances the stability of the learning process
for the sequential RF-LSTM framework.

Xt(W) = (l) Zi:o wt Xt_i (7)

W.

C. Model Architecture

The proposed hybrid framework operates in two sequential
stages, summarized in Algorithm 1: RF for static feature
learning and LSTM for sequence modeling.

1) Random Forest (RF) regressor: The Random Forest
regressor predicts healthcare demand by averaging the outputs
of multiple decision trees, as expressed in Equation (8). At
each time step t, the feature vector Xt, including lagged and
rolling statistical features, is provided to all B trees. Each tree
generates a prediction hy(x,, and the final RF prediction
Ygrpt =1s obtained by computing their Mean. In the proposed
hybrid framework, these RF predictions serve as engineered
static features. They are subsequently injected into the LSTM
network to enhance temporal leaming and improve the
stability of long-horizon forecasting.

RF regression:

YRz:,t = (%) 2 hb(Xt) (8)
Where:
B is the number of trees
hb (.) is the prediction of tree b

This integration allows the model to combine the non-linear
representational power of ensemble learning with the
sequential modeling capability of LSTM networks.
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2) Long Short-Term Memory (LSTM) network: To model
temporal dependencies, the LSTM network links residual and
RF prediction sequences. The Adam Optimiser is used for
training, with early termination to prevent overfitting.
Additionally, sequence normalisation and  dropout
regularisation improve model generalisation [23].

The LSTM captures sequential dependencies using the
following equations:

fo = (Wrpnorm) + by) ©)
ie =0 (Wipno10) + i) (10)
Co=tanh (Wepn,_ ]+ be (11)
LSTM Prediction:
YLSTM't =:g(hy) (12)

The LSTM network was employed to model complex
temporal dependencies within the healthcare demand data. At
each time step t, the input vector xt includes temporal features
and the Random Forest prediction ¥ z,+, which is treated as an
additional engineered feature. The forget gate in Eq. (9)
controls the retention of historical information, while the input
gate in Eq. (10) regulates the incorporation of new temporal
patterns and external signals. The candidate memory state in
Eq. (11) updates the internal memory based on current and
previous inputs. Finally, the output layer generates the
predicted healthcare demand Y, gpp.as described in Eq. (12).
This mechanism enables the proposed hybrid model to
effectively capture both short-term dynamics and long-term
dependencies in national healthcare demand patterns.

Algorithm 1: Sequential RF-LSTM Hybrid Framework

Input:
xt <« Preprocessed feature matrix at time t
yt « Target healthcare demand variable
Output:
¥t « Final hybrid forecast
Stage 1: Data Preparation
1: Generate lagged features (t—1 ... t—14)
2: Compute rolling statistics (7-day and 14-day windows)
3: Apply Min—Max normalization to continuous variables
4: Encode categorical variables using one-hot encoding
Stage 2: Random Forest Feature Learning
5: Initialize Random Forest regressor
6: Train RF on (xt, yt)
7: Generate static predictions:
yRF,t = RF(xt)
Stage 3: Sequential Data Construction
8: Augment features:
St = [xt, yRF,t]

9: Construct time-series sequences:
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fort=1to T—Ldo
Create input sequence S_(t:t+L)
Assign targety (t+L)
end for
Stage 4: LSTM Sequence Learning
10: Initialize LSTM model
11: Configure hyperparameters:
- Hidden units = 64
- Dropout=10.2
- Optimizer = Adam
12: Train LSTM on constructed sequences
13: Apply early stopping based on validation loss
Stage 5: Hybrid Prediction
14: Predict final output:
§t = LSTM(St)
Return:

yt

Algorithm 1 summarizes the sequential workflow of the
proposed RF-LSTM hybrid framework for national healthcare
demand forecasting. In Stage 1, the raw epidemiological and
operational indicators are transformed into a learmning-ready
feature set through lag generation, rolling-window statistics,
normalization, and one-hot encoding. This step ensures that
both short-term dynamics (through lagged features) and
medium-term trends (through rolling averages) are explicitly
represented. In Stage 2, a Random Forest regressor is trained
on these features to capture nonlinear interactions among the
input variables, yielding static predictions that reflect the
baseline healthcare demand.

In Stage 3, the Random Forest predictions are concatenated
with the original preprocessed features to construct enriched
sequences that combine both engineered static information and
temporal patterns. These augmented sequences are then
reshaped into input windows suitable for sequence learning. In
Stage 4, an LSTM network is trained on these sequences using
the Adam optimizer, early stopping, and dropout regularization
to learn long-range temporal dependencies while preventing
overfitting. Finally, in Stage 5, the trained LSTM model
produces the hybrid forecast ¥, which integrates the strengths
of both components: the interpretability and robustness of
Random Forest and the temporal adaptability of LSTM. This
sequential design is particularly suitable for national-level
healthcare forecasting, where complex nonlinear relationships
and time-dependent dynamics must be modeled
simultaneously.

where, L represents the sequence length (look-back
window), which defines the number of past time steps used as
input to the LSTM, in this study, L = 14 days was selected
based on epidemiological considerations and prior forecasting
literature.

This hybrid architecture enhances prediction stability and
responsiveness to changes in national healthcare data by
leveraging the complementary advantages of both components,
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the LSTM for dynamic sequence modeling and the RF for
interpretable static learning. This kind of combination is
consistent with the latest advances in time-series prediction that
adopt explainable ML. The sequential RF-LSTM method is
described in Algorithm 1, which begins with preprocessing and
lag creation, followed by model training and residual
integration.

Fig. 1 illustrates the complete architecture of the proposed
sequential RF—LSTM hybrid model, designed specifically to
address the complex, nonlinear, and time-dependent nature of
national healthcare demand in Saudi Arabia. This architecture
stems from its structured, task-specific division of leaming
responsibilities across model stages.

Data Sources RF Stage
'Bfi% MOH Open . Extract static
—=——o Data nonlinear features

WHO

° Dashboard RF Prediction

l

LSTM Stage

Preprecessing

Sloansing Temporal

seguence modeling
Dropout
Adam optimizer
Early stopping

Linear Interpolation ——*

IQR Outlier Removal
Min-Max Normalization

Lag Features (1-14) —

Combine
Rolling Averages (7-14) 1

One-Hot Encoding Final Output
ICU demand

l Hospital bed demand
Case prediction

1

Evaluation

Combine

Fig. 1. The structure of the proposed RF-LSTM hybrid model for healthcare
demand forecasting.

In the first stage, the Random Forest (RF) module extracts
nonlinear and static patterns from heterogeneous healthcare
indicators, including ICU occupancy, hospital bed utilization,
vaccination rates, mobility signals, and policy measures. This
is particularly important because healthcare systems’ data
exhibit irregular interactions and nonlinear dependencies across
variables, which traditional linear or purely sequential models
fail to represent adequately.

D. Training and Evaluation Protocol

1) Loss function for training: The hybrid RF-LSTM
model was trained using the Mean Squared Error (MSE) as the
objective function, defined as:

MSE = ()2 (v = 997 (13)

where, yt and ¥, represent the actual and predicted
healthcare demand at time t, respectively, and n is the total
number of observations. The Adam optimizer was employed to
minimize the loss function in (13), enabling stable, efficient
convergence during training while preventing overfitting
through early stopping mechanisms.

2) Performance evaluation metrics: After training, the
proposed model’s performance was assessed using three
standard forecasting metrics: Mean Absolute Error (MAE),
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Root Mean Square Error (RMSE), and Coefficient of
Determination (R2).

The Mean Absolute Error (MAE) is expressed as:

1 A
MAE = (%) 2 [y, = 9 (14)
The Root Mean Square Error (RMSE) is defined as:
RMSE = sqrt ((%) O - 3%)2) (15)

In addition, the coefficient of determination (R2) is given
by:
2 _ _ 2y - 9:)2
k=1 Ze=9)? (16)
where denotes the mean of the observed healthcare demand
values.

Eq. (13) was used as the loss function during the training
phase to minimize the squared difference between actual and
forecast healthcare demand values. Subsequently, Eq. (14)-
(16) were applied for post-training evaluation. MAE provides
an intuitive measure of average prediction error, RMSE
emphasizes large deviations, which are critical in healthcare
resource planning, and R2 quantifies the model’s explanatory
power in capturing variations in national healthcare demand
patterns.

3) Statistical testing: To statistically validate the observed
performance differences among the compared forecasting
models, a one-way Analysis of Variance (ANOVA) was
conducted using the F-statistic defined in Equation (17). The
test examined whether variations in predictive errors across
models were statistically significant at o = 0.05. Following
ANOVA, a Tukey HSD post hoc test was applied to identify
pairwise differences among individual models. This statistical
framework ensured that the superior performance of the
proposed RF—-LSTM hybrid model was not due to random

variation but represented a statistically significant
improvement over benchmark models.:
SSpetween
F= sy igmm- 17
N-k

followed by Tukey HSD for pairwise comparison.
Baseline comparators included:
ARIMA/SARIMAX (statistical models)

Random Forest (RF) (tree ensemble)

Long Short-Term Memory (LSTM) (deep learning).

Residual analysis was employed to evaluate the errors and
their distribution over prediction horizons. Moreover, Residual
diagrams demonstrate the differences between predicted and
observed values, while error variance measures the strength
under variable demand conditions. These analyses provided
valuable insights into the model's reliability during both
outbreak peaks and intervals of stability.
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IV. RESULTS

A. Quantitative Performance

The RF-LSTM hybrid model achieved the lowest MAE and
RMSE, and a near-perfect R2 of 0.9995. The MAE and RMSE
(Table III) values represent the average and squared variances
between the expected and actual healthcare demand, however.
Lower wvalues indicate more accurate and consistent
predictions, whereas higher R2 values indicate a more precise
overall model fit.

Moreover, the RF-LSTM achieved the lowest RMSE
(0.737), demonstrating enhanced robustness against demand
fluctuations. Lower RMSE values further reflect greater
forecast stability and reduced sensitivity to demand
fluctuations, reaffirming the model's advantage in dynamic
healthcare environments.

TABLE III. CORE PERFORMANCE METRICS
Model MAE RMSE R2
ARIMA 0.265 0.955 0.9978
RF 0214 0.809 0.9990
LST™M 0.245 0.910 0.9985
RF-LSTM (proposed) 0.188 0.737 0.9995

The hybrid RF-LSTM model achieved the lowest MAE
(0.188), indicating minimal average discrepancy between
predicted and actual healthcare demand. (Fig. 2) illustrates
performance enhancements of 22% and 12% compared to the
ARIMA and LSTM models, thereby validating the hybrid
model's superior predictive accuracy.

025

f=]
[
(=1

0104

Mean Absolute Error (MAE)
o
@

=
o
=]

ARIMA RF LSTM
Model

(a)

RF-LSTM

j=] = o =
> o © =)

Root Mean Square Error (RMSE)
o
N

ARIMA RF LSTM
Model

(b)

RF-LSTM

Fig.2. Comparison of MAE (a) and RMSE (b) Across the proposed hybrid
RF-LSTM model and other models.
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B. Model Performance During Peak Demand

To further evaluate the robustness of the proposed model
under critical stress conditions, its behavior during a simulated
peak healthcare demand period was analyzed. Fig. 3 illustrates
the temporal prediction performance of all models during a 30-
day high-demand interval. The RF-LSTM hybrid model
exhibits stronger stability and closer alignment with the actual
demand curve compared with ARIMA, standalone RF, and
standalone LSTM models.

Unlike ARIMA, which shows delayed adaptation to sudden
demand spikes, and LSTM, which occasionally overshoots in
highly volatile phases, the proposed hybrid model maintains
smoother and more accurate tracking of temporal changes. This
improved performance is attributed to the integration of
nonlinear feature extraction from the RF stage with the
temporal learning capacity of the LSTM stage.

66

— Actual
—— ARIMA
RF
LSTM
—— RFISTM fgroposed

v o o =)
Go S ~ by
T T -

[}
=

Healthcare Demand (normalized units)
B e

%)
b

Day

Fig.3. Model behavior during a simulated peak demand period.

C. Hyperparameter Sensitivity Analysis

1) Effect of RF ensemble size: The impact of the Random
Forest ensemble size on the hybrid model performance is
shown in (Fig. 4). As the number of trees increases from 100
to 200, a clear decreasing trend in RMSE is observed,
indicating improved stability and reduced variance. Beyond
200 trees, only marginal improvements were observed while
computational cost increased significantly. Therefore, an
ensemble sized 200 trees was selected for the final model
configuration.

078
077

0.76

RMSE

0.75

0.74

100 120 140 160 200
Number of trees in RF

Fig. 4. Effect of RF ensemble size on hybrid RF-LSTM RMSE.
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2) Effect of sequence length L on hybrid RF—-LSTM MAE
performance: To analyze the influence of sequence length on
temporal modeling, experiments were conducted using
sequence lengths of 7, 10, and 14 days.

As shown in Fig. 5, increasing the sequence length results
in a consistent reduction in MAE. Shorter sequences limit the
model’s ability to capture medium-term dependencies, whereas
longer sequences allowing L = 14 significantly enhance
temporal learmning. A sequence length of 14 days was selected
as the optimal input configuration, balancing prediction
accuracy and computational efficiency.

0.215

0.210

0.205

0.200

MAE

0.195

0.190

0.185 v
7 8 10 1 14

Sequence length L (days)
Fig. 5. Effect of sequence length L on hybrid RF-LSTM MAE performance.

D. Error Distribution and Robustness

Analysis of the error distribution and variance revealed that
the hybrid approach reduces variability compared to individual
models. Residual plots showed narrower confidence intervals,
thereby verifying enhanced stability during both outbreak
surges and low rates. These results support previous studies on
hybrid models, explaining that they are strong enough to
manage changes in systems [2,1520]. The suggested
framework demonstrated superior performance relative to both
regional and global standards while maintaining clarity and
scalability.

V. DISCUSSION

The hybrid RF-LSTM model efficiently integrates two
complementary methodologies: ensemble feature extraction
and advanced sequence modelling, allowing the system to
manage complex, non-linear, and non-stationary healthcare
data. From a healthcare perspective, implementing these
models into local health visualizations enables the immediate
detection of ICU incidents, facilitates flexible resource
allocation, and supports strategic planning. This approach
supports data-driven governance and long-lasting digital health
systems. These findings are also consistent with worldwide
trends, where hybrid ensemble and deep leaming architectures
are improving pandemic preparedness and operational
resilience.

The above approaches correspond with the latest
international initiatives to utilise Al-based prediction in
healthcare systems. The suggested RF-LSTM framework fits
with this model because it combines explainable ensemble
learning (RF) with temporal adaptability (LSTM). This makes
it a good compromise between ease of understanding and
predictive accuracy. This combination enables the model to
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leverage Random Forests' feature-level transparency and
LSTMs' sequential learning capabilities, making it especially
suitable for healthcare systems characterized by dynamic,
diverse data sources.

Fig. 6 demonstrates the variation in MAE over time for
ARIMA, RF, LSTM, and RF-LSTM models at different
prediction horizons (7, 10, and 14 days). It shows that the
prediction errors of all models gradually increase as the
prediction horizon lengthens. Nonetheless, the hybrid RF-
LSTM consistently maintains the lowest MAE and displays a
more natural decline in performance. This indicates that the
hybrid model can effectively handle longer prediction periods,
providing better reliability and resilience against cumulative
errors, thereby enhancing its robustness. The distinct separation
between the curves indicates that the hybrid model generalizes
more effectively in unstable healthcare scenarios.

ARIMA
RF
—i— LSTM
Hybrid RF-LSTM

et
N
@

o
N
o

0.24F

@
N
[N]

e
N
o

Mean Absolute Error (MAE)

o
o
o

7 10 14

Fig. 6. Temporal variation of MAE across forecasting horizons (7-day, 10-
day, and 14-day ahead) for ARIMA, RF, LSTM, and RF-LSTM models,
showing the superior stability and accuracy of the hybrid approach.

The RF-LSTM model is more stable and can be applied in
a broader range of situations due to its hybrid architecture.
Random Forest reduces non-linear variance, and LSTM detects
temporal consistency. In combination, they reduce overfitting
and adapt to changes in epidemic and operational dynamics. In
practical healthcare environments, this improvement can help
hospital administrators prepare for surges in ICU demand, use
staff effectively, and balance national medical resources during
crises.

Overall, the results show that the proposed RF-LSTM
model not only enhances predictive accuracy but also helps
healthcare operations stay resilient and sustainable. The model
demonstrates both technical dependability and practical value
for national healthcare forecasting by enhancing data
utilization, resource management, and the operation of early
warning systems.

A. Limitations and Future Work

Although the suggested model performs well, several
limitations require attention. First, it depends on continuous
and accurate updates from national health datasets for optimal
performance, which may not always be complete or timely.
Second, the model's two-stage training process increases
computational costs. Third, the RF-LSTM captures complex
temporal dynamics; however, its ability to handle larger, more
diverse regional datasets remains to be confirmed.
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On the other Hand, Future research may target these
limitations by exploring an advanced ensemble method that
combines attention techniques with Graph Neural Networks
(GNNs) to capture correlations across multidimensional
healthcare data more effectively. The goal of this approach is
to enhance the model's generalizability and interpretability
across a broader range of healthcare settings within the Gulf
Cooperation Council (GCC) region. Incorporating additional
sustainability criteria, both environmental and operational,
could also help optimize predictive analytics to better align
with Saudi Arabia's Vision 2030 objectives.

VI. CONCLUSION

This study presented a hybrid Random Forest—Long Short-
Term Memory (RF-LSTM) model designed to improve
national healthcare demand forecasting in Saudi Arabia
through an integrated approach that combines non-linear
feature extraction with advanced sequence learning. Motivated
by the data-driven transformation goals of Saudi Vision 2030,
the proposed model leverages a comprehensive, exclusively
Saudi dataset (2020-2024) that includes epidemiological
indicators, ICU and bed utilization, vaccination progress,
mobility metrics, and policy-response variables. By
engineering Random Forest outputs as temporal features and
feeding them directly into the LSTM architecture, the
framework captures both short-term non-linear interactions and
long-term temporal dependencies in a unified predictive
pipeline.

The findings demonstrate that the hybrid RF-LSTM model
consistently  outperforms traditional and single-model
baselines—including ARIMA, RF, and LSTM-—across
multiple forecasting horizons. The model maintains lower error
rates and enhanced stability as prediction windows lengthen,
highlighting its robustness against cumulative uncertainty and
rapidly changing healthcare conditions. From an operational
standpoint, the model offers practical value for strategic
planning, enabling earlier detection of ICU trends, more
flexible allocation of healthcare resources, and improved
resilience of national decision-support systems. Its alignment
with international Al-healthcare initiatives reinforces its
relevance within broader global efforts to strengthen pandemic
preparedness and digital-health infrastructure. While the model
achieves strong performance, certain limitations remain,
including reliance on continuous dataset updates, increased
computational requirements due to its two-stage architecture,
and the need to validate performance across more diverse
regional datasets. Future research should explore integrating
attention mechanisms, graph neural networks, and expanded
sustainability = metrics to  enhance  generalizability,
interpretability, and alignment with Vision 2030 objectives.

Overall, the proposed RF-LSTM framework provides both
methodological innovation and operational significance,
offering a scalable and data-driven solution for national
healthcare forecasting. It represents a meaningful contribution
toward building resilient, intelligent, and sustainable healthcare
systems in Saudi Arabia and beyond.
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