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Abstract—Spatial variability in soil fertility constrains 

productivity in intensive shallot farming, yet fertilizer is 

frequently applied uniformly across fields. This practice results in 

nutrient inefficiencies, increased costs, and heightened 

environmental risks. This study introduces a fertilizer 

requirement mapping framework utilizing Fuzzy C-Means (FCM) 

clustering, a machine learning technique for data grouping, 

applied to in-situ measurements of soil Nitrogen (N), Phosphorus 

(P), and Potassium (K). The framework was evaluated in a 500 × 

500 m shallot field in Srikayangan, Kulon Progo, Indonesia, 

subdivided into 10 × 10 m management blocks suitable for 

smallholder operations. Soil NPK levels were measured using IoT 

sensor nodes and georeferenced with GNSS, while high-resolution 

RGB imagery from a UAV provided spatial context. Normalized 

NPK data were clustered with FCM to delineate fertility zones 

exhibiting nutrient differences. To operationalize clustering 

results, a nutrient-priority decision logic identified the most 

limiting nutrient (N, P, or K) for each block. Fertilizer 

recommendation points were visualized on a UAV-derived 

orthomosaic map to facilitate interpretation and field application. 

The results indicate that this approach effectively captures 

gradual fertility transitions and produces actionable fertilizer 

zones for site-specific nutrient management (SSNM) in 

smallholder systems. The study demonstrates the practical 

integration of fuzzy clustering, IoT-based soil sensing, and UAV 

mapping to inform precision agriculture decisions. 
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I. INTRODUCTION 

Soil fertility variability represents a significant constraint to 
productivity and sustainability in intensive vegetable farming. In 
many fields, soil properties such as nutrient availability, texture, 
and organic matter content exhibit substantial variation over 
short distances. Despite this, fertilizer is typically applied 
uniformly. This disconnect between spatial variability and 
uniform management leads to inefficient nutrient use, increased 
costs, and elevated risks of environmental impacts, including 
nutrient leaching and accumulation [1], [2]. 

Shallot (Allium cepa var. aggregatum) cultivation, prevalent 
in Indonesia and Southeast Asia, depends on effective fertilizer 
management to achieve optimal yield and bulb quality. Grown 
in narrow beds with intensive inputs, shallots are particularly 
sensitive to nutrient imbalances. Nitrogen (N), Phosphorus (P), 
and Potassium (K) are the primary drivers of growth, root 
development, bulb formation, and stress resistance. The 
distribution of these nutrients varies according to soil conditions, 

irrigation practices, and fertilization history, resulting in 
significant variability even within smallholder plots [1]. 

Precision agriculture and site-specific nutrient management 
(SSNM) address this challenge by tailoring fertilizer inputs to 
spatially variable soil and crop conditions. A central aspect of 
SSNM involves delineating relatively homogeneous 
management zones to enable differentiated fertilizer application 
[1], [3]. Early research employed dense grid-based soil sampling 
and geostatistical interpolation to generate continuous fertility 
maps. Although effective, these methods often demand 
considerable sampling effort and may not readily translate into 
fertilizer decision rules that are easily adopted by farmers [3]. 

Clustering-based methods group spatial units—defined 
areas within a field—into management zones based on similar 
soil or crop attributes. Fuzzy C-Means (FCM) clustering, a 
technique that allows data points to partially belong to multiple 
groups, is widely used in soil fertility assessment, as it captures 
gradual transitions and inherent uncertainty in soil properties. 
Unlike hard clustering (which assigns each spatial unit to only 
one group), FCM gives each spatial unit a degree of membership 
in multiple clusters, reflecting spatial continuity. Studies have 
used FCM to delineate management zones based on soil 
chemical properties (e.g., nutrient levels), electrical 
conductivity, yield data, and remote sensing (data collected from 
satellite or aerial images) across cropping systems [3], [8], [9]. 

Recent research extends FCM zoning by adding multi-
nutrient data, principal component analysis, and geospatial 
techniques. These support variable-rate fertilization and site-
specific management. For example, fuzzy clustering has 
generated nutrient-based zones that capture macro- and 
micronutrient variability, thereby improving fertilizer targeting 
[4]-[7]. These studies confirm FCM's suitability for capturing 
soil heterogeneity and supporting differentiated management. 
However, most prior work focuses on general fertility zones or 
composite indices rather than nutrient-specific fertilizer 
priorities. 

At the same time, advances in agricultural sensing 
technology enable higher-resolution data for precision 
agriculture [20]. Internet of Things (IoT)-based soil sensors [14] 
provide near-real-time soil measurements at fine spatial 
resolution, reducing reliance on labor-intensive laboratory 
analyses [10], [15], [19]. Unmanned aerial vehicle (UAV) 
remote sensing also supplies high-resolution information on 
field structure and crop condition, supporting detailed mapping 
at the scale of individual beds or plots [11]-[13], [18]. Recent 
studies highlight the promise of integrating IoT sensing, UAV 
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imagery, and data analytics into decision-support systems for 
precision agriculture [17], [18]. 

Despite these advancements, a gap remains between soil 
data analysis and the generation of actionable fertilizer 
recommendations. Few studies have demonstrated direct 
integration of fuzzy clustering with nutrient-priority logic for N, 
P, or K at the level of individual spatial units. Additionally, most 
existing applications operate at coarse spatial scales, which 
limits their applicability in smallholder vegetable systems where 
management occurs at the bed scale. 

This study addresses these gaps by proposing a spatial 
classification and decision-support method for mapping 
fertilizer needs. The method uses Fuzzy C-Means clustering of 
soil NPK data. It is applied to a 500 × 500 m shallot field in 
Srikayangan, Kulon Progo, Indonesia. The field is divided into 
10 × 10 m blocks for smallholder bed-scale use. Soil N, P, and 
K were measured with IoT sensors and combined with high-
resolution UAV imagery. FCM clustering on normalized NPK 
data created fertility zones. A nutrient-priority logic then found 
the most limiting nutrient (N, P, or K) at each block. 

This study offers three primary contributions. First, it 
develops a nutrient-priority logic that translates fuzzy 
membership degrees into actionable recommendations. Second, 
it applies FCM clustering at a fine spatial scale consistent with 
smallholder bed operations. Third, it integrates IoT-based soil 
sensing and UAV imagery into a straightforward, map-based 
decision-support output. 

This study does not introduce a new clustering algorithm. 
Rather, it enhances the practicality of FCM-based soil fertility 
zones by linking fuzzy clustering results with site-specific 
fertilizer prescriptions. The proposed approach is adaptable to 
various crops, regions, and sensor configurations where soil 
nutrient variability necessitates more efficient fertilizer 
management. 

II. METHODOLOGY 

A. Study Area and Data Acquisition 

The study was conducted in an intensively cultivated 
vegetable field used for seasonal shallot and leafy vegetable 
production in Desa Srikayangan, Kecamatan Sentolo, 
Kabupaten Kulon Progo, Yogyakarta, Indonesia. The field in 
our experiment spans approximately 500 × 500 m and is 
subdivided into narrow beds and furrows, following local 
farming practices. The objective of the data acquisition 
campaign was to capture the spatial variability of soil 
macronutrients—Nitrogen (N) [16], Phosphorus (P), and 
Potassium (K), which are essential nutrients plants require in 
relatively large amounts—and relate it to crop-condition 
patterns observable from high-resolution UAV (unmanned 
aerial vehicle) imagery. 

A regular sampling grid with a nominal spacing of 10 × 10 
m was designed to cover the entire field. Each grid cell (block) 
was represented by a single sampling point located near the 
center of the crop bed. At every sampling point, an in-situ NPK 
soil sensor probe was inserted vertically into the topsoil (0–20 
cm) after removing surface residues and ensuring good contact 
between the probe and the soil [10]. 

For each point, the probe was held in place until the readings 
stabilized, and the values of N, P, and K were recorded. To 
reduce random noise, the insertion and reading process was 
repeated two or three times within a radius of about 1 m, and the 
average of these readings was used as the NPK value for the 
corresponding block. Between sampling points, the probe was 
cleaned to avoid cross-contamination. 

To obtain reference values and assess the consistency of 
sensor readings, composite soil samples were collected from a 
subset of grid points. These samples were air-dried and analyzed 
in the laboratory using standard procedures [4], [5]. The 
resulting dataset thus consists of triplets, each associated with 
georeferenced coordinates for a sampling location. 

The geographic coordinates of all sampling points were 
measured using a GNSS receiver mounted on a survey pole, 
ensuring sub-meter positional accuracy. The in-field NPK 
sensing and GNSS positioning procedure is illustrated in Fig. 1. 

 
Fig. 1. In-situ soil NPK data acquisition and GNSS-based georeferencing 

during field sampling. 

To obtain a spatially continuous representation of crop 
condition and field structure, aerial images of the study area 
were acquired using a fixed-wing unmanned aerial vehicle 
(UAV) equipped with a nadir-looking RGB camera (Fig. 2). The 
UAV was programmed to fly an autonomous mission over the 
500 × 500 m field along parallel flight lines. The flight altitude 
was set to approximately 100–120 m above ground level, 
resulting in a ground sampling distance of a few centimeters per 
pixel [11],[13]. 

Forward and side overlaps were configured to at least 70% 
and 60%, respectively, to ensure reliable image matching. 
Several ground control points (GCPs) were placed at clearly 
visible locations within and around the field and surveyed using 
the same GNSS equipment as the soil sampling points. These 
GCPs were later used to improve the geometric accuracy of the 
photogrammetric products. 

The raw UAV images were processed using a standard 
structure-from-motion (SfM) photogrammetry workflow, which 
includes feature detection and matching, bundle adjustment, 
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dense point cloud generation, and orthorectification. The 
resulting orthomosaic was georeferenced in the same projected 
coordinate system as the GNSS measurements. The 
georeferenced soil NPK points were then overlaid on the 
orthomosaic in a geographic information system (GIS), and each 
10 × 10 m block was associated with both its NPK values and 
its corresponding location in the UAV image. This integration 
enabled subsequent Fuzzy C-Means clustering on the block-
level NPK data and the visualization of fertilizer 
recommendation points directly on the high-resolution UAV 
map. 

 
Fig. 2. Fixed-wing UAV platform used for high-resolution RGB image 

acquisition. 

B. Data Preprocessing and Block Generation 

To support block-level decision making, the study area was 
discretized into a regular grid of 10 × 10 m cells, hereafter 
referred to as blocks. Each soil sampling point was assigned to 
its corresponding block based on spatial location. For blocks 
with more than one sample, the average values of N, P, and K 
were computed. Blocks without observations were either 
excluded from the analysis or filled using simple spatial 
interpolation (nearest neighbor), depending on their position and 
the density of surrounding samples. 

The raw N, P, and K values may have different units and 
numerical ranges. To prevent any single nutrient from 
dominating the clustering process, all variables were normalized 
prior to analysis. In this study, min–max normalization was 
used: 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−min⁡(𝑥𝑗)

max⁡(𝑥𝑗)−min⁡(𝑥𝑗)
Where 𝑥𝑖𝑗  is the original value of 

nutrient 𝑗 ∈ {𝑁,𝑃,𝐾} in block 𝑖, and 𝑥𝑖𝑗
′  is the normalized value 

within the interval [0,1] . Each block is then represented as a 
three-dimensional feature vector. 

𝒙𝑖 = [𝑁𝑖
′, ⁡𝑃𝑖

′, ⁡𝐾𝑖
′] 

Basic quality control was applied to detect and handle 
outliers (e.g., physically unrealistic values due to sensor error). 
Outliers were inspected against the laboratory reference data and 
field notes. If a value was clearly erroneous and could not be 
confirmed, the corresponding block was removed from further 
analysis. 

C. Fuzzy C-Means Clustering 

The core of the proposed approach is the use of the Fuzzy C-
Means (FCM) algorithm to partition the blocks into a set of soil 
fertility clusters based on their normalized N, P, and K values. 
FCM seeks to minimize the following objective function: 

𝐽𝑚=∑∑𝑢𝑖𝑘
𝑚  ∥ 𝐱𝑖 − 𝐯𝑘 ∥

2

𝑐

𝑘=1

𝑛

𝑖=1

 

where, 

• 𝑛 is the number of blocks, 

• 𝑐 is the number of clusters, 

• 𝑢𝑖𝑘⁡is the membership degree of block 𝑖 in cluster 𝑘, 

• 𝑚 > 1 is the fuzziness exponent (typically 𝑚 = 2), 

• 𝒗𝑘 is the center of cluster 𝑘, and 

• ∥⋅∥ denotes the Euclidean norm. 

In this study, the number of clusters (c) was chosen to 
represent distinct patterns of nutrient status in the field (e.g., 
three clusters to capture relatively low, medium, and high 
fertility combinations or characteristic N–P–K imbalances). The 
algorithm proceeds iteratively as follows: 

• Initialization: Initialize the membership matrix U[⁡=

⁡uik]⁡with random values such that ∑ uik
/c
k⁡=⁡1 ⁡= ⁡1⁡for all 

i. 

• Cluster center update: Compute cluster centers 

𝐯𝑘 =
∑ 𝑢𝑖𝑘

𝑚 𝐱𝑖
𝑛

𝑖=1

∑ 𝑢𝑖𝑘
𝑚𝑛

𝑖=1

 

for each cluster 𝑘. 

• Core Membership update: Update membership degrees 

𝑢𝑖𝑘 =
1

∑ (
∥ 𝐱𝑖 − 𝐯𝑘 ∥
∥ 𝐱𝑖− 𝐯𝑗 ∥

)

2
𝑚−1

𝑐

𝑗=1

 

for all blocks 𝑖 and clusters 𝑘. 

• Stopping criterion: Repeat steps 2–3 until the change in 
the membership matrix between two successive 
iterations falls below a small threshold 𝜀(e.g., 10−5) or a 
maximum number of iterations is reached. 

The implementation was carried out in Python using a 
custom FCM routine and executed in Google Colab. The output 
of this step is a set of cluster centers {𝐯𝑘}and a membership 
matrix that describes the degree to which each block belongs to 
each cluster. 

D. Derivation of Nutrient Priority Classes 

To transform the fuzzy clusters into actionable fertilizer 
recommendations, the nutrient composition of each cluster 
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center was analyzed. For each cluster 𝑘, the relative status of N, 
P, and K was assessed by comparing the normalized values 𝑁𝑘

′ , 
𝑃𝑘
′ , and 𝐾𝑘

′ in v𝑘 to the field-wide distribution or target fertility 
levels. Clusters in which a particular nutrient exhibits 
comparatively low values were interpreted as zones where that 
nutrient is more likely to be limiting. 

A simple decision rule was then defined to assign a nutrient 
priority to each block: 

• For each cluster 𝑘, determine the “most limiting” nutrient 
𝑗𝑘, which is the nutrient with the lowest normalized value 
in 𝐯𝑘. 

• For each block 𝑖 , compute a nutrient priority score by 
combining its membership degrees with the cluster-level 
limiting nutrients. For example, the priority score for 
nutrient 𝑗in block 𝑖 can be defined as, 

𝑆𝑖𝑗 = ∑ 𝑢𝑖𝑘
𝑘:𝑗𝑘=𝑗

 

• Assign block 𝑖  to the nutrient with the highest score 
arg⁡ max⁡𝑗𝑆𝑖𝑗 , yielding one of three recommendation 

classes: N-priority, P-priority, or K-priority. 

This procedure preserves the fuzzy nature of the underlying 
clusters while providing a crisp, interpretable label for 
operational use. Blocks with similar scores for multiple nutrients 
can be flagged as mixed or flexible zones for further agronomic 
evaluation if needed. 

E. Spatial Mapping and Visualization 

The FCM cluster labels (dominant cluster per block) and the 
nutrient-priority classes were joined back to the 10 × 10 m 
spatial grid and visualized in a GIS. The fertility clusters were 
displayed as a zonation map of the shallot field. At the same 
time, the nutrient-priority classes were represented in a separate 
map showing whether N, P, or K should be emphasized in each 
block. 

To make the output usable in the field, representative 
fertilizer recommendation points were selected from within 
contiguous patches of each nutrient-priority class. In each patch, 
a few blocks with the highest nutrient-priority scores were 
chosen as application points. These points were then overlaid on 
the UAV orthomosaic, allowing farmers and field technicians to 
locate the recommended areas directly on a detailed image of the 
shallot beds. The final maps form the basis for suggesting 
differentiated fertilizer rates (e.g., higher urea doses at N-
priority points, higher SP-36 at P-priority points, and higher KCl 
at K-priority points) instead of a single uniform NPK 
recommendation for the whole field. 

III. RESULTS AND ANALYSIS 

A. Fuzzy C-Means Zoning of Soil Fertility 

The Fuzzy C-Means (FCM) algorithm successfully 
partitioned the 500 × 500 m field into three main fertility zones 
based on the N, P, and K measurements at each 10 × 10 m block. 
Visual inspection of the resulting clusters (Fig. 3) shows that the 
field is clearly structured into red, green, and blue zones with 
gradual transitions rather than abrupt boundaries. 

Cluster-level analysis indicates that: 

• Cluster 1 (Red) corresponds to blocks with high N and 
relatively low K. 

• Cluster 2 (Green) represents blocks with high K but 
lower N. 

• Cluster 3 (Blue) is characterized by relatively high P with 
more balanced N and K values. 

These patterns align with the agronomic interpretation in the 
field, where some areas receive high N fertilization but remain 
undersupplied with P and K. In contrast, other areas have 
accumulated K from previous applications. 

 
Fig. 3. Soil fertility zoning based on Fuzzy C-Means clustering. 

The quality of the clustering was evaluated using two 
internal indices. The Silhouette Score of 0.61 and Dunn Index 
of 0.03 suggest that the three clusters are reasonably well 
separated while still capturing the gradual variability that exists 
in real soil conditions. These values suggest that FCM offers a 
reliable representation of the underlying fertility structure and is 
suitable as a basis for informed spatial decision-making. 

B. Spatial Pattern of Nutrient Deficiencies 

By comparing the cluster centers with the most fertile 
reference condition, it is possible to identify which parts of the 
field are more likely to be deficient in specific nutrients. The 
cluster map in Fig. 4 shows that: 

• The western part of the field is dominated by Cluster 2 
(green), indicating high K but relatively low N, and 
simultaneously showing P deficiency in some blocks. 

• The eastern part of the field is dominated by Cluster 1 
(red), where N is high but P and K are lower, suggesting 
a need to supplement P and K rather than N. 

• Cluster 3 (blue) appears in intermediate zones with 
higher P and relatively balanced N and K, acting as a 
transition between the red and green zones. 

This pattern confirms that nutrient limitations are not 
uniform: the west is mainly limited by P and K, whereas the east 
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is more constrained by N. Such differences justify the need for 
site-specific fertilizer management instead of uniform 
application. Table I summarizes the qualitative interpretation of 
each cluster based on the N, P, and K status. 

TABLE I.  INTERPRETATION OF FCM FERTILITY CLUSTERS 

Cluste

r 

Dominan

t color 

N 

status 

P 

status 

K 

status 

Interpretatio

n 

C1 Red High 

Low–

mediu

m 

Low 

N-rich, K-

deficient zone 

(needs P and 

K) 

C2 Green 
Low–

medium 

Low–

mediu

m 

High 
K-rich, N-

deficient zone 

C3 Blue 
Mediu

m 
High 

Mediu

m 

P-rich, 

relatively 

balanced, and 

stable zone 

C. Fertilizer Recommendation Points 

To translate the cluster information into operational 
recommendations, fertilizer application points were determined 
by selecting blocks with the highest nutrient-priority scores 
inside each deficiency zone. These points are located near the 
centers of areas with the strongest shortage, representing 
locations where additional fertilizer will have the most 
significant effect while still covering surrounding blocks. 

The resulting fertilizer recommendation map is shown in 
Fig. 4. The background colors represent the FCM clusters as in 
Fig. 3, while overlaid symbols indicate specific application 
points for each nutrient: 

• Red squares mark N application points, where additional 
urea is recommended. 

• Blue triangles mark P application points, where SP-36 is 
prioritized. 

• Green circles mark K application points, where KCl is 
prioritized. 

 
Fig. 4. Fertilizer recommendation points over the FCM zonation map. 

Based on the nutrient-priority classification, the 
corresponding fertilizer types and application rates are 
summarized in Table II. 

TABLE II.  FERTILIZER RECOMMENDATION RATES BY NUTRIENT 

PRIORITY 

Nutrient 

priority 

Symbol/color in Fig. 

4 

Recommended fertilizer 

and rate (per ha) 

N-priority Red square Urea 300–350 kg/ha  

P-priority Blue triangle SP-36 100–120 kg/ha  

K-priority Green circle KCl 150–200 kg/ha  

These recommended doses are intended for the core 
application points and can be adjusted proportionally for the 
surrounding blocks, depending on equipment capability and 
field conditions. 

D. Visualization on High-Resolution Spatial Agricultural 

Map 

To make the results directly interpretable by farmers and 
local extension workers, the nutrient-priority recommendation 
points were finally overlaid on a high-resolution aerial 
orthomosaic of the study area (Fig. 5). The orthomosaic was 
generated from UAV imagery and represents individual crop 
beds and management units within the 500 × 500 m field. 

The coordinates of the 10 × 10 m blocks and the selected 
fertilizer application points (Section III-C) were transformed 
into the same spatial reference system as the orthomosaic. Each 
point was then plotted on top of the image and symbolized 
according to its recommended nutrient: 

• blocks with N-priority were marked as N application 
points, 

• blocks with P-priority were marked as P application 
points, and 

• Blocks with K-priority were marked as K application 
points. 

 
Fig. 5. UAV orthomosaic with FCM-based fertilizer recommendation points. 
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Fig. 5 shows that many N-priority points coincide with 
visually lighter or less vigorous plots in the eastern portion of 
the field. In contrast, P- and K-priority points are concentrated 
in the western and central plots where crop growth appears 
uneven or patchy. This spatial correspondence between visual 
crop condition and the FCM-based nutrient recommendations 
provides an additional qualitative validation of the proposed 
method. 

By combining the orthomosaic with the fertilizer 
recommendation points, the resulting map becomes a practical 
tool for field operations: farmers can visually locate specific 
beds or parcels that require N, P, or K and adjust their 
applications accordingly. The map can also be integrated into 
mobile or web-based interfaces, allowing operators to navigate 
to the recommended positions using GPS while viewing the 
underlying UAV image. 

E. Discussion 

The FCM-based spatial classification clearly revealed that 
the 500 × 500 m field cannot be treated as a uniform 
management unit. The three clusters obtained from NPK data 
describe distinct fertility regimes that are consistent with both 
the historical fertilization practices and the visual crop patterns 
observed in the UAV imagery. Cluster 1 (red) represents blocks 
with relatively high N. However, Cluster 2 (green) corresponds 
to blocks with high K but lower N, and Cluster 3 (blue) contains 
blocks with relatively high P and more balanced N and K. These 
patterns suggest that the field has experienced heterogeneous 
nutrient accumulation, with specific areas receiving repeated N 
applications while others have accumulated K or P. 

When the cluster information is translated into nutrient-
priority classes, a transparent spatial gradient emerges: the 
western part of the field is dominated by blocks that require 
additional phosphorus (P) and potassium (K). In contrast, the 
eastern part shows a concentration of N-priority blocks. The 
central area is characterized by P-priority points associated with 
Cluster 3, which has a higher P. However, only moderate N and 
K. This configuration implies that a uniform NPK 
recommendation would inevitably over-fertilize some zones 
(e.g., N in the western plots) and under-fertilize others (e.g., P 
and K in the west, N in the east). Instead, the proposed method 
provides differentiated targets: more P and K in the west, more 
N in the east, and fine-tuned doses in the transition zones. 

A key advantage of FCM in this context is its ability to 
handle gradual transitions and uncertainty. Traditional hard 
clustering or simple thresholding of nutrient values would force 
each block into a single, crisp category, creating sharp 
boundaries between zones that may not exist in reality. In 
contrast, FCM assigns membership degrees to multiple clusters 
for each block. The nutrient-priority scores derived from these 
memberships enable the method to highlight "core" deficiency 
zones, where a single nutrient is clearly limiting, while also 
acknowledging mixed or ambiguous areas. This is reflected in 
the placement of fertilizer recommendation points, which tend 
to appear in the centers of homogeneous patches, rather than 
directly on the boundaries between different fertility regimes. 
This is agronomically reasonable because edge blocks can often 
be managed with intermediate or blended doses. 

The overlay of fertilizer recommendation points on the UAV 
orthomosaic further strengthens the interpretation. In the eastern 
plots where N-priority points cluster, the imagery shows lighter 
coloration and less vigorous canopy growth, typical of N 
deficiency. Conversely, several P- and K-priority points are 
located in western or central plots, where the vegetation pattern 
is patchy or where crop rows appear uneven. The spatial 
agreement between model-derived recommendations and visual 
symptoms from high-resolution imagery serves as an 
independent, qualitative validation of the approach. It also 
demonstrates how proximal sensing (soil sampling and FCM 
analysis) and remote sensing (UAV imagery) can be combined 
into a single, intuitive decision-support product for farmers. 

From a management perspective, the generated maps enable 
site-specific fertilization at a resolution that is compatible with 
the scale of individual beds or farmer-owned subplots. By 
applying urea only around the N-priority points in the east (300–
350 kg/ha), and focusing SP-36 and KCl around P- and K-
priority points in the west and center, the farmer can reallocate 
a fixed fertilizer budget more efficiently rather than increasing 
total input. This has two important implications: 1) potential 
economic benefits, through savings in fertilizer where it is not 
needed and yield gains where deficiencies are corrected; and 2) 
environmental benefits, by reducing the risk of nitrate leaching 
and K or P accumulation in already fertile zones. Although yield 
measurements are not yet included in this study, the spatial 
pattern of recommendations is consistent with these expected 
outcomes. 

At the same time, several limitations should be 
acknowledged. First, the analysis is based on a single sampling 
campaign, which captures spatial but not temporal variability; 
nutrient dynamics across seasons or cropping cycles are not yet 
modeled. Second, the block size of 10 × 10 m represents a 
compromise between spatial detail and sampling feasibility. 
Smaller blocks could reveal finer heterogeneity but would 
require more intensive sampling, while larger blocks might 
mask important within-block variability. Third, the fertilizer 
doses used in the recommendation map are derived from general 
agronomic guidelines; they would ideally be adjusted using 
response curves or economic optimization to quantify the 
benefits of site-specific management fully. Finally, the 
clustering quality, although supported by the Silhouette Score 
(0.61) and Dunn Index (0.03), could be further evaluated by 
comparing alternative clustering methods (e.g., k-means, 
Gaussian mixture models) and by validating the zones against 
actual yield data. 

Despite these limitations, the study demonstrates that 
integrating FCM clustering with nutrient-priority analysis and 
UAV imagery can produce operationally meaningful fertilizer 
recommendation maps. The methodology is generic and can be 
extended to other fields, additional nutrients, or different sensor 
sources, and can be embedded into an IoT-based platform, such 
as Agri Watch Net, to support near-real-time decision-making. 
Future work will focus on multi-seasonal data, yield-based 
validation, and coupling the nutrient-priority maps with 
variable-rate application technologies to quantify the economic 
and environmental benefits of adopting this approach. 
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Although this study is demonstrated using a shallot field in 
Srikayangan, Indonesia, the contribution of this work is not 
limited to a specific crop or geographic context. The proposed 
framework is methodologically generic and can be applied to 
any agricultural system where 1) soil macronutrients can be 
measured at spatial sampling points (via sensors or laboratory 
analysis), 2) a management grid can be defined according to 
operational field units, and 3) spatial transitions in soil fertility 
are expected. The use of Fuzzy C-Means clustering combined 
with nutrient-priority decision logic is independent of crop type 
and location, and therefore transferable to other horticultural 
crops, cereal systems, and smallholder or commercial farming 
contexts. In this sense, the Srikayangan field serves as a 
representative testbed to demonstrate the operational feasibility 
of translating fuzzy soil fertility classification into actionable 
fertilizer recommendations, rather than as a location-specific 
solution. 

IV. CONCLUSION 

This study presented a spatial classification and decision-
support framework for fertilizer requirement mapping based on 
Fuzzy C-Means clustering of soil NPK data integrated with IoT-
based sensing and UAV imagery. By applying the proposed 
approach at a fine spatial resolution compatible with smallholder 
bed-scale management, the results demonstrate that soil fertility 
within a single field can exhibit substantial spatial 
differentiation, making uniform fertilizer application inefficient 
and potentially wasteful. 

The use of fuzzy clustering enables the representation of 
gradual transitions in soil nutrient availability, while the 
introduced nutrient-priority decision logic bridges the gap 
between fuzzy classification outputs and actionable fertilizer 
recommendations. Rather than producing only generalized 
fertility zones, the proposed framework identifies which 
macronutrient—Nitrogen, Phosphorus, or Potassium—should 
be prioritized at each management block, thereby enhancing the 
operational relevance of site-specific nutrient management. 

Although the framework was demonstrated using a shallot 
field in Srikayangan, Indonesia, its contribution lies in the 
methodological integration and decision-support logic rather 
than the specific field context. The approach is generic and 
transferable to other crops, regions, and agricultural systems 
where spatial variability in soil nutrients necessitates more 
targeted fertilizer management. By combining fuzzy clustering 
with high-resolution sensing and intuitive spatial visualization, 
this work provides a practical pathway for translating soil data 
into actionable management decisions. 

Overall, the proposed framework advances the practical 
usability of FCM-based soil fertility zonation for precision 
agriculture by linking data-driven spatial analysis with fertilizer 
decision-making, thereby supporting more efficient, 
economical, and sustainable nutrient management practices. 

V. FUTURE WORK 

Future research will focus on extending the proposed 
framework in several directions. First, multi-season soil and 
crop data will be incorporated to capture temporal nutrient 
dynamics and improve the robustness of fertilizer 
recommendations. Second, the derived nutrient-priority zones 

will be validated against measured yield and economic return 
data to quantify agronomic and financial benefits. Third, 
comparative experiments with alternative clustering and 
interpolation methods, such as k-means and geostatistical 
kriging, will be conducted to evaluate methodological trade-
offs. Finally, the integration of the proposed approach with 
variable-rate fertilizer application technologies and mobile 
decision-support interfaces will be explored to facilitate real-
time, data-driven nutrient management at scale. 
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