
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1024 | P a g e

www.ijacsa.thesai.org

Hybrid Artificial Bee Colony and Bat Algorithm for

Efficient Resource Allocation in Edge-Cloud Systems

Jiao GE, Bolin ZHOU, Na LIU*

Cangzhou Normal University, Hebei Cangzhou 061001, China

Abstract—Integrating edge and cloud computing systems

builds up a powerhouse, a framework for realizing real-time data

processing and conducting large-scale computation tasks.

However, efficient resource allocation and task scheduling are

outstanding challenges in these dynamic, heterogeneous

environments. This paper proposes an innovative hybrid

algorithm that amalgamates the features of the Bat Algorithm

(BA) and Artificial Bee Colony (ABC) to meet such challenges. The

ABC algorithm's solid global search capabilities and the BA's

efficient local exploitation are merged for efficient task scheduling

and resource allocation. Dynamic adaptation of the proposed

hybrid algorithm accommodates such conditions by balancing

exploration and exploitation through periodic solution exchanges.

Experimental evaluations highlight that the proposed algorithm

can minimize execution time and costs involving resource

utilization by guaranteeing proper management of task

dependencies using a Directed Acyclic Graph (DAG) model.

Compared to the available methods, the proposed hybrid

technique generates better performance metrics concerning

reduced makespan, improved resource utilization, and lower

computational delays concerning resource optimization in an

edge-cloud context.

Keywords—Cloud computing; edge computing; resource

allocation; optimization; task scheduling

I. INTRODUCTION

Edge and cloud computing have changed how computation
is performed. Real-time processing and elasticity of resources
can now be achieved. Edge computing minimizes latency by
executing data near the source and is well-suited to the Internet
of Things (IoT), intelligent cities, and autonomous vehicle
deployments [1]. In contrast, cloud computing can offer
substantial resources for computation and storage but entails
more significant latency for processing data remotely [2]. The
integration of edge and cloud systems into a unified continuum-
field edge benefits the two paradigms in an optimum manner:
task execution, resource allocation, and network performance
[3]. This is an increasingly crucial hybrid approach for meeting
growing demands in today's computational ecosystems [4].

Despite the potential, resource allocation and task
scheduling in the edge-cloud ecosystem are still challenging.
Most existing algorithms suffer from exploration or
exploitation, resulting in suboptimal task allocation, increased
delays, and inefficient resource use [5]. Besides, most
methodologies cannot function effectively in dynamic and
heterogeneous environments where tasks may have
dependencies, network conditions may change, and diverse

resource constraints create a highly complex optimization
problem [6, 7]. These limitations are a challenge to innovate in
finding ways to best perform in edge-cloud systems.

To counter these challenges, the present study develops a
novel hybrid algorithm combining the Artificial Bee Colony
(ABC) and Bat Algorithm (BA). ABC efficiently explores the
diverse solution space, while the BA exploits the local search
area [8, 9]. The proposed hybrid algorithm dynamically
balances the two aspects: exploration and exploitation. It can
explore more candidate solutions of better quality and achieve
superior performance in resource allocation and task
scheduling. A Directed Acyclic Graph (DAG) model manages
task dependencies, ensuring efficient execution while avoiding
deadlocks. The hybrid algorithm also incorporates periodic
information exchange between ABC and BA populations to
enhance adaptability and convergence. This research has made
the following primary contributions:

 Proposing a hybrid ABC-BA algorithm suitable for
dynamic edge-cloud environments;

 Developing with DAG-based task dependency
management to ensure efficient task scheduling;

 Extensive performance evaluations suggest minimum
execution time, cost, and makespan over the existing
methods;

The rest of the study proceeds by reviewing the literature
relevant to the subject matter and identifying the limitations in
Section II. Section III discusses the system model and
architecture and addresses design principles. Section IV
outlines basic concepts and background that constitute the
background necessary for a study. Section V explains the
proposed ABC-BA hybrid algorithm's design principle,
working mechanism, and merits. A general simulation and
comparative analysis can be presented in Section VI. Finally,
the paper summarizes the results found in Section VII, along
with implications and further development directions of the
research.

II. LITERATURE REVIEW

Xia and Shen [10] have proposed a hybrid approach for
allocating resources in mobile edge cloud systems, merging Ant
Colony Optimization (ACO) and Genetic Algorithm (GA). This
approach maximizes system utility while balancing economic
costs, energy conservation, and task latency. ACO can generate
initial populations, while GA improves solutions using
crossover and mutation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1025 | P a g e

www.ijacsa.thesai.org

Chafi, et al. [11] proposed a comparative study between GA
and Particle Swarm Optimization (PSO) in edge-fog cloud
architectures for resource allocation. Using the
FogWorkflowSim simulator, this work underlines the logical
structure of GA's fruition and the heuristic behaviors of PSO
while showing efficiency for optimization in resource
allocation under specific constraints.

Haghighat Afshar, et al. [12] developed a new metaheuristic
ERSGWO in mobile edge computing resource allocation,
introducing a novel integration between the Grey Wolf
Optimizer (GWO) and Reptile Search Algorithm (RSA). The
algorithm is enhanced by introducing an intermediate
neighborhood exploration phase that boosts agent performance
against getting stuck in local optima. Test outcomes show that
the performance improvement attained is as high as 97.7%
across 12 scenarios.

Yu, et al. [13] present a decomposition-driven multi-
objective optimization algorithm (MOEA/D-EoD) for mobile
edge computing systems. Using estimation-of-distribution
models, the proposed algorithm can optimize continuous and
discrete decision variables associated with resource allocation
and task offloading. It has been shown to perform very well in
multi-user, multi-server collaborative edge systems.

Yin, et al. [14] presented an effective convergent firefly
algorithm, called the ECFA, for coordinating sensitive tasks in
a cloud-edge environment. This approach introduces novel

concepts of boundary traps to enhance exploration and improve
convergence. Testing on several cloud-edge scheduling
problems demonstrates its better performance than the standard
Firefly algorithm. Wang, et al. [15] introduced Quantum
Particle Swarm Optimization (QPSO) for device-edge-cloud
cooperative computing (DE3C). QPSO outweighs the other
metaheuristics on user experience or resource efficiency but has
shortcomings in large-scale problems.

Salehnia, et al. [16] suggested a Multiple-Objective Moth-
Flame Optimization (MOMFO) algorithm for task scheduling
in IoT-based fog-cloud systems. This approach reduced energy
consumption and CO2 emissions, along with task delays, while
improving IoT system performance. Khiat, et al. [17] presented
a genetic-based scheduling algorithm (GAMMR) to lower
latency and energy consumption. Several datasets simulated
with GAMMR performed better than the standard genetic
algorithms by 3.4%.

Although some of the methods summarized in Table I
provide valuable insights into resource allocation and task
scheduling, significant gaps still need to be addressed. Various
methods, such as ERSGWO and MOEA/D-EoD, are algorithm-
specific, limiting their adaptability to diverse and dynamic
edge-cloud environments. Besides, hybrid methods in ACO-
GA and ECFA predominantly suffer from an inability to
balance exploration and exploitation, returning suboptimal
solutions in multi-objective contexts.

TABLE I. AN OVERVIEW OF PREVIOUS RESOURCE ALLOCATION AND TASK SCHEDULING METHODS

Reference Contribution Limitation

[10]

Proposed a hybrid ACO-GA algorithm for resource

allocation, maximizing utility while reducing cost and
latency.

Computational overhead due to the complexity of combining ACO and GA makes it

less practical for large-scale and highly dynamic edge-cloud scenarios.

[11]

Compared GA and PSO for resource allocation in edge-

fog cloud environments, highlighting strengths and
weaknesses.

GA requires significant computational resources and a large number of iterations to

converge, while PSO's performance heavily depends on parameter tuning and may
lead to premature convergence.

[12]

Developed ERSGWO, a hybrid RSA-GWO algorithm,

enhancing exploration and avoiding local optima for MEC
environments.

The algorithm's design focuses exclusively on MEC-specific scenarios, making it less
generalizable to broader edge-cloud or fog-cloud architectures.

[13]

Designed MOEA/D-EoD, a multi-target algorithm for task

offloading and resource allocation in collaborative MEC

systems.

The approach is limited by its scalability issues, particularly when handling a large
number of mobile users and servers in complex, real-world edge-cloud environments.

[14]
Introduced ECFA for task scheduling in cloud-edge

systems, enhancing convergence and robustness.

Sensitive to parameter settings, requiring extensive tuning for different applications,

and prone to falling into local optima in highly dynamic conditions.

[15]
Applying QPSO for task scheduling in DE3C systems

improves resource efficiency and customer satisfaction.

While effective for small to medium-sized problems, QPSO struggles with scalability

and fails to deliver consistent performance for large-scale task scheduling.

[16]
Proposed MOMFO for IoT task scheduling, reducing
energy consumption, CO2 emissions, and task delays.

The algorithm is tailored for fog-cloud systems, limiting its application to more

generalized edge-cloud environments or scenarios with highly dynamic task

demands.

[17]
Designed GAMMR to optimize latency and energy in fog-
cloud systems, achieving improved scheduling efficiency.

Achieves only marginal improvements (3.4%) over the standard GA, making it less
competitive in scenarios demanding significant enhancements in performance.

Scalability remains an issue, as most approaches like
GAMMR and QPSO represent low efficiency when dealing
with large-scale problems. Besides, approaches like MOMFO
and MOEA/D-EoD need to be better generalized for different
architectures. Along this line of thought, this paper presents a
hybrid ABC-BA algorithm that incorporates ABC's global
exploration capability and the efficient exploitation of BA. The
proposed design targets the shortcomings identified and aims to
elevate adaptability, scalability, and resource optimization in an
edge-cloud system.

III. SYSTEM MODEL

As depicted in Fig. 1, the resource allocation system model
integrates edge resources, cloud resources, and mobile users in
an edge-cloud environment. Mobile users initiate requests for
task executions, which are forwarded by a local dispatch system
to the edge servers managed by the orchestrator of each edge.
An edge orchestrator comprises three modules: a task analyzer
and policy enhancement module, a task scheduler, and a global
resource manager. Table II summarizes the mathematical
symbols and notations used throughout this study.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1026 | P a g e

www.ijacsa.thesai.org

Fig. 1. System model.

TABLE II. SYMBOLS AND DESCRIPTIONS

Symbol Description Symbol Description

pl Probability of selecting individual ℓ in ABC phase t Number of iterations

gc General number of cycles tBA Remaining iterations for bat algorithm

N Population size sc Success control parameter

𝑧𝑗
𝑙 Component of individual ℓ for ABC algorithm mnc Maximum number of changes between BA and ABC

f(x) Target function 𝜐𝑖
𝑡 Velocity of the 𝑖th bat at time 𝑡

x* Best solution in the population 𝑥𝑖
𝑡 Position of the 𝑖th bat at time 𝑡

max_i Maximum iteration D Dimension of the problem space

A Loudness in the bat Algorithm hj Hourly resource leasing price

r Pulse emission rate tij Task execution time

tABC Remaining iterations for ABC algorithm cij Communication time

C Total cost M Makespan

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1027 | P a g e

www.ijacsa.thesai.org

The task analyzer subjects the tasks to a task dependency
model that enforces execution to avoid delays and deadlocks.
Another essential component is the global resource manager,
responsible for monitoring real-time network metrics to make
resource allocation decisions. The scheduler utilizes the hybrid
ABC-BA algorithm to assign tasks to edge or cloud resources
based on execution order, task requirements, and current
network performance. ABC-BA couples the global searching
capability of the ABC algorithm with the fast local searches of
the BA to provide optimal task allocation and adaptation to
dynamic conditions.

The task scheduling algorithm takes the request from the
task requests by going through QoS requirements and
constraints. It decides whether tasks should be executed on
cloud resources, edge resources, or even both to minimize
execution time and cost. Resource utilization rates, such as the
usage hour rate for a cloud virtual machine or the per-minute
rate for an edge server, form the basis for calculating the
execution cost of a task. This model can upload dependent and
independent tasks on which different cost structures, like
Amazon EC2 and Microsoft Azure, differ for various providers.

Makespan measures the total time needed to accomplish all
tasks, influenced by task execution time on edge or cloud
devices and communication delays, calculated as follows:

𝑀 = 𝑚𝑎𝑥 (𝑚𝑎𝑥
𝑡𝑖∈𝐶𝑖

(𝑡𝑖𝑐 + 𝑐𝑖𝑐) + 𝑚𝑎𝑥
𝑡𝑖∈𝐸𝑖

(𝑡𝑖𝑒)) (1)

Where 𝑡𝑖𝑒 is the execution time on edge VMs, 𝑡𝑖𝑐 is the
execution time on cloud VMs, and 𝑐𝑖𝑐 is the communication
delay between edge and cloud. Cost is mathematically modeled
as follows:

𝐶 = ∑ ∑ Cost𝑖𝑗

𝑛

𝑗=1

𝑘

𝑖=1

, where Cost𝑖𝑗 = ℎ𝑗 × 𝑡𝑖𝑗 (2)

Where ℎ𝑗 denotes the resource price per hour, and 𝑡𝑖𝑗
represents the task execution duration.

A Directed Acyclic Graph (DAG) represents the
dependencies between tasks to ensure the order is respected and
prevent deadlocks. Therefore, nodes represent tasks, and an
edge implies dependency. The finish time of each task and the
dependency constraint are computed as follows.

𝐹𝑖 = 𝑆𝑖 + 𝐷𝑖 , ∀𝑡𝑖 ∈ 𝑇 (3)

𝑆𝑗 ≥ 𝐹𝑖 , ∀(𝑡𝑖 , 𝑡𝑗) ∈ 𝐸 (4)

Where 𝑆𝑖 is the start time, 𝐷𝑖 is the duration, and 𝐹𝑖 is the
finish time of task 𝑡𝑖.

The network model optimizes interactions between edge
devices, servers, and cloud resources. Each edge device
connects to one edge server, computed as:

∑ 𝑧𝑖𝑗

𝑗∈𝐸

= 1, ∀𝐸𝐷𝑖 ∈ 𝐷 (5)

Where 𝑧𝑖𝑗 indicates a connection between edge device 𝐸𝐷𝑖
and edge server 𝐸𝑆𝑗. Edge servers can connect to multiple cloud
servers:

∑ 𝑤𝑖𝑗𝑗∈𝐶 ≥ 0, ∀𝐸𝑆𝑖 ∈ 𝐸 (6)

The flow conservation constraint ensures data stability
across nodes:

∑ 𝑓𝑘𝑖

𝑘:(𝑘,𝑖)∈𝐿

− ∑ 𝑓𝑖𝑘

𝑘:(𝑖,𝑘)∈𝐿

= 𝑏𝑖 , ∀𝑖 ∈ 𝐷 ∪ 𝐸 ∪ 𝐶 (7)

Where 𝑏𝑖 represents data flow demand, and 𝑓𝑖𝑘 denotes data
flow between nodes. This model ensures efficient task
execution by integrating the hybrid ABC-BA algorithm into
resource and network management in the edge-cloud
continuum.

IV. BACKGROUNDS

A. Artificial Bee Colony Algorithm

The ABC algorithm takes inspiration from the foraging
behavior of honeybee colonies. Presented by Karaboga and
Akay [18], it was used to solve continuous optimization
problems. This algorithm works in iterative phases, comprising
several steps to effectively achieve optimum solutions for
optimization problems. In the initial phase, a population of 𝑁𝑝
individuals (candidate solutions) is generated using Eq. 8,
randomly within a specified range [−100, 100]𝑚, where 𝑚
represents the problem's dimensionality.

𝑧𝑗
𝑙 = 𝑧min + (𝑧max − 𝑧min) ⋅ rand(), 𝑙

∈ {1,2, … , 𝑁𝑝},  𝑗 ∈ {1,2, … , 𝑚}
(8)

𝑧min and 𝑧max denote the bounds, and rand() is a random
scalar in the range [0 , 1).

Employed bees search for improved solutions near their
current positions. A new solution 𝑣𝑗 is generated as follows:

𝑣𝑗 = 𝑧𝑗
𝑙 + (2 ⋅ rand() − 1) ⋅ (𝑧𝑗

𝑙 − 𝑧𝑗
𝑘) (9)

Where 𝑘 is a random individual index (𝑘 ≠ 𝑙). The fitness
of each candidate solution is evaluated using the objective
function, defined as:

𝑓𝑖𝑡𝑙 = {

1

1 + 𝑓𝑙

, 𝑖𝑓 𝑓𝑙 ≥ 0

1 + |𝑓𝑙|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10)

Each solution's probability of being selected for further

exploration is determined as:

𝑝𝑙 =
fit𝑙

∑ fit𝑡
𝑁𝑝

𝑡=1

, 𝑙 ∈ {1,2, … , 𝑁𝑝} (11)

Onlooker bees exploit food sources based on probabilities

calculated in the previous step. Similar to the employed bees, a

new solution is generated using Eq. 12.

𝑣𝑗 = 𝑧𝑗
𝑙 + (2 ⋅ rand() − 1) ⋅ (𝑧𝑗

𝑙 − 𝑧𝑗
𝑘) (11)

If a food source cannot be improved after a defined limit of
attempts, the corresponding bee becomes a scout and generates
a new random solution as follows:

[𝑣𝑗 = 𝑧min + (𝑧max − 𝑧min) ⋅ rand() (12)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1028 | P a g e

www.ijacsa.thesai.org

B. Bat Algorithm

The BA is a heuristic algorithm inspired by echolocation
patterns, where bats employ sound waves to locate their prey
and avoid collision with objects. The delay between high-
frequency sound pulse transmission and reception determines
bats' distance from their prey. This echolocation capability
provides the basis for BA's mechanism of exploration and
exploitation in search spaces. This algorithm follows the
following underlying principles:

 Echolocation is used by bats to determine their distance
from prey.

 Bats move at a velocity 𝑣 𝑖 toward a position 𝑥 𝑖
spanning a frequency spectrum [𝑓 min, 𝑓 max], making
sounds at various frequencies 𝜆 and loudness 𝐴 to
discover their prey.

 Bats adjust their signal's wavelength and pulse rate
dynamically while calculating distances.

 The loudness drops from a maximum (𝐴 0) to a
minimum value (𝐴 min) as a bat approaches its prey,
while the pulse emission rate 𝑟 rises.

In a 𝐷-dimensional sphere, the frequency, velocity, and
position of the 𝑖th bat are updated as follows:

Frequency calculation:

𝑓𝑖 = 𝑓min + (𝑓max − 𝑓min) ⋅ 𝛽 (13)

Where 𝛽 is a random number in [0, 1].

Velocity update:

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑥∗) ⋅ 𝑓𝑖 (14)

Where 𝑥∗ is the current global best position.

Position update:

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡 (14)

For local exploitation, a new solution is generated around
the best current solution using a random step as follows:

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜖 ⋅ 𝐴𝑡 (15)

Where 𝜖 is a random value in [− 1, 1], and 𝐴𝑡 represents the
average loudness of all bats at time 𝑡.

As bats converge toward the prey, the loudness decreases
exponentially while the pulse emission rate increases as
follows:

𝐴𝑖
𝑡+1 = α ⋅ 𝐴𝑖

𝑡 (16)

𝑟𝑖
𝑡+1 = 𝑟0 ⋅ [1 − 𝑒−γ𝑡] (17)

Where 𝛼 and 𝛾 are constants that control the rate of
adaptation.

BA dynamically alters the relationship between exploration
on the global scale and exploitation on the local scale by
dynamically adjusting its parameters. Frequency guides the
range of movements, while loudness and pulse rate control the
tradeoff between exploring new areas and refining existing

solutions. These allow the algorithm to maintain a balance
between exploration and exploitation.

V. PROPOSED HYBRID ALGORITHM

The proposed hybrid algorithm, ABC-BA, is an
amalgamation of the strengths of BA and ABC in an attempt to
balance the tradeoffs between exploitation and exploration.
Integrating the two algorithms, ABC-BA enhances global
search capabilities, population diversity, and solution quality.
ABC-BA rectifies BA structural defects by dynamically
updating the pulse emission rate (r), along with loudness (A).
As iterations progress, r increases, allowing the algorithm to
focus on local search, while A decreases to refine the solutions.
To enhance the search capability, an inertia weight coefficient
(𝑤) is introduced into the velocity formula of BA.

𝑣𝑖
𝑡 = 𝜔. 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑥∗) ⋅ 𝑓𝑖 (18)

This coefficient improves global search during initial
iterations and gradually emphasizes local search as iterations
progress.

The hybrid algorithm divides the population into two equal
parts. The BA processes one part, while the other part is treated
by the ABC. Both algorithms work independently; however, at
certain periods, they share their information with the other to
enhance the performance of the whole. After a predetermined
iteration cycle (𝑠𝑐), the performance of ABC and BA is
assessed based on the number of new solutions generated. If BA
performs better (based on 𝑏𝑎_𝑠𝑛), its best solutions replace the
worst solutions in the ABC group and vice versa for ABC:

 𝑏 𝑎 _ni: Number of new solutions generated by BA.

 𝑏 ee_ni: Number of new solutions generated by ABC.

 𝑏 𝑎 _sn and bee_sn: Counters tracking successful
exchanges.

Solutions are exchanged between BA and ABC based on
success rates. The parameter 𝑎𝑐 determines the number of
individuals to replace, calculated as follows:

𝑚𝑛𝑐 = (
max(𝑓) − iteration

𝑠𝑐
) ⋅ 0.6 (19)

The hybrid algorithm's complexity depends on the separate
complexities of BA and ABC. For a problem size D, the worst-
case computational complexity for fitness evaluation is (D),
while the complexity of the algorithms is (D⋅𝑁), where 𝑁 is the
population size. During parallel execution, the complexity is:

𝑡 ⋅ (𝑂 (𝑃 ⋅
𝑁

2
) + 𝑂 (2 ⋅ 𝑃 ⋅

𝑁

2
)) (20)

If one algorithm dominates, the complexity becomes:

𝑡1 ⋅ (𝑂 (𝑃 ⋅
𝑁

2
) + 𝑡2. 𝑂 (2 ⋅ 𝑃 ⋅

𝑁

2
)) (21)

Where 𝑡1 and 𝑡2 are the respective iteration counts for BA
and ABC.

By incorporating BA and ABC, the ABC-BA algorithm
combines ABC's global search capability with BA's detailed
local exploitation advantageously. Such synergy avoids early

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1029 | P a g e

www.ijacsa.thesai.org

convergence of the algorithm to poor suboptimal solutions,
improves solution quality, and effectively adapts the algorithm
to dynamic optimization problems. Significant exploration and

exploitation improvements are shown in the proposed
algorithm, especially for large-scale, complex search spaces.
Fig. 2 shows the pseudo-code of the proposed hybrid algorithm.

Fig. 2. Pseudo-code of hybrid algorithm.

VI. PERFORMANCE EVALUATION

This section compares the performances of ABC-BA

against two benchmark algorithms, Fruit fly Simulated

Annealing Optimization Scheme (FSAOS) [19] and Quantum-

behaved Particle Swarm Optimization (QPSO) [20],

implemented using an Edge-CloudSim simulator. In this

regard, two edge data centers and one cloud data center were

configured by setting different resources to make the scenarios

realistic. In ABC-BA, maximum iterations were 100, the

population size was 50, and a dynamic switch probability was

adopted to balance exploration with exploitation. The

experiments were conducted based on task execution metrics:

makespan, cost, resource utilization, and task count ranging

from 100 to 1000. Makespan measures the total task completion

time, while cost evaluates resource utilization expenses.

Simulation findings highlight ABC-BA’s capability to optimize

resource allocation and task scheduling across edge and cloud

environments.

As shown in Fig. 3 and 4, ABC-BA consistently
outperformed FSAOS and QPSO in terms of makespan. On the
cloud, ABC-BA had an increased trend in makespan from 74.69
for 100 tasks to 503.85 for 1000 tasks, while QPSO and FSAOS
presented a much larger increase. Similarly, in the case of the
edge environment, ABC-BA had lower makespan values,
ranging from 31.66 to 339.93, compared to QPSO (41.16 to
441.91) and FSAOS (47.49 to 490.56). These results
demonstrate ABC-BA's efficiency in minimizing task
execution time, critical for latency-sensitive applications like

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1030 | P a g e

www.ijacsa.thesai.org

IoT and real-time analytics. The findings emphasize its
scalability and robustness under increasing workloads.

Cost analysis further demonstrated ABC-BA's superiority
in resource efficiency. In the cloud environment, as shown in
Fig. 5, ABC-BA achieved the lowest costs, starting at 25.21 and
increasing to 333.43, outperforming QPSO and FSAOS, which
exhibited costs ranging from 30.25 to 400.12 and 55.86 to
485.06, respectively. On the edge, as shown in Fig. 6, ABC-
BA’s costs increased from 12.51 to 126.11, while QPSO.

Fig. 3. Makespan results on cloud servers.

Fig. 4. Makespan results on edge servers.

Fig. 5. Task execution on cloud servers.

Ranged from 15.46 to 151.34, and FSAOS ranged from
17.54 to 162.30. The results highlight ABC-BA’s ability to
minimize operational expenses by optimizing resource
allocation. This cost efficiency makes ABC-BA an ideal choice
for resource-constrained edge environments and large-scale
cloud systems, ensuring reduced execution time and financial
overheads while maintaining high performance.

Fig. 6. Task execution on edge servers.

The resource utilization analysis highlights the efficiency of
the ABC-BA algorithm in both cloud and edge environments.
As shown in Fig. 8, on the edge, the resource utilization values
for ABC-BA steadily increase from 1.90 at 100 tasks to 19.05
at 1000 tasks. As shown in Fig. 7, utilization starts at 0.17 in
the cloud and rises to 1.68 for the same task sizes.
Comparatively, the benchmark algorithms, QPSO and FSAOS,
demonstrate higher resource usage in both environments,
reflecting less efficient optimization.

Fig. 7. Resource utilization on edge servers.

Fig. 8. Resource utilization on cloud servers.

Number of tasks

200 400 600 800 1000

M
a

k
es

p
a

n

0

200

400

600

800

1000

1200

QPSO
FSAOS
ABC-BA

Number of tasks

200 400 600 800 1000

M
a

k
es

p
a

n

0

100

200

300

400

500

QPSO
FSAOS
ABC-BA

Number of tasks

200 400 600 800 1000

C
o

st

0

100

200

300

400

500

QPSO
FSAOS
ABC-BA

Number of tasks

200 400 600 800 1000

C
o

st

0

20

40

60

80

100

120

140

160

180

QPSO
FSAOS
ABC-BA

Number of tasks

200 400 600 800 1000

R
es

o
u

rc
e

u
ti

li
za

ti
o

n

0

5

10

15

20

25

30

QPSO
FSAOS
ABC-BA

Number of tasks

200 400 600 800 1000

R
es

o
u

rc
e

u
ti

li
za

ti
o

n

0.0

0.5

1.0

1.5

2.0

QPSO
FSAOS
ABC-BA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1031 | P a g e

www.ijacsa.thesai.org

VII. CONCLUSION

This paper proposed a hybrid ABC-BA algorithm for
resource allocation and task scheduling in edge-cloud
environments. By leveraging the strengths of ABC and BA,
ABC-BA addressed the vital challenges of exploration-
exploitation balance, reduction of time taken to execute tasks,
and optimization of resource utilization. The testing evidence
proved that the proposed algorithm performed better than the
benchmark methods regarding makespan, cost, and resource
utilization. ABC-BA has constantly outperformed the
comparatives for a wide range of simulations in both cloud and
edge computing under various task size and resource
constraints, proving its robustness and scalability.

Future works may implement an improved ABC-BA,
considering other optimization algorithms like multi-objective
algorithms or deep reinforcement learning methods that might
improve the performance even further. The implementation of
ABC-BA using real-world edge-cloud environments on
different workloads and their integration with sophisticated
network models will be of greater value in eliciting insight into
the practical workability proposed in this approach. More
generally, the proposed ABC-BA algorithm may be able to
point out a new frontier in resource optimization and task
scheduling, fostering further research in the direction of more
efficient and scalable edge-cloud solutions. Additionally, future
research will incorporate robust fault tolerance mechanisms to
address node failures, including dynamic task reallocation,
node health monitoring, and redundancy protocols. By
integrating these strategies, we aim to enhance the resilience
and practical applicability of the proposed algorithm in
unpredictable real-world environments.

REFERENCES

[1] B. Pourghebleh and N. J. Navimipour, "Data aggregation mechanisms in
the Internet of things: A systematic review of the literature and
recommendations for future research," Journal of Network and Computer
Applications, vol. 97, pp. 23-34, 2017, doi:
https://doi.org/10.1016/j.jnca.2017.08.006.

[2] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022, doi: https://doi.org/10.1002/cpe.6698.

[3] T. Wang, Y. Liang, X. Shen, X. Zheng, A. Mahmood, and Q. Z. Sheng,
"Edge computing and sensor-cloud: Overview, solutions, and directions,"
ACM Computing Surveys, vol. 55, no. 13s, pp. 1-37, 2023, doi:
https://doi.org/10.1145/3582270.

[4] G. Baranwal, D. Kumar, and D. P. Vidyarthi, "Blockchain based resource
allocation in cloud and distributed edge computing: A survey," Computer
Communications, 2023, doi:
https://doi.org/10.1016/j.comcom.2023.07.023.

[5] V. Hayyolalam, B. Pourghebleh, A. A. Pourhaji Kazem, and A. Ghaffari,
"Exploring the state-of-the-art service composition approaches in cloud
manufacturing systems to enhance upcoming techniques," The
International Journal of Advanced Manufacturing Technology, vol. 105,
pp. 471-498, 2019, doi: https://doi.org/10.1007/s00170-019-04213-z.

[6] S. Zhang, J. He, W. Liang, and K. Li, "MMDS: A secure and verifiable
multimedia data search scheme for cloud-assisted edge computing,"
Future Generation Computer Systems, vol. 151, pp. 32-44, 2024, doi:
https://doi.org/10.1016/j.future.2023.09.023.

[7] W. Liang et al., "TMHD: Twin-Bridge Scheduling of Multi-
Heterogeneous Dependent Tasks for Edge Computing," Future
Generation Computer Systems, vol. 158, pp. 60-72, 2024, doi:
https://doi.org/10.1016/j.future.2024.04.028.

[8] Ş. Öztürk, R. Ahmad, and N. Akhtar, "Variants of Artificial Bee Colony
algorithm and its applications in medical image processing," Applied soft
computing, vol. 97, p. 106799, 2020, doi:
https://doi.org/10.1016/j.asoc.2020.106799.

[9] T. Agarwal and V. Kumar, "A systematic review on bat algorithm:
Theoretical foundation, variants, and applications," Archives of
Computational Methods in Engineering, pp. 1-30, 2022, doi:
https://doi.org/10.1007/s11831-021-09673-9.

[10] W. Xia and L. Shen, "Joint resource allocation at edge cloud based on ant
colony optimization and genetic algorithm," Wireless Personal
Communications, vol. 117, no. 2, pp. 355-386, 2021, doi:
https://doi.org/10.1007/s11277-020-07873-3.

[11] S.-E. Chafi, Y. Balboul, M. Fattah, S. Mazer, and M. El Bekkali,
"Enhancing resource allocation in edge and fog-cloud computing with
genetic algorithm and particle swarm optimization," Intelligent and
Converged Networks, vol. 4, no. 4, pp. 273-279, 2023, doi:
https://doi.org/10.23919/ICN.2023.0022.

[12] M. Haghighat Afshar, K. Majidzadeh, M. Masdari, and F. Fathnezhad,
"An Energy-Aware Resource Allocation Framework based on Reptile
Search Algorithm and Gray Wolf Optimizer for Mobile Edge Computing,"
Arabian Journal for Science and Engineering, pp. 1-32, 2024, doi:
https://doi.org/10.1007/s13369-024-09718-8.

[13] C. Yu, Y. Yong, Y. Liu, J. Cheng, and Q. Tong, "A Multi-Objective
Evolutionary Approach: Task Offloading and Resource Allocation Using
Enhanced Decomposition-Based Algorithm in Mobile Edge Computing,"
IEEE Access, 2024, doi: https://doi.org/10.1109/ACCESS.2024.3444607.

[14] L. Yin, J. Sun, J. Zhou, Z. Gu, and K. Li, "ECFA: an efficient convergent
firefly algorithm for solving task scheduling problems in cloud-edge
computing," IEEE Transactions on Services Computing, 2023, doi:
https://doi.org/10.1109/TSC.2023.3293048.

[15] B. Wang, Z. Zhang, Y. Song, M. Chen, and Y. Chu, "Application of
Quantum Particle Swarm Optimization for task scheduling in Device-
Edge-Cloud Cooperative Computing," Engineering Applications of
Artificial Intelligence, vol. 126, p. 107020, 2023, doi:
https://doi.org/10.1016/j.engappai.2023.107020.

[16] T. Salehnia et al., "An optimal task scheduling method in IoT-Fog-Cloud
network using multi-objective moth-flame algorithm," Multimedia Tools
and Applications, vol. 83, no. 12, pp. 34351-34372, 2024, doi:
https://doi.org/10.1007/s11042-023-16971-w.

[17] A. Khiat, M. Haddadi, and N. Bahnes, "Genetic-based algorithm for task
scheduling in fog–cloud environment," Journal of Network and Systems
Management, vol. 32, no. 1, p. 3, 2024, doi:
https://doi.org/10.1007/s10922-023-09774-9.

[18] D. Karaboga and B. Akay, "A comparative study of artificial bee colony
algorithm," Applied mathematics and computation, vol. 214, no. 1, pp.
108-132, 2009, doi: https://doi.org/10.1016/j.amc.2009.03.090.

[19] D. Gabi et al., "Dynamic scheduling of heterogeneous resources across
mobile edge-cloud continuum using fruit fly-based simulated annealing
optimization scheme," Neural Computing and Applications, vol. 34, no.
16, pp. 14085-14105, 2022, doi: https://doi.org/10.1007/s00521-022-
07260-y.

[20] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, "AdPSO: adaptive PSO-
based task scheduling approach for cloud computing," Sensors, vol. 22,
no. 3, p. 920, 2022, doi: https://doi.org/10.3390/s22030920.

