

Intelligent Platform for Employee Retention Prediction

Medha Wyawahare, Milind Rane, Ashish Rodi, Samarth Arole, Aryan Mundra
Electronics and Telecommunication Engineering, Vishwakarma Institute of Technology, Pune, India

Abstract—Employee retention is a very important challenge to the organizations since it raises the cost of recruitment, affects domain knowledge retention, and impacts workforce stability. Presented here is a platform-based intelligent employee retention prediction system as a real-time HR decision support tool. As a part of the research, Feedforward Neural Network was initially trained and tested with structured employee data to confirm the relevance of the features and predictive viability, which had recorded an accuracy of 88.7%. This final implementation will integrate an AI-based Chat Widget with a modular pipeline system that will utilize an LLM for performing analytical reasoning on employee attributes and provide human-understandable explanations that will aid the HR decisions. The architecture separates the user interaction layer (Agent) from the prediction and reasoning logic (Pipeline), which makes the system scalable, interpretable, and easily integrable with the workflows of an organization. The proposed platform will show how validated predictive models and LLM-provided reasoning can be integrated in order to provide actionable and explainable employee retention insights.

Keywords—Employee retention; feedforward neural network; Large Language Model; HR analytics; intelligent platform

I. INTRODUCTION

Current organisations have been facing serious employee retention issues due to increase in recruitment costs, onboarding, and the loss of organisational knowledge that comes with employee turnover. High rates of attrition have adverse effects on productivity, team building, and long-term strategic planning. Consequently, more organizations are turning to data-based methods to identify employees who are vulnerable to turnover and develop proactive retention plans.

Deep learning and machine learning methods have gained popularity in predicting employee attrition in recent years. Conventional approaches like decision trees, logistic regression, and ensemble are mainly based on structured historical data and provide little interpretability to HR professionals. Even though neural network-based models enhance predictive accuracy by modeling non-linear relationships among employee attributes, they are typically black boxes and cannot be easily incorporated into real-time HR processes. Also, the majority of available solutions have difficulties integrating unstructured or semi-structured data, including employee feedback or qualitative measures of work attitude.

To overcome these shortcomings, this paper introduces an intelligent, platform-based employee retention prediction system that integrates tested predictive modeling with explainable AI-driven reasoning. In the research stage, a

Feedforward Neural Network (FNN) was constructed with structured employee information to confirm the relevance of features and determine predictive ability. The information gained through this model was used in the design of the solution eventually deployed. Predictive intelligence has been integrated into an AI Chat Widget in the operational system, which communicates with a modular GenAI pipeline. A Large Language Model (LLM) serves as an analytical reasoning tool over employee data and is capable of providing human-interpretable explanations to enable HR teams to make informed decisions based on risk factors.

The proposed architecture distinguishes between user interaction (Agent) and prediction and reasoning logic (Pipeline) to provide scalability, modularity, and easy deployment. The system combines predictive modeling with LLM-based explainability to provide an interface between high-accuracy attrition prediction and HR decision support. The design enables organizations to move beyond fixed prediction models to interactive, explainable, and scalable retention analytics platforms.

This paper is organised in the following way. Section II is a literature review on employee attrition prediction and current ML models. Sections III and IV address the research gap and problem formulation. Section V introduces the proposed methodology, which involves the FNN-based validation step and the LLM-based platform architecture. Section VI explains the experimental design and the findings of the predictive model. Section VII explains the implications of the findings and the role of explainability in HR decision-making. Lastly, Section VIII summarizes the paper and provides future research directions.

II. LITERATURE REVIEW

One of the most important workforce analytics is employee turnover prediction because of its financial and operational repercussions on an organization. Different deep learning and machine learning methods have been utilized to perform the analysis of the attrition patterns and come up with prediction methods. This section will examine research literature and will categorize the studies in terms of the methods used.

Pioneering researches used the conventional statistical models like logistic regression (LR) and the ordinary least squares (OLS) regression to forecast turnover. Logistic regression has been extensively used in determining the important attributes of attrition which include salary, job satisfaction, and tenure [15][16][19][20][27][29]. Other studies included regression analysis using employee biodata and

predictive personality which emphasized the significance of predicting job retention [21][34]. In other studies, the survival models and discrete choice analysis were used to distinguish voluntary and involuntary turnover[25]. Its performance in OLS regression coupled with neural networks was established in the analysis of workforce attrition [41]. Logistic regression in HR analytics was also studied, using it on the data of various organizations [30][35].

Decision tree-based models like Gradient Boosting (GB), Random Forest (RF) and XGBoost have gained wide popularity because they provide the capability to model high-order interactions between features [9][17][23][28][32][33]. Ensemble techniques were compared and the findings showed that XGBoost has always been better than other classifiers in turnover prediction [38][43][51]. Other studies suggested combining decision trees with SVM, Naive Bayes, and AdaBoost to enhance their accuracy [7][45][47]. Combination of uplift modeling with retention prediction demonstrated that the other conventional classifiers performed better but uplift modeling offered more precise interventions [55]. Also, other studies were able to combine features selection techniques like Chi-Square and Information Gain to improve the performance of the decision trees [54].

Employee retention prediction has strongly embraced the use of DL techniques, especially the Artificial Neural Networks (ANNs). Research concluded that DL models such as the feedforward neural networks (FNN) and convolutional neural networks (CNN) performed better than traditional machine learning models [8][13][14]. Other studies used a multi-layered deep learning model, which combined demographic factors and measures of employee engagement to enhance the accuracy of predictions [26][31]. Deep autoencoders were used with genetic algorithms (GA) to optimize feature selection in other studies [40]. Solutions based on neural networks, like Brownian Motion Butterfly Optimization have also been suggested to minimize overfitting and better turnover prediction [11][10][53]. Explainable AI methods like SHAP and LIME were also included in the research to understand deep learning models [7].

Certain researches touched upon alternative predictive models, such as uplift model and organizational network model. The uplift modeling that targets employees who are most likely to react to retention-related interventions proved to be more effective in intervention than the traditional classifiers [55]. Besides, Organizational Network Analysis (ONA) was also used to examine the level of employee connectivity within firms and found out that the network structures greatly influence turnover behavior [52].

Some studies combined a number of ML methods to enhance the accuracy of prediction. Employee retention analysis has been suggested to use hybrid models with decision trees and SVM, Naive Bayes, and AdaBoost [7][47]. In other studies, model fusion models have been used, which combines a number of classifiers with the aim of attaining an improved performance in prediction [50]. One research presented a weighted quadratic random forest (WQRF) model, which has improved the classification based on weighted decision trees [50]. Other studies used clustering techniques alongside ANNs and data augmentation, including CTGAN, to enhance the strength of

models [42]. Researchers also investigated the stacking, and optimization models to improve the precision of the prediction [48].

Several studies have explored alternative approaches to employee retention prediction. Yanamala (2020) emphasized on the value of big data and machine learning in evaluating the working class [1], while it was Yahia et al. who further went up and introduced a deep data dimension for better predictions [4]. Authors Sexton et al. (2005) and Pérez-Campdesuñer et al. established that neural networks are better than traditional models [5][6]. Rane et al. investigated the applications of AI, machine learning, and deep learning in businesses to retain HRs [18][39]. Shafie et al. were working on ANNs with data augmentation to use in clustering, and El-Rayes et al. (2020) were working on trees to identify useful features to use in turnover analysis [22][24]. Lim et al. proposed a novel approach that uses a deep autoencoder and KNN, to enhance the prediction of the employee turnover [36]. On the same token, Park et al. used advanced ML techniques to predict employee retention by reviewing new trends in the workforce [37][2][39]. Examples of deep learning progress are Al-Darraj et al.'s practice for predicting worker attrition [44] and Cheng's method for HR predictive analytics [49]. In their study, Zhang et al. used machine learning to discover main reasons for attrition [56].

Artificial Neural Networks (ANNs) are recognized by several studies for their strong abilities in predicting if an employee will remain with the company. In Dubey et al.'s (2018) and Al-Darraj et al.'s (2021) studies, it was found that using ANN-based models helped overcome the restrictions of traditional machine learning, since they can show how non-linear relationships shape the patterns of workers [3][44]. Yahia et al. proposed a deep data framework that improves the effectiveness of ANNs in analyzing workforce data [46]. In 2024, Shafie et al. investigated using ANN to cluster data and use data augmentation to boost accuracy [42][12]. Although XGBoost and Random Forest are high in accuracy, ANNs show exceptional performance when trying to model tougher patterns, features, and forms of data. While LSTM only works with sequential information, FNNs are more flexible and scalable, allowing them to handle HR data that can be structured, like employee feedback, or unstructured, like how engaged employees feel. As our dataset doesn't change over time, LSTM models cannot be used. ANNs work better in various industries and are still understandable with explanation techniques such as SHAP and LIME. Given these advantages, our research builds upon ANN-based methodologies to develop a robust, commercially viable employee retention prediction model that enhances HR decision-making.

III. RESEARCH GAP

Most of the available methods are focused on increasing accuracy by improving classification based on structured historical data, but they do not put sufficient interest in interpretability and real-time interaction. Because of this, most predictions are often made without enough explanation or actionable context for HR professionals.

Another important factor is that most of the predictive models are developed as stand-alone analytical applications and

are not designed to be integrated into enterprise systems. This limits their operational usage in HR departments because these departments require interactive systems that could respond dynamically to user requests and changing organizational information. There is also a lack of discussion in current literature on how unstructured or semi-structured information, such as qualitative employee feedback or situational indicators of the workplace, is managed.

While these models are capable of producing superior predictive performances, their black-box character implies a challenge for trust and adoption in HR applications. The research gap lies in the development of intelligent platforms which can integrate proven predictive modeling together with explainable and user-friendly AI interfaces to be used for devising retention strategies. This work fills this gap by combining predictive validation with an LLM-powered reasoning layer into a platform-based modular architecture.

IV. PROBLEM STATEMENT

The problem of employee churn is a big hurdle for organizations because the interaction of demographic, professional, and behavioral factors that cause attrition is complex. Though predictive models can be used to estimate turnover risk, in practice, HR teams view them as a challenge to interpreting the predictions and converting them into practical retention measures. This is the point at which the disconnect between prediction and decision-making makes the tools of attrition analysis currently in use less practical.

This needs to be engaging, insightful at a human level, and fit within organisational processes. This proposal is based on the gap that exists between effective attrition prediction and viable HR decision support through integrating predictive intelligence into an AI Chat Widget and a modular pipeline architecture.

V. METHODOLOGY

The proposed employee retention prediction system is structured into two stages: predictive model validation methodology coupled with a platform-based deployment that is oriented towards explainable and interactive HR decision support. The general system workflow is represented by the Agent and Pipeline structures depicted in Fig. 1 and Fig. 2 respectively.

A. Understanding and Preprocessing Data

The methodology begins with understanding the nature of data and attributes leading to employee attrition. The dataset contains employee data, which includes demographic data, job-related parameters, and behavioral information. Data is to be pre-processed before feeding into the model in order to ensure the quality and consistency of the data. This involves filling in missing or inconsistent values, encoding categorical variables into numerical forms, and normalizing numerical variables onto a standard scale. These are the preprocessing steps used to guarantee that the data is learning-ready, and feature contributions can therefore be analyzed meaningfully. Because of restrictions of data privacy and confidentiality, a synthetic employee dataset was created in order to try and represent realistic HR attributes and attrition trends while maintaining the statistical properties needed for validating the model.

B. Feedforward Neural Network Predictive Validation

An FNN is designed at the research stage-after preprocessing-to investigate predictive feasibility and authenticate the importance of the selected features. The FNN is selected since it can be used for modeling nonlinear relationships in structured data and it can be utilized for situations with no temporal dependencies. While FNN is the proposed model, additional classical ML models were implemented for comparative evaluation.

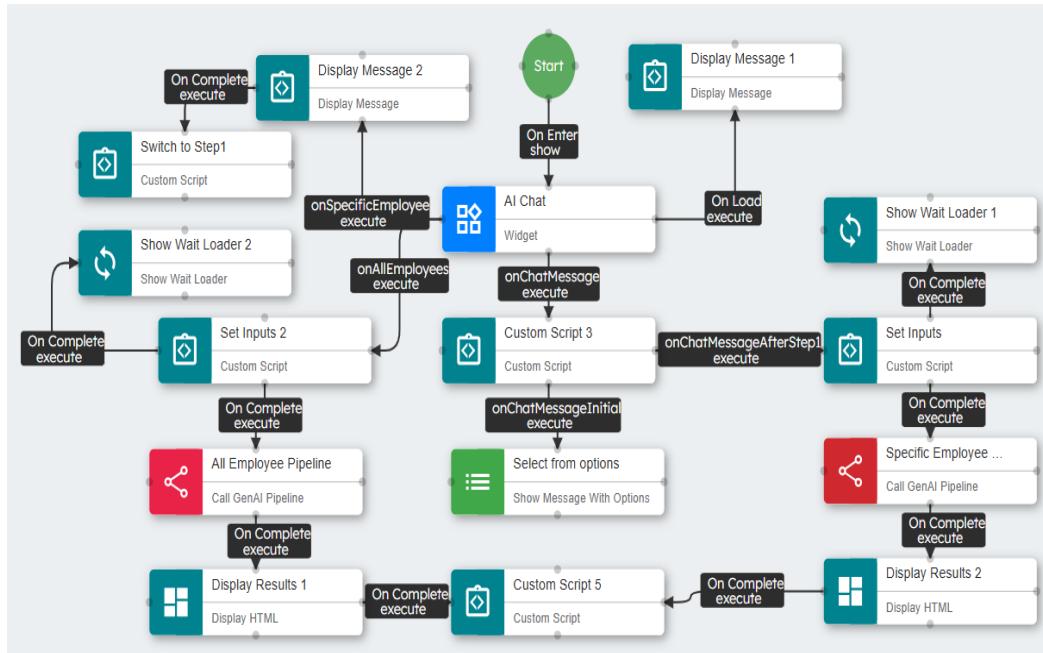


Fig. 1. Workflow of the agent.

The whole network architecture comprises several fully connected layers activated by the Rectified Linear Unit and one output layer activated by the sigmoid function for binary classification. The Adam optimizer trains the model and provides stable convergence with adaptive learning rates. Hyperparameters such as batch size, learning rate, and numbers of neurons were tuned experimentally. The FNN performs with an accuracy of 88.7%, which indicates how well this model achieves the mapping of attrition-related patterns. This model is not deployed as a stand-alone production classifier; nonetheless, it provides a tested predictive basis. The knowledge gained in this step contributes to the design of the system put into practice, especially with respect to the characteristics that substantially support employee retention.

C. Integration-Based Platform Implementation on the LLM.

Once the predictive feasibility has been established with the FNN-based assessment, the system is extended to a platform-based implementation targeted at operational use. This implementation is designed into two main parts, namely the Agent and the Pipeline, as shown in Fig. 1 and Fig. 2.

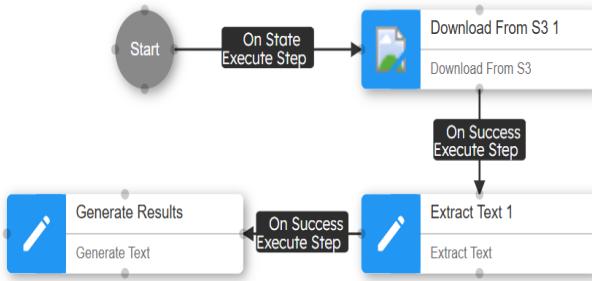


Fig. 2. Workflow of the pipeline.

Accordingly, the Pipeline component is responsible for handling analysis processing and the controlled execution of analytical operations. It reaches out to cloud storage for the employee data uploaded to the system. The pipeline expects structured inputs regarding the approved set of features and invokes a Large Language Model-Gemini 2.0 Flash-through secure API calls. Instead of being a classifier, it conducts analytical reasoning on employee characteristics and issues interpretations regarding attrition risk, accompanied by human-readable explanations. To make the presentation of its results consistent, a fixed structure is applied to the output.

D. AI Chat Widget and User Interaction

This Agent component, illustrated in Fig. 1, is implemented as an AI Chat Widget that represents the main interface of HR professionals. Through this interface, the user can upload employee datasets, select options for analyses, and ask for predictions without directly being involved with models that underlie these operations. In the case that such a request is triggered, the Agent communicates with the Pipeline of Fig. 2, invoking the respective analytical workflow.

The answers that the Pipeline provides are nicely formatted as HTML and then displayed in the Chat Widget. This output will provide insights into the factors of attrition risk, causes, and recommendations to help with HR decision-making. AI Chat Widget reduces the overall complexity of the system and allows

a non-technical user to interact with advanced AI capabilities in a straightforward and understandable way. The advanced AI features in an understandable and clear manner.

E. Methodology Summary

In summary, the suggested methodology can be summarized as a two-step procedure: a predictive validation step with the assistance of a Feedforward Neural Network to check the relevance of the features and frame a baseline performance and a deployment-focused architecture, which transfers this intelligence to an LLM-based AI Chat Widget and a system pipeline.

VI. RESULTS

This section contains the quantitative findings obtained during the predictive validation stage and the outputs provided by the implemented AI-based platform.

A. Predictive Model Performance

Table I summarizes the performance of various machine learning models that were used to predict employee attrition. Conventional classifiers like Logistic Regression, Naive Bayes, KNN, Decision Tree, and Random Forest exhibit competitive levels of accuracy on the structured employee data. The Feedforward Neural Network (FNN) proposed in this paper achieves the highest accuracy of 88.7%, which means that it is more accurate in capturing non-linear relationships among employee attributes.

Table I provides results that prove the efficacy of the chosen set of features and the appropriateness of neural network-based models for structured HR data. This assessment is conducted during the research and validation stage to determine predictive feasibility and benchmark model performance. It is not the implemented inference mechanism of the end platform, which focuses on interpretability and decision support.

TABLE I. COMPARISON OF FNN MODEL WITH CLASSICAL MACHINE LEARNING MODELS

Model	Accuracy (%)
Logistic regression	87.4
Naïve Bayes	85.6
Decision Tree	78.5
KNN	84.3
Random Forest	85.9
Proposed FNN	88.7

B. Platform Outputs and User Interaction

The operational outputs of the deployed system are illustrated in Fig. 3 to Fig. 5. Fig. 3 shows the AI Chat Widget interface through which HR professionals interact with the system. After uploading the employee dataset, users are presented with multiple options, enabling both individual-level and organization-wide retention analysis in an interactive manner.

Fig. 3 presents the output generated for a specific employee analysis. The system provides an assessment of attrition risk along with factors contributing to the identified risk. These

outputs aim to support decision-making by highlighting key attributes influencing the prediction.

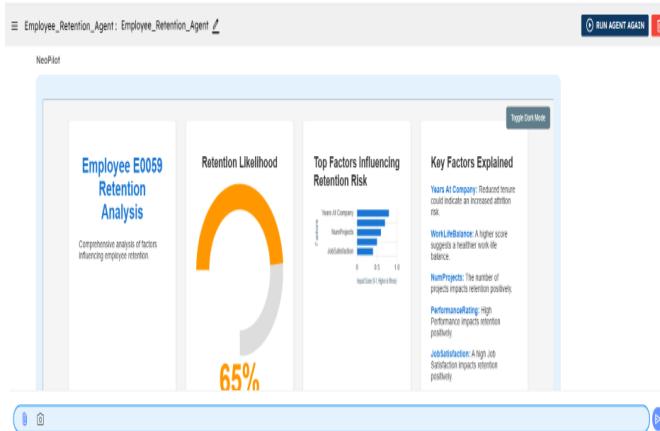


Fig. 3. Output for analysis on a specific employee.

Fig. 4 shows overall analysis of employee retention. This view depicts the risk distribution by departments, major factors causing attrition, and aggregated insights from the organization. Such a result will enable the HR teams to identify retention issues and prioritize intervention strategies at an organizational level.

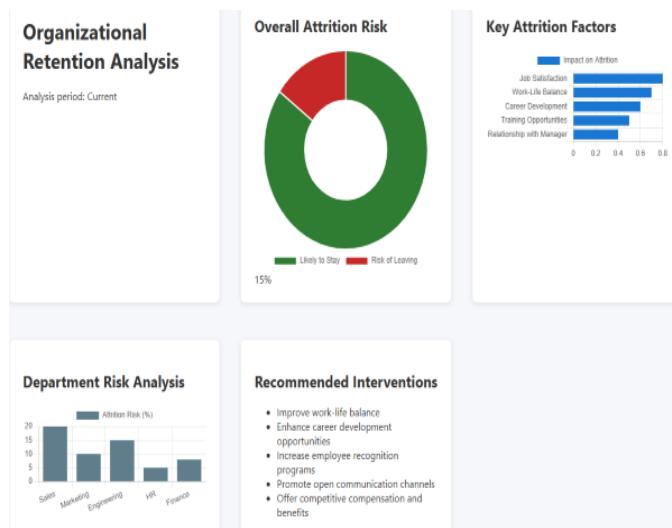


Fig. 4. Overall employee retention analysis.

VII. DISCUSSION

The findings indicate that the neural network-based solutions are more effective than the conventional ML models in predicting employee turnover with using structured HR data. Out of the various models tested, Feedforward Neural Network was the most effective as it gave a firm predictive background and demonstrated the applicability of the features chosen.

Predictive accuracy is, however, not sufficient in practice in HR. Prediction systems of attrition should also be able to facilitate interpretability, trust, and action. Considering this need, the presented system goes beyond prediction to introduce an architecture with proven predictive intelligence into an architecture powered by LLM. The Large Language Model does

not substitute the predictive foundation but instead operates as a reasoning and explanation interface which extrapolates predictive signals into interpretation accessible to humans.

The AI Chat Widget and modular GenAI pipeline enables a natural communication process of the HR professionals with the system and abstracts the underlying complexity of the analytical process. The individual and organizational analysis depicted in Fig. 4 and Fig. 5, respectively, indicate the usefulness of this methodology because it involves a combination of risk indicators and explanatory context, which, in turn, champions the proactive retention strategies. The use of the Agent and Pipeline components further increases the scalability of the system and makes easy future system extensions.

The suggested platform does not compare the Large Language Model as an independent predictive classifier. Rather it considers the efficiency of the LLM on the basis of explanation consistency, which is the capacity of the model to offer coherent, human comprehensible explanations to aid HR in decision-making. In this regard, 25 cases of employees were chosen randomly and asked several times. In repeated queries, there was a consistent focus on dominant contributing factors (e.g., job satisfaction, workload, tenure) that the LLM focuses on that are aligned with the FNN output. The plausible explanations that were generated were found to have the right attributes of employees that led to the attrition risk, without bringing on board unfounded or contradictory variables, and therefore, guaranteeing the consistency between the prediction and the rationale.

The LLM-generated explanations are made easy to understand by the HR professionals who do not have a technical background as per the usability considerations. Clarity in the presentation of the risk indicators, contributing factors and the recommendations increases transparency and trust, consequently allowing informed and proactive decisions to be made in regard to retention. These observations affirm the appropriateness of the LLM as an explainability and decision-support subsystem to the proposed system.

VIII. CONCLUSION

This paper proposes the design of an intelligent employee retention prediction system, based on a platform integrating predictive model validation with explainable AI-driven decision support. The work overcomes one of the major limitations of traditional approaches to predict attrition: the gap existing between high performing predictive models and their practical usability by HR. Testing of the system was conducted using a synthetic employee dataset, generated to simulate realistic HR attributes and attrition patterns for enabling model validation in a way that avoids data privacy and confidentiality concerns.

During the research phase, a Feedforward Neural Network was developed on structured employee data and evaluated to validate feature relevance and predictive feasibility. The accuracy achieved is 88.7%. This outcome established a sound predictive basis for the project and informed the design of the deployed system. In its final form, rather than being a standalone classification, the predictive intelligence has been embedded in an AI Chat Widget and a GenAI pipeline.

The deployed platform applies a Large Language Model to reason analytically and provide human-understandable explanations of its reasoning to support decisions made by HR. By abstracting the analytical complexity and providing interpretable insights through an interactive interface, the system empowers HR professionals to predict attrition risks at both the individual and organizational levels and develop proactive strategies for retention.

Overall, the proposed architecture represents an illustration of how validated predictive modeling and explainable AI can be combined into one scalable, enterprise-ready platform for workforce analytics. Further research would extend the system to include unstructured data sources, such as employee feedback and surveys, and evaluate the platform across a wide range of organizational datasets to further improve generalizability and impact.

REFERENCES

- [1] Yanamala, K.K.R., 2020. Predicting employee turnover through machine learning and data analytics. *AI, IoT and the Fourth Industrial Revolution Review*, 10(2), pp.39-46.
- [2] Cheng, Y., 2024. Enhancing Employee Retention Strategies Through Advanced Predictive Analytics. *Journal of Recent Trends in Computer Science and Engineering (JRTCSE)*, 12(1), pp.1-5.
- [3] Dubey, A., Maheshwari, I. and Mishra, A., 2018. Predict Employee Retention Using Data Science. *Journal of Diversity Management (JDM)*, 5.
- [4] Yahia, N.B., Hlel, J. and Colomo-Palacios, R., 2021. From big data to deep data to support people analytics for employee attrition prediction. *Ieee Access*, 9, pp.60447-60458.
- [5] Sexton, R.S., McMurtrey, S., Michalopoulos, J.O. and Smith, A.M., 2005. Employee turnover: a neural network solution. *Computers & Operations Research*, 32(10), pp.2635-2651.
- [6] Pérez-Campdesuñer, R., De-Miguel-Guzmán, M., Sánchez-Rodríguez, A., García-Vidal, G. and Martínez-Vivar, R., 2018. Exploring neural networks in the analysis of variables that affect the employee turnover in the organization. *International Journal of Engineering Business Management*, 10, p.1847979018772738.
- [7] Ogundowale, O.A., 2023. Explaining Neural Networks and Random Forest for Employee Retention (Doctoral dissertation, Dublin, National College of Ireland).
- [8] Brown, A., Davis, N., Miller, O., Wilson, E., Smith, L. and Lopez, S., Deep Learning Techniques for Enhancing Employee Turnover Prediction Accuracy.
- [9] Nandal, M., Grover, V., Sahu, D. and Dogra, M., 2024. Employee Attrition: Analysis of Data Driven Models. *EAI Endorsed Transactions on Internet of Things*, 10.
- [10] Qadir, M., Noreen, I. and Shah, A.A., 2021. Bi-LSTM deep learning approach for employee churn prediction. *Journal of Information Communication Technologies and Robotic Applications*, pp.1-10.
- [11] Ganapathisamy, S. and Narayan, V., 2024. A Long Short-Term Memory with Recurrent Neural Network and Brownian Motion Butterfly Optimization for Employee Attrition Prediction. *International Journal of Intelligent Engineering & Systems*, 17(1).
- [12] NAJAFI ZANGANEH, S. and Basirati, M., Enhancing Attrition Prediction: A Method Integrating Independent Components and Long Short-Term Memory (Lstm) Network. Available at SSRN 4789171.
- [13] Arqawi, S.M., Rumman, M.A., Zitawi, E.A., Abunasser, B.S. and Abu-Naser, S.S., 2022. Predicting Employee Attrition and Performance Using Deep Learning. *Journal of Theoretical and Applied Information Technology*, 100(21), pp.6526-6536.
- [14] Al-Darraji, S., Honi, D.G., Fallucchi, F., Abdulsada, A.I., Giuliano, R. and Abdulmalik, H.A., 2021. Employee attrition prediction using deep neural networks. *Computers*, 10(11), p.141.
- [15] Ponnuru, S.A., Merugumala, G., Padigala, S., Vanga, R. and Kantapalli, B., 2020. Employee attrition prediction using logistic regression. *Int. J. Res. Appl. Sci. Eng. Technol*, 8(5), pp.2871-2875.
- [16] Setiawan, I.A., Suprihanto, S., Nugraha, A.C. and Hutahean, J., 2020, April. HR analytics: Employee attrition analysis using logistic regression. In IOP conference series: materials science and engineering (Vol. 830, No. 3, p. 032001). IOP Publishing.
- [17] Shankar, R.S., Rajanikanth, J., Sivaramaraju, V.V. and Murthy, K.V.S.S.R., 2018, July. Prediction of employee attrition using datamining. In 2018 ieee international conference on system, computation, automation and networking (icscan) (pp. 1-8). IEEE.
- [18] Yang, S. and Islam, M.T., 2020. IBM employee attrition analysis. *arXiv preprint arXiv:2012.01286*.
- [19] Khare, R., Kaloya, D., Choudhary, C.K. and Gupta, G., 2011, January. Employee attrition risk assessment using logistic regression analysis. In Proceedings of the International Conference Advanced Data Analytics Business Analytics Intelligence (pp. 1-33).
- [20] Nimmagadda, S., Lakshmi, R.J. and Kishan, S.R., 2024. HR Analytics For Predicting Employee Attrition with Logistic Regression. *Journal of Informatics Education and Research*, 4(2).
- [21] Durante, M.K., 2002. A logistic regression analysis of biodata and personality predictors of job retention among detention officers. *Arizona State University*.
- [22] Ghazi, A., Ismail Elsayed, S. and Elsayed Khedr, A., 2021. A proposed model for predicting employee turnover of information technology specialists using data mining techniques. *International journal of electrical and computer engineering systems*, 12(2), pp.113-121.
- [23] Zhang, H., Xu, L., Cheng, X., Chao, K. and Zhao, X., 2018, September. Analysis and prediction of employee turnover characteristics based on machine learning. In 2018 18th International Symposium on Communications and Information Technologies (ISCIT) (pp. 371-376). IEEE.
- [24] Quinn, A., Rycraft, J.R. and Schoech, D., 2002. Building a model to predict caseworker and supervisor turnover using a neural network and logistic regression. *Journal of Technology in Human Services*, 19(4), pp.65-85.
- [25] Madariaga, R., Oller, R. and Martori, J.C., 2018. Discrete choice and survival models in employee turnover analysis. *Employee Relations*, 40(2), pp.381-395.
- [26] Poornappriya, T.S. and Gopinath, R., 2021. Employee attrition in human resource using machine learning techniques. *Webology*, 18(6).
- [27] Mahajan, R., 2021. Employee Churn Prediction using Logistic Regression and Support Vector Machine.
- [28] Javer, M., Gupta, Y. and Mishra, A.K., 2019, November. Employee turnover prediction system. In 2019 4th International Conference on Information Systems and Computer Networks (ISCON) (pp. 391-394). IEEE.
- [29] Ponnuru, S.A., Merugumala, G., Padigala, S., Vanga, R. and Kantapalli, B., 2020. Employee attrition prediction using logistic regression. *Int. J. Res. Appl. Sci. Eng. Technol*, 8(5), pp.2871-2875.
- [30] Nguyen, C., 2020. The impact of training and development, job satisfaction and job performance on young employee retention. *Job Satisfaction and Job Performance on Young Employee Retention* (May 1, 2020).
- [31] Dubey, A., Maheshwari, I. and Mishra, A., 2018. Predict Employee Retention Using Data Science. *Journal of Diversity Management (JDM)*, 5.
- [32] Jain, R. and Nayyar, A., 2018, November. Predicting employee attrition using xgboost machine learning approach. In 2018 international conference on system modeling & advancement in research trends (smart) (pp. 113-120). IEEE.
- [33] Wild Ali, A.B., 2021. Prediction of employee turn over using random forest classifier with intensive optimized PCA algorithm. *Wireless Personal Communications*, 119(4), pp.3365-3382.
- [34] Jansen, J.A., 2022. Predictors of turnover intent in the executive branch: A multiple logistic regression analysis using federal employee viewpoint survey indices. *Hood College*.

[35] Karp, A.H., 1998. Using logistic regression to predict customer retention. In Proceedings of the Eleventh Northeast SAS Users Group Conference. <http://www.lexjansen.com/nesug/nesug98/solu/p095.pdf> (Vol. 15).

[36] Chang, S., Saad, H.S., Aisyah, N.Q., Yee, S.P. and Selvam, S., 2018. Why do People Stay? A Study on Factors Influencing Employees Retention in the Logistics Industry.

[37] Rane, N.L., Paramesha, M., Choudhary, S.P. and Rane, J., 2024. Artificial intelligence, machine learning, and deep learning for advanced business strategies: a review. *Partners Universal International Innovation Journal*, 2(3), pp.147-171.

[38] Karimi, M. and Viliyani, K.S., 2024. Employee turnover analysis using machine learning algorithms. *arXiv preprint arXiv:2402.03905*.

[39] Park, J., Feng, Y. and Jeong, S.P., 2024. Developing an advanced prediction model for new employee turnover intention utilizing machine learning techniques. *Scientific Reports*, 14(1), p.1221.

[40] Lim, C.S., Malik, E.F., Khaw, K.W., Alnoor, A., Chew, X., Chong, Z.L. and Al Akasheh, M., 2024. Hybrid GA-DeepAutoencoder-KNN Model for Employee Turnover Prediction. *Statistics, Optimization & Information Computing*, 12(1), pp.75-90.

[41] Marquez, B.Y., Realyvásquez-Vargas, A., Lopez-Esparza, N. and Ramos, C.E., 2024. Application of ordinary least squares regression and neural networks in predicting employee turnover in the industry. *Archives of Advanced Engineering Science*, 2(1), pp.30-36.

[42] Shafie, M.R., Khosravi, H., Farhadpour, S., Das, S. and Ahmed, I., 2024. A cluster-based human resources analytics for predicting employee turnover using optimized Artificial Neural Networks and data augmentation. *Decision Analytics Journal*, 11, p.100461.

[43] Yin, Z., Hu, B. and Chen, S., 2024. Predicting employee turnover in the financial company: A comparative study of catboost and xgboost models. *Applied and Computational Engineering*, 100, pp.86-92.

[44] Gazi, M.S., Nasiruddin, M., Dutta, S., Sikder, R., Huda, C.B. and Islam, M.Z., 2024. Employee Attrition Prediction in the USA: A Machine Learning Approach for HR Analytics and Talent Retention Strategies. *Journal of Business and Management Studies*, 6(3), pp.47-59.

[45] Zhao, Y., Hryniweski, M.K., Cheng, F., Fu, B. and Zhu, X., 2019. Employee turnover prediction with machine learning: A reliable approach. In *Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2* (pp. 737-758). Springer International Publishing.

[46] Yahia, N.B., Hlel, J. and Colomo-Palacios, R., 2021. From big data to deep data to support people analytics for employee attrition prediction. *Ieee Access*, 9, pp.60447-60458.

[47] Yigit, I.O. and Shourabizadeh, H., 2017, September. An approach for predicting employee churn by using data mining. In *2017 international artificial intelligence and data processing symposium (IDAP)* (pp. 1-4). IEEE.

[48] El-Rayes, N., Fang, M., Smith, M. and Taylor, S.M., 2020. Predicting employee attrition using tree-based models. *International Journal of Organizational Analysis*, 28(6), pp.1273-1291.

[49] Cheng, Y., 2024. Enhancing Employee Retention Strategies Through Advanced Predictive Analytics. *Journal of Recent Trends in Computer Science and Engineering (JRTCSE)*, 12(1), pp.1-5.

[50] Gao, X., Wen, J. and Zhang, C., 2019. An improved random forest algorithm for predicting employee turnover. *Mathematical Problems in Engineering*, 2019(1), p.4140707.

[51] Ajit, P., 2016. Prediction of employee turnover in organizations using machine learning algorithms. *algorithms*, 4(5), p.C5.

[52] Younis, S., Ahsan, A. and Chatteur, F.M., 2023. An employee retention model using organizational network analysis for voluntary turnover. *Social network analysis and mining*, 13(1), p.28.

[53] Mohammad, D.R., Priya, S.L., Thulasimani, T., Mann, S., Mann, S. and Kalra, G., 2025. Analysis and prediction of employee turnover characteristics based on LSTM-RNN-HMM model. In *Hybrid and Advanced Technologies* (pp. 334-339). CRC Press.

[54] Subhashini, M. and Gopinath, R., 2020. Employee attrition prediction in industry using machine learning techniques. *International Journal of Advanced Research in Engineering and Technology*, 11(12), pp.3329-3341.

[55] Wijaya, D., DS, J.H., Barus, S., Pasaribu, B., Sirbu, L.I. and Dharma, A., 2021. Uplift modeling VS conventional predictive model: A reliable machine learning model to solve employee turnover. *International Journal of Artificial Intelligence Research*, 5(1), pp.53-64.

[56] Zhang, H., Xu, L., Cheng, X., Chao, K. and Zhao, X., 2018, September. Analysis and prediction of employee turnover characteristics based on machine learning. In *2018 18th International Symposium on Communications and Information Technologies (ISCIT)* (pp. 371-376). IEEE.