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Abstract—Spatial variability in soil fertility constrains
productivity in intensive shallot farming, yet fertilizer is
frequently applied uniformly across fields. This practice results in
nutrient inefficiencies, increased costs, and heightened
environmental risks. This study introduces a fertilizer
requirement mapping framework utilizing Fuzzy C-Means (FCM)
clustering, a machine learning technique for data grouping,
applied to in-situ measurements of soil Nitrogen (N), Phosphorus
(P), and Potassium (K). The framework was evaluated in a 500 x
500 m shallot field in Srikayangan, Kulon Progo, Indonesia,
subdivided into 10 x 10 m management blocks suitable for
smallholder operations. Soil NPK levels were measured using IoT
sensor nodes and georeferenced with GNSS, while high-resolution
RGB imagery from a UAV provided spatial context. Normalized
NPK data were clustered with FCM to delineate fertility zones
exhibiting nutrient differences. To operationalize clustering
results, a nutrient-priority decision logic identified the most
limiting nutrient (N, P, or K) for each block. Fertilizer
recommendation points were visualized on a UAV-derived
orthomosaic map to facilitate interpretation and field application.
The results indicate that this approach effectively captures
gradual fertility transitions and produces actionable fertilizer
zones for site-specific nutrient management (SSNM) in
smallholder systems. The study demonstrates the practical
integration of fuzzy clustering, IoT-based soil sensing, and UAV
mapping to inform precision agriculture decisions.
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I INTRODUCTION

Soil fertility variability represents a significant constraint to
productivity and sustainability in intensive vegetable farming. In
many fields, soil properties such as nutrient availability, texture,
and organic matter content exhibit substantial variation over
short distances. Despite this, fertilizer is typically applied
uniformly. This disconnect between spatial variability and
uniform management leads to inefficient nutrient use, increased
costs, and elevated risks of environmental impacts, including
nutrient leaching and accumulation [1], [2].

Shallot (Allium cepa var. aggregatum) cultivation, prevalent
in Indonesia and Southeast Asia, depends on effective fertilizer
management to achieve optimal yield and bulb quality. Grown
in narrow beds with intensive inputs, shallots are particularly
sensitive to nutrient imbalances. Nitrogen (N), Phosphorus (P),
and Potassium (K) are the primary drivers of growth, root
development, bulb formation, and stress resistance. The
distributionofthese nutrients varies according to soil conditions,

irrigation practices, and fertilization history, resulting in
significant variability even within smallholder plots [1].

Precision agriculture and site-specific nutrient management
(SSNM) address this challenge by tailoring fertilizer inputs to
spatially variable soil and crop conditions. A central aspect of
SSNM involves delineating relatively homogeneous
management zones to enable differentiated fertilizer application
[1],[3]. Early researchemployed dense grid-based soil sampling
and geostatistical interpolation to generate continuous fertility
maps. Although effective, these methods often demand
considerable sampling effort and may not readily translate into
fertilizer decision rules thatare easily adopted by farmers [3].

Clustering-based methods group spatial units—defined
areas within a field—into management zones based on similar
soil or crop attributes. Fuzzy C-Means (FCM) clustering, a
technique that allows data points to partially belong to multiple
groups, is widely used in soil fertility assessment, as it captures
gradual transitions and inherent uncertainty in soil properties.
Unlike hard clustering (which assigns each spatial unit to only
one group), FCM gives eachspatial unit a degree of membership
in multiple clusters, reflecting spatial continuity. Studies have
used FCM to delineate management zones based on soil
chemical properties (e.g., nutrient levels), electrical
conductivity, yield data, and remote sensing (data collected from
satellite or aerial images) across cropping systems [3], [8], [9].

Recent research extends FCM zoning by adding multi-
nutrient data, principal component analysis, and geospatial
techniques. These support variable-rate fertilization and site-
specific management. For example, fuzzy clustering has
generated nutrient-based zones that capture macro- and
micronutrient variability, thereby improving fertilizer targeting
[4]-[7]. These studies confirm FCM's suitability for capturing
soil heterogeneity and supporting differentiated management.
However, most prior work focuses on general fertility zones or
composite indices rather than nutrient-specific fertilizer
priorities.

At the same time, advances in agricultural sensing
technology enable higher-resolution data for precision
agriculture [20]. Internet of Things (IoT)-based soil sensors[14]
provide near-real-time soil measurements at fine spatial
resolution, reducing reliance on labor-intensive laboratory
analyses [10], [15], [19]. Unmanned aerial vehicle (UAV)
remote sensing also supplies high-resolution information on
field structure and crop condition, supporting detailed mapping
at the scale of individual beds or plots [11]-[13], [18]. Recent
studies highlight the promise of integrating IoT sensing, UAV
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imagery, and data analytics into decision-support systems for
precision agriculture [17], [18].

Despite these advancements, a gap remains between soil
data analysis and the generation of actionable fertilizer
recommendations. Few studies have demonstrated direct
integration of fuzzy clustering with nutrient-priority logic for N,
P, orK atthelevel ofindividual spatial units. Additionally, most
existing applications operate at coarse spatial scales, which
limits their applicability in smallholder vegetable systems where
management occurs at the bed scale.

This study addresses these gaps by proposing a spatial
classification and decision-support method for mapping
fertilizer needs. The method uses Fuzzy C-Means clustering of
soil NPK data. It is applied to a 500 x 500 m shallot field in
Srikayangan, Kulon Progo, Indonesia. The field is divided into
10 x 10 m blocks for smallholder bed-scale use. Soil N, P, and
K were measured with IoT sensors and combined with high-
resolution UAV imagery. FCM clustering on normalized NPK
data created fertility zones. A nutrient-priority logic then found
the most limiting nutrient (N, P, or K) at each block.

This study offers three primary contributions. First, it
develops a nutrient-priority logic that translates fuzzy
membership degrees into actionable recommendations. Second,
it applies FCM clustering at a fine spatial scale consistent with
smallholder bed operations. Third, it integrates loT-based soil
sensing and UAV imagery into a straightforward, map-based
decision-support output.

This study does not introduce a new clustering algorithm.
Rather, it enhances the practicality of FCM-based soil fertility
zones by linking fuzzy clustering results with site-specific
fertilizer prescriptions. The proposed approach is adaptable to
various crops, regions, and sensor configurations where soil
nutrient variability necessitates more efficient fertilizer
management.

II. METHODOLOGY

A. Study Area and Data Acquisition

The study was conducted in an intensively cultivated
vegetable field used for seasonal shallot and leafy vegetable
production in Desa Srikayangan, Kecamatan Sentolo,
Kabupaten Kulon Progo, Yogyakarta, Indonesia. The field in
our experiment spans approximately 500 X 500 m and is
subdivided into narrow beds and furrows, following local
farming practices. The objective of the data acquisition
campaign was to capture the spatial variability of soil
macronutrients—Nitrogen (N) [16], Phosphorus (P), and
Potassium (K), which are essential nutrients plants require in
relatively large amounts—and relate it to crop-condition
pattemns observable from high-resolution UAV (unmanned
aerial vehicle) imagery.

A regular sampling grid with a nominal spacing of 10 x 10
m was designed to cover the entire field. Each grid cell (block)
was represented by a single sampling point located near the
center of the crop bed. At every sampling point, an in-situ NPK
soil sensor probe was inserted vertically into the topsoil (020
cm) after removing surface residues and ensuring good contact
between the probe and the soil [10].
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Foreachpoint,the probewas held in place until thereadings
stabilized, and the values of N, P, and K were recorded. To
reduce random noise, the insertion and reading process was
repeated two or three times within a radius of about 1 m, and the
average of these readings was used as the NPK value for the
corresponding block. Between sampling points, the probe was
cleaned to avoid cross-contamination.

To obtain reference values and assess the consistency of
sensorreadings, composite soil samples were collected from a
subsetofgridpoints. These samples were air-dried and analyzed
in the laboratory using standard procedures [4], [5]. The
resulting dataset thus consists of triplets, each associated with
georeferenced coordinates for a sampling location.

The geographic coordinates of all sampling points were
measured using a GNSS receiver mounted on a survey pole,
ensuring sub-meter positional accuracy. The in-field NPK
sensing and GNSS positioning procedure is illustrated in Fig. 1.

Fig. 1. In-situ soil NPK data acquisition and GNSS-based georeferencing
during field sampling.

To obtain a spatially continuous representation of crop
condition and field structure, aerial images of the study area
were acquired using a fixed-wing unmanned aerial vehicle
(UAV) equipped withanadir-lookingRGB camera (Fig. 2). The
UAV was programmed to fly an autonomous mission over the
500 x 500 m field along parallel flight lines. The flight altitude
was set to approximately 100—120 m above ground level,
resulting in a ground sampling distance ofa few centimeters per
pixel [11],[13].

Forward and side overlaps were configured to at least 70%
and 60%, respectively, to ensure reliable image matching
Several ground control points (GCPs) were placed at clearly
visible locations within and around the field and surveyed using
the same GNSS equipment as the soil sampling points. These
GCPs were later used to improve the geometric accuracy of the
photogrammetric products.

The raw UAV images were processed using a standard
structure-from-motion (SfM) photogrammetry workflow, which
includes feature detection and matching, bundle adjustment,
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dense point cloud generation, and orthorectification. The
resulting orthomosaic was georeferenced in the same projected
coordinate system as the GNSS measurements. The
georeferenced soil NPK points were then overlaid on the
orthomosaic in a geographicinformationsystem (GIS), and each
10 x 10 m block was associated with both its NPK values and
its corresponding location in the UAV image. This integration
enabled subsequent Fuzzy C-Means clustering on the block-
level NPK data and the visualization of fertilizer
recommendation points directly on the high-resolution UAV
map.

Fig.2. Fixed-wing UAV platform used for high-resolution RGB image
acquisition.

B. Data Preprocessing and Block Generation

To support block-level decision making, the study area was
discretized into a regular grid of 10 x 10 m cells, hereafter
referred to as blocks. Each soil sampling point was assigned to
its corresponding block based on spatial location. For blocks
with more than one sample, the average valuesof N, P, and K
were computed. Blocks without observations were either
excluded from the analysis or filled using simple spatial
interpolation (nearest neighbor), depending on their position and
the density of surrounding samples.

The raw N, P, and K values may have different units and
numerical ranges. To prevent any single nutrient from
dominatingthe clustering process, all variables werenormalized
prior to analysis. In this study, min—-max normalization was
used:

{j = MWhere Xij is the original value of
max (x;)—min (x;)
nutrientj € {N, P, K} inblock i,and x;; is the normalized value
within the interval [0,1]. Each block is then represented as a
three-dimensional feature vector.

x; = [N}, P, K{]

Basic quality control was applied to detect and handle
outliers (e.g., physically unrealistic values due to sensor error).
Outlierswereinspected against the laboratory reference dataand
field notes. If a value was clearly erroneous and could not be
confirmed, the corresponding block was removed from further
analysis.
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C. Fuzzy C-Means Clustering

The core of the proposed approach is the use of the Fuzzy C-
Means (FCM) algorithm to partition the blocks into a set of soil
fertility clusters based on their normalized N, P, and K values.
FCM seeks to minimize the following objective function:

n
C
I = E Zum I, — v, II2
m ik i k
=1
i=1

e 71 is the number of blocks,

where,

e is the number of clusters,

e ;. is the membership degree of block i in cluster k,
e m > 1is the fuzziness exponent (typically m = 2),
e v, is the center of cluster k, and

e ||-Il denotes the Euclidean norm.

In this study, the number of clusters (¢c) was chosen to
represent distinct patterns of nutrient status in the field (e.g.,
three clusters to capture relatively low, medium, and high
fertility combinations or characteristic N—P—K imbalances). The
algorithm proceeds iteratively as follows:

e Initialization: Initialize the membership matrix U[ =
u;; ] with random values such that Zf: 1y = 1forall

i.

e Cluster center update: Compute cluster centers
n

_ Z i=1 u?l% Xi

Vi = n m

> i=1 Yik

for each cluster k.

e Core Membership update: Update membership degrees
1

2
(II X; — Vg Il>m-1
II'x; — vl

j=1

Ui = C

for all blocks i and clusters k.

e Stoppingcriterion: Repeat steps 2—3 until the change in
the membership matrix between two successive
iterations falls below a small threshold e(e.g., 10™>) or a
maximum number of iterations is reached.

The implementation was carried out in Python using a
custom FCM routine and executed in Google Colab. The output
of this step is a set of cluster centers {v, }and a membership
matrix that describes the degree to which each block belongs to
each cluster.

D. Derivation of Nutrient Priority Classes

To transform the fuzzy clusters into actionable fertilizer
recommendations, the nutrient composition of each cluster
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center was analyzed. For each cluster k, the relative status of N,
P, and K was assessed by comparing the normalized values Ny,
Py, and K}, in v, to the field-wide distribution or target fertility
levels. Clusters in which a particular nutrient exhibits
comparatively low values were interpreted as zones where that
nutrient is more likely to be limiting.

A simple decision rule was then defined to assign a nutrient
priority to each block:

o Foreach cluster k,determinethe“most limiting” nutrient
Jx» whichis the nutrient withthe lowest normalized value
in vy.

e For each block i, compute a nutrient priority score by
combining its membership degrees with the cluster-level
limiting nutrients. For example, the priority score for
nutrient jin block i can be defined as,

Sij = Z Uik
ke:jr=Jj

e Assign block i to the nutrient with the highest score

arg max ;S;;, yielding one of three recommendation

classes: N-priority, P-priority, or K-priority.

This procedure preserves the fuzzy nature of the underlying
clusters while providing a crisp, interpretable label for
operational use. Blocks with similar scores for multiple nutrients
can be flagged as mixed or flexible zones for further agronomic
evaluation if needed.

E. Spatial Mapping and Visualization

The FCM cluster labels (dominant cluster per block) and the
nutrient-priority classes were joined back to the 10 x 10 m
spatial grid and visualized ina GIS. The fertility clusters were
displayed as a zonation map of the shallot field. At the same
time, the nutrient-priority classes were represented in a separate
map showing whether N, P, or K should be emphasized in each
block.

To make the output usable in the field, representative
fertilizer recommendation points were selected from within
contiguous patches of each nutrient-priority class. In each patch,
a few blocks with the highest nutrient-priority scores were
chosenas application points. These points werethen overlaid on
the UAV orthomosaic, allowing farmers and field technicians to
locate the recommended areas directly on a detailed image of the
shallot beds. The final maps form the basis for suggesting
differentiated fertilizer rates (e.g., higher urea doses at N-
priority points, higher SP-36 at P-priority points, and higher KCI
at K-priority points) instead of a single uniform NPK
recommendation for the whole field.

III.  RESULTS AND ANALYSIS

A. Fuzzy C-Means Zoning of Soil Fertility

The Fuzzy C-Means (FCM) algorithm successfully
partitioned the 500 x 500 m field into three main fertility zones
basedontheN,P, and Kmeasurementsateach 10 x 10 mblock.
Visual inspection of the resulting clusters (Fig. 3) shows that the
field is clearly structured into red, green, and blue zones with
gradual transitions rather than abrupt boundaries.
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Cluster-level analysis indicates that:

e C(Cluster 1 (Red) corresponds to blocks with high N and
relatively low K.

e Cluster 2 (Green) represents blocks with high K but
lower N.

e Cluster3 (Blue)is characterized by relatively high P with
more balanced N and K values.

These patterns align with the agronomic interpretation in the
field, where some areas receive high N fertilization but remain
undersupplied with P and K. In contrast, other areas have
accumulated K from previous applications.
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Fig. 3. Soil fertility zoning based on Fuzzy C-Means clustering.

The quality of the clustering was evaluated using two
internal indices. The Silhouette Score of 0.61 and Dunn Index
of 0.03 suggest that the three clusters are reasonably well
separated while still capturing the gradual variability that exists
in real soil conditions. These values suggestthat FCM offers a
reliable representation of the underlying fertility structure and is
suitable as a basis for informed spatial decision-making.

B. Spatial Pattern of Nutrient Deficiencies

By comparing the cluster centers with the most fertile
reference condition, it is possible to identify which parts of the
field are more likely to be deficient in specific nutrients. The
cluster map in Fig. 4 shows that:

e The westernpart of the field is dominated by Cluster 2
(green), indicating high K but relatively low N, and
simultaneously showing P deficiency in some blocks.

e The eastern part of the field is dominated by Cluster 1
(red), where N is high but P and K are lower, suggesting
a need to supplement P and K rather than N.

o C(Cluster 3 (blue) appears in intermediate zones with
higher P and relatively balanced N and K, acting as a
transition between the red and green zones.

This pattern confirms that nutrient limitations are not
uniform: the westis mainly limited by Pand K, whereas theeast
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is more constrained by N. Such differences justify the need for
site-specific fertilizer management instead of uniform
application. Table I summarizes the qualitative interpretation of
each cluster based on the N, P, and K status.

TABLEI. INTERPRETATION OF FCM FERTILITY CLUSTERS
Cluste Dominan N P K Interpretatio
r t color status status status n
N-rich, K-
Low— deficient zone
Cl Red High Eedlu Low (needs P and
K)
Low— .
Low— . . K-rich, N-
c2 Green medium Eedm High deficient zone
P-rich,
Mediu . Mediu relatively
c3 Blue m High m balanced, and
stable zone

C. Fertilizer Recommendation Points

To translate the cluster information into operational
recommendations, fertilizer application points were determined
by selecting blocks with the highest nutrient-priority scores
inside each deficiency zone. These points are located near the
centers of areas with the strongest shortage, representing
locations where additional fertilizer will have the most
significant effect while still covering surrounding blocks.

The resulting fertilizer recommendation map is shown in
Fig. 4. The background colors represent the FCM clusters as in
Fig. 3, while overlaid symbols indicate specific application
points for each nutrient:

e Red squares mark N application points, where additional
urea is recommended.

e Blue triangles mark P application points, where SP-36 is

prioritized.
e Green circles mark K application points, where KCl is
prioritized.
5001
B N application points
A P application points
e/ @ K application points
°
400 o © . S
® ]
[} A
]
~300F ©® ah
ol L]
T i 3 .
£ o
[
> 200+
|
L |
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p
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0 : : : s !
0 100 200 300 400 500
X (meter)

Fig. 4. Fertilizer recommendation points over the FCM zonation map.
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Based on the nutrient-priority classification, the
corresponding fertilizer types and application rates are
summarized in Table IL

TABLE II. FERTILIZER RECOMMENDATION RATES BY NUTRIENT
PRIORITY
Nutrient Symbol/color in Fig. Recommended fertilizer
priority 4 and rate (per ha)
N-priority Red square Urea 300-350 kg/ha
P-priority Blue triangle SP-36 100-120 kg/ha
K-priority Green circle KCl 150-200 kg/ha

These recommended doses are intended for the core
application points and can be adjusted proportionally for the
surrounding blocks, depending on equipment capability and
field conditions.

D. Visualization on High-Resolution Spatial Agricultural
Map

To make the results directly interpretable by farmers and
local extension workers, the nutrient-priority recommendation
points were finally overlaid on a high-resolution aerial
orthomosaic of the study area (Fig. 5). The orthomosaic was
generated from UAV imagery and represents individual crop
beds and management units within the 500 x 500 m field.

The coordinates of the 10 x 10 m blocks and the selected
fertilizer application points (Section III-C) were transformed
into the same spatial reference system as the orthomosaic. Each
point was then plotted on top of the image and symbolized
according to its recommended nutrient:

e blocks with N-priority were marked as N application
points,

e blocks with P-priority were marked as P application
points, and

o Blocks with K-priority were marked as K application
points.

b/

Sl m \appiication
f A Papplication
@ Kapplication

"

Fig. 5. UAV orthomosaic with FCM-based fertilizer recommendation points.
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Fig. 5 shows that many N-priority points coincide with
visually lighter or less vigorous plots in the eastern portion of
the field. In contrast, P- and K-priority points are concentrated
in the western and central plots where crop growth appears
uneven or patchy. This spatial correspondence between visual
crop condition and the FCM-based nutrient recommendations
provides an additional qualitative validation of the proposed
method.

By combining the orthomosaic with the fertilizer
recommendation points, the resulting map becomes a practical
tool for field operations: farmers can visually locate specific
beds or parcels that require N, P, or K and adjust their
applications accordingly. The map can also be integrated into
mobile or web-based interfaces, allowing operators to navigate
to the recommended positions using GPS while viewing the
underlying UAV image.

E. Discussion

The FCM-based spatial classification clearly revealed that
the 500 x 500 m field cannot be treated as a uniform
management unit. The three clusters obtained from NPK data
describe distinct fertility regimes that are consistent with both
the historical fertilization practices and the visual crop patterns
observed in the UAV imagery. Cluster 1 (red) represents blocks
with relatively high N. However, Cluster 2 (green) corresponds
to blocks with high K but lower N, and Cluster 3 (blue) contains
blocks withrelatively high Pand more balanced Nand K. These
patterns suggest that the field has experienced heterogeneous
nutrientaccumulation, with specific areas receiving repeated N
applications while others have accumulated K or P.

When the cluster information is translated into nutrient-
priority classes, a transparent spatial gradient emerges: the
western part of the field is dominated by blocks that require
additional phosphorus (P) and potassium (K). In contrast, the
eastern part shows a concentration of N-priority blocks. The
central area is characterized by P-priority points associated with
Cluster 3, which has a higher P. However, only moderate N and
K. This configuration implies that a uniform NPK
recommendation would inevitably over-fertilize some zones
(e.g., N in the western plots) and under-fertilize others (e.g., P
and K in the west, N in the east). Instead, the proposed method
provides differentiated targets: more P and K in the west, more
N in the east, and fine-tuned doses in the transition zones.

A key advantage of FCM in this context is its ability to
handle gradual transitions and uncertainty. Traditional hard
clustering or simple thresholding of nutrient values would force
each block into a single, crisp category, creating sharp
boundaries between zones that may not exist in reality. In
contrast, FCM assigns membership degrees to multiple clusters
for each block. The nutrient-priority scores derived from these
memberships enable the method to highlight "core" deficiency
zones, where a single nutrient is clearly limiting, while also
acknowledging mixed or ambiguous areas. This is reflected in
the placement of fertilizer recommendation points, which tend
to appear in the centers of homogeneous patches, rather than
directly on the boundaries between different fertility regimes.
This is agronomically reasonable because edge blocks can often
be managed with intermediate or blended doses.
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The overlay of fertilizer recommendation points on the UAV
orthomosaic further strengthens the interpretation. In the eastern
plots where N-priority points cluster, the imagery shows lighter
coloration and less vigorous canopy growth, typical of N
deficiency. Conversely, several P- and K-priority points are
located in western or central plots, where the vegetation pattern
is patchy or where crop rows appear uneven. The spatial
agreement between model-derived recommendations and visual
symptoms from high-resolution imagery serves as an
independent, qualitative validation of the approach. It also
demonstrates how proximal sensing (soil sampling and FCM
analysis)and remote sensing (UAV imagery) can be combined
into a single, intuitive decision-support product for farmers.

From a management perspective, the generated maps enable
site-specific fertilization at a resolution that is compatible with
the scale of individual beds or farmer-owned subplots. By
applyingurea only around the N-priority points in the east(300—
350 kg/ha), and focusing SP-36 and KCI around P- and K-
priority points in the west and center, the farmer can reallocate
a fixed fertilizer budget more efficiently rather than increasing
total input. This has two important implications: 1) potential
economic benefits, through savings in fertilizer where it is not
needed and yield gains where deficiencies are corrected; and 2)
environmental benefits, by reducing the risk of nitrate leaching
and K or P accumulation in already fertile zones. Although yield
measurements are not yet included in this study, the spatial
pattern of recommendations is consistent with these expected
outcomes.

At the same time, several limitations should be
acknowledged. First, the analysis is based on a single sampling
campaign, which captures spatial but not temporal variability;
nutrientdynamics across seasons or cropping cycles are not yet
modeled. Second, the block size of 10 X 10 m represents a
compromise between spatial detail and sampling feasibility.
Smaller blocks could reveal finer heterogeneity but would
require more intensive sampling, while larger blocks might
mask important within-block variability. Third, the fertilizer
dosesused in therecommendation map are derived from general
agronomic guidelines; they would ideally be adjusted using
response curves or economic optimization to quantify the
benefits of site-specific management fully. Finally, the
clustering quality, although supported by the Silhouette Score
(0.61) and Dunn Index (0.03), could be further evaluated by
comparing alternative clustering methods (e.g., k-means,
Gaussian mixture models) and by validating the zones against
actual yield data.

Despite these limitations, the study demonstrates that
integrating FCM clustering with nutrient-priority analysis and
UAV imagery can produce operationally meaningful fertilizer
recommendation maps. The methodology is generic and can be
extended to other fields, additional nutrients, or different sensor
sources, and can be embedded into an IoT-based platform, such
as Agri Watch Net, to supportnear-real-time decision-making.
Future work will focus on multi-seasonal data, yield-based
validation, and coupling the nutrient-priority maps with
variable-rate application technologies to quantify the economic
and environmental benefits of adopting this approach.
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Although this study is demonstrated using a shallot field in
Srikayangan, Indonesia, the contribution of this work is not
limited to a specific crop or geographic context. The proposed
framework is methodologically generic and can be applied to
any agricultural system where 1) soil macronutrients can be
measured at spatial sampling points (via sensors or laboratory
analysis), 2) a management grid can be defined according to
operational field units, and 3) spatial transitions in soil fertility
are expected. The use of Fuzzy C-Means clustering combined
with nutrient-priority decision logic is independent of crop type
and location, and therefore transferable to other horticultural
crops, cereal systems, and smallholder or commercial farming
contexts. In this sense, the Srikayangan field serves as a
representative testbed to demonstrate the operational feasibility
of translating fuzzy soil fertility classification into actionable
fertilizer recommendations, rather than as a location-specific
solution.

IV. CoNCLUSION

This study presented a spatial classification and decision-
support framework for fertilizer requirement mapping based on
Fuzzy C-Means clusteringofsoil NPK data integrated with loT-
based sensing and UAV imagery. By applying the proposed
approach ata fine spatial resolution compatible with smallholder
bed-scale management, the results demonstrate that soil fertility
within a single field can exhibit substantial spatial
differentiation, making uniform fertilizer application inefficient
and potentially wasteful.

The use of fuzzy clustering enables the representation of
gradual transitions in soil nutrient availability, while the
introduced nutrient-priority decision logic bridges the gap
between fuzzy classification outputs and actionable fertilizer
recommendations. Rather than producing only generalized
fertility zones, the proposed framework identifies which
macronutrient—Nitrogen, Phosphorus, or Potassium—should
be prioritized at each management block, thereby enhancing the
operational relevance of site-specific nutrient management.

Although the framework was demonstrated using a shallot
field in Srikayangan, Indonesia, its contribution lies in the
methodological integration and decision-support logic rather
than the specific field context. The approach is generic and
transferable to other crops, regions, and agricultural systems
where spatial variability in soil nutrients necessitates more
targeted fertilizer management. By combining fuzzy clustering
with high-resolution sensing and intuitive spatial visualization,
this work provides a practical pathway for translating soil data
into actionable management decisions.

Overall, the proposed framework advances the practical
usability of FCM-based soil fertility zonation for precision
agriculture by linking data-driven spatial analysis with fertilizer
decision-making, thereby supporting more efficient,
economical, and sustainable nutrient management practices.

V. FUTURE WORK

Future research will focus on extending the proposed
framework in several directions. First, multi-season soil and
crop data will be incorporated to capture temporal nutrient
dynamics and improve the robustness of fertilizer
recommendations. Second, the derived nutrient-priority zones
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will be validated against measured yield and economic return
data to quantify agronomic and financial benefits. Third,
comparative experiments with alternative clustering and
interpolation methods, such as k-means and geostatistical
kriging, will be conducted to evaluate methodological trade-
offs. Finally, the integration of the proposed approach with
variable-rate fertilizer application technologies and mobile
decision-support interfaces will be explored to facilitate real-
time, data-driven nutrient management at scale.

ACKNOWLEDGMENT

This work was funded by the Doctoral Dissertation Research
Grant 2024 (PDD 2024) and the FMIPA UGM Research Grant
2025 and was supported by the Department of Computer
Science and Electronics (DCSE), FMIPA UGM. The authors
also gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved the
presentation.

REFERENCES

[17 J. A. Thomasson,R.Sui, M. S. Cox,and K. A. Al-Rajehy, “Soil variability
and site-specific nutrient management,” Precision Agriculture, vol. 2, no.
1, pp.43-57,2001, doi: 10.1023/A:1013314910435.

[2] A. Dobermann and T. Fairhurst, “Rice: Nutrient Disorders & Nutrient
Management,” Potash & Phosphate Institute, Singapore, 2000.

[31 Y. Li Z. Shi, C. Wu, H. Li, and F. Li, “Determination of potential
management zones from soil electrical conductivity, yield and crop data
using fuzzy c-means clustering,” J. Zhejiang Univ. Sci. B, vol. 9, no. 1,
pp. 68-76,2008, doi: 10.1631/jzus.B071067.

[4] A. Venugopal, P. S. Raju,R. G. Durgaprasad, and M. Venkateswarlu,
“Nutrient variability mapping and demarcatingmanagement zones using
fuzzy cluster analysis for variable-rate fertilization,” Sustainability, vol.
16,no0. 5, art. no. 2095,2024, doi: 10.3390/su16052095.

[S] M. Venkateswarlu, S. Rallapalli, A. Singh, and S. Raju, “Macro- and
micronutrient-based soil fertility zonation using fuzzy logic and
geospatial techniques,” Scientific Reports, vol. 15, art. no.26772,2025,
doi: 10.1038/s41598-025-26772-x.

[6] P. V. Bhagwan, R. K. Naik, and M. L. Narayana, “Delineation and
evaluation of management zones for site-specific nutrient management
using PCA and fuzzy c-means clustering,” Scientific Reports, vol. 15,art.
no. 18431,2025, doi: 10.1038/s41598-025-18431-y.

[7]1 P.V.Bhagwan,R.K. Naik, and M. L. Narayana, “Delineatingsoil fertility
management zones using geostatistics and fuzzy clustering techniques,”
Environmental Monitoring and Assessment, vol. 197, no. 2, art. no. 92,
2025, doi: 10.1007/s10661-025-09234-6.

[8] W. Zhao,X. Zhang, H. Li, and Y. Wang, “Comparison of SOFM, fuzzy
c-means, and k-means clustering algorithms for soil environment
regionalization,” Environmental Research, vol. 225, art. no. 115564,
2023, doi: 10.1016/j.envres.2023.115564.

[91 P. Servadio, S. Bergonzoli, and F. Marinari, “Delineation of management
zones based on soil compaction using fuzzy clustering,” Spanish Journal
of Agricultural Research, vol. 16, no. 3, art. no. e0207, 2018, doi:
10.5424/sjar/2018163-12847.

[10] R. M. Hujja,I. Emanto, M. Auzan, and R. Sumiharto, “Independent soil
node sensor prototype as part of a smart farming system,” International
Journal of Scientific & Technology Research, vol. 9, no. 8, pp. 200-204,
2020.

[11] A. Harjoko, R. M. Hujja, and L. Awaludin, “Aerial agricultural
monitoring using image processing: A comparative study,” International
Journal of Advanced Research in Science, Engineering and Technology,
vol. 5,no. 6, pp. 6232-6237,2018.

[12] M. G. R. Satriorini, R. Sumiharto,and R. M. Hujja, “Digital image-based
orchid growth monitoring system,” InternationalJournalof Electrical and
Information Systems, vol. 6, no. 2, pp. 85-94,2023.

1033 |Page

www.ijacsa.thesai.org



[13]

[14]

[15]

[16]

[17]

(IJACSA) International Journal of Advanced Computer Science and Applications,

A. Saputra,N.R. Masithoh, R. Sumiharto,and R.M. Hujja, “Plant growth
monitoring using image analysis for agricultural applications,” in Proc.
Int. Conf. Agricultural and Food Sciences, 2022, pp. 55-60.

A. Ashari, R. M. Hujja, and L. Kumiasih, Internet of Things dan
Aplikasinya: Menghubungkan Dunia Fisik dan Digital untuk Kehidupan
yang Lebih Cerdas. Yogyakarta, Indonesia: Deepublish, 2025.

D. Pascoal,R. Costa,and J. Santos, “IoT sensors forprecision agriculture:
Architectures, challenges, and applications,” Scientific Reports, vol. 14,
art. no. 11245,2024, doi: 10.1038/s41598-024-11245-3.

A. M. Ali, H. M. Salem, and B. Singh, “Site-specific nitrogen fertilizer
management using canopy reflectance sensors, chlorophyll meters, and
leaf color charts: A review,” Nitrogen, vol. 5, no. 4, pp. 828-856, 2024,
doi: 10.3390/nitrogen5040054.

A. B.Rashid,M. Al Mamun, and S. Rahman, “Integration of Al, 0T, and
UAVs for precision agriculture: A review and framework,” Results in

(18]

Vol. 16, No. 12, 2025

Engineering, vol. 19, art. no.
10.1016/j.rineng.2025.100812.

X. Chen, Y. Liu, and H. Zhang, “Dynamic monitoring and precision
fertilization decision system integrating UAV remote sensing and GIS,”
Agriculture, vol. 15, no. 2, art. no. 214, 2025, doi:
10.3390/agriculture15020214.

K. Gunasekaran, R. Aravind, and P. Kumar, “Real-time soil fertility
analysis using IoT and fuzzy clustering techniques,” Frontiers in Soil
Science, vol. 5, art.no. 1298456,2025,doi: 10.3389/fs0il.2025.1298456.

Y. Li, H. Wu, and Z. Shi, “Delineation of site-specific management zones
using fuzzy clustering in precision agriculture,” Computers and
Electronics in Agriculture, vol. 65, no. 2, pp. 154-166, 2007, doi:
10.1016/j.compag.2008.07.005.

100812, 2025, doi:

1034 |Page

www.ijacsa.thesai.org



