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Abstract—Integrating edge and cloud computing systems 

builds up a powerhouse, a framework for realizing real-time data 

processing and conducting large-scale computation tasks. 

However, efficient resource allocation and task scheduling are 

outstanding challenges in these dynamic, heterogeneous 

environments. This paper proposes an innovative hybrid 

algorithm that amalgamates the features of the Bat Algorithm 

(BA) and Artificial Bee Colony (ABC) to meet such challenges. The 

ABC algorithm's solid global search capabilities and the BA's 

efficient local exploitation are merged for efficient task scheduling 

and resource allocation. Dynamic adaptation of the proposed 

hybrid algorithm accommodates such conditions by balancing 

exploration and exploitation through periodic solution exchanges. 

Experimental evaluations highlight that the proposed algorithm 

can minimize execution time and costs involving resource 

utilization by guaranteeing proper management of task 

dependencies using a Directed Acyclic Graph (DAG) model. 

Compared to the available methods, the proposed hybrid 

technique generates better performance metrics concerning 

reduced makespan, improved resource utilization, and lower 

computational delays concerning resource optimization in an 

edge-cloud context. 

Keywords—Cloud computing; edge computing; resource 

allocation; optimization; task scheduling 

I. INTRODUCTION 

Edge and cloud computing have changed how computation 
is performed. Real-time processing and elasticity of resources 
can now be achieved. Edge computing minimizes latency by 
executing data near the source and is well-suited to the Internet 
of Things (IoT), intelligent cities, and autonomous vehicle 
deployments [1]. In contrast, cloud computing can offer 
substantial resources for computation and storage but entails 
more significant latency for processing data remotely [2]. The 
integration of edge and cloud systems into a unified continuum-
field edge benefits the two paradigms in an optimum manner: 
task execution, resource allocation, and network performance 
[3]. This is an increasingly crucial hybrid approach for meeting 
growing demands in today's computational ecosystems [4]. 

Despite the potential, resource allocation and task 
scheduling in the edge-cloud ecosystem are still challenging. 
Most existing algorithms suffer from exploration or 
exploitation, resulting in suboptimal task allocation, increased 
delays, and inefficient resource use [5]. Besides, most 
methodologies cannot function effectively in dynamic and 
heterogeneous environments where tasks may have 
dependencies, network conditions may change, and diverse 

resource constraints create a highly complex optimization 
problem [6, 7]. These limitations are a challenge to innovate in 
finding ways to best perform in edge-cloud systems. 

To counter these challenges, the present study develops a 
novel hybrid algorithm combining the Artificial Bee Colony 
(ABC) and Bat Algorithm (BA). ABC efficiently explores the 
diverse solution space, while the BA exploits the local search 
area [8, 9]. The proposed hybrid algorithm dynamically 
balances the two aspects: exploration and exploitation. It can 
explore more candidate solutions of better quality and achieve 
superior performance in resource allocation and task 
scheduling. A Directed Acyclic Graph (DAG) model manages 
task dependencies, ensuring efficient execution while avoiding 
deadlocks. The hybrid algorithm also incorporates periodic 
information exchange between ABC and BA populations to 
enhance adaptability and convergence. This research has made 
the following primary contributions: 

 Proposing a hybrid ABC-BA algorithm suitable for 
dynamic edge-cloud environments; 

 Developing with DAG-based task dependency 
management to ensure efficient task scheduling; 

 Extensive performance evaluations suggest minimum 
execution time, cost, and makespan over the existing 
methods; 

The rest of the study proceeds by reviewing the literature 
relevant to the subject matter and identifying the limitations in 
Section II. Section III discusses the system model and 
architecture and addresses design principles. Section IV 
outlines basic concepts and background that constitute the 
background necessary for a study. Section V explains the 
proposed ABC-BA hybrid algorithm's design principle, 
working mechanism, and merits. A general simulation and 
comparative analysis can be presented in Section VI. Finally, 
the paper summarizes the results found in Section VII, along 
with implications and further development directions of the 
research. 

II. LITERATURE REVIEW 

Xia and Shen [10] have proposed a hybrid approach for 
allocating resources in mobile edge cloud systems, merging Ant 
Colony Optimization (ACO) and Genetic Algorithm (GA). This 
approach maximizes system utility while balancing economic 
costs, energy conservation, and task latency. ACO can generate 
initial populations, while GA improves solutions using 
crossover and mutation. 
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Chafi, et al. [11] proposed a comparative study between GA 
and Particle Swarm Optimization (PSO) in edge-fog cloud 
architectures for resource allocation. Using the 
FogWorkflowSim simulator, this work underlines the logical 
structure of GA's fruition and the heuristic behaviors of PSO 
while showing efficiency for optimization in resource 
allocation under specific constraints. 

Haghighat Afshar, et al. [12] developed a new metaheuristic 
ERSGWO in mobile edge computing resource allocation, 
introducing a novel integration between the Grey Wolf 
Optimizer (GWO) and Reptile Search Algorithm (RSA). The 
algorithm is enhanced by introducing an intermediate 
neighborhood exploration phase that boosts agent performance 
against getting stuck in local optima. Test outcomes show that 
the performance improvement attained is as high as 97.7% 
across 12 scenarios. 

Yu, et al. [13] present a decomposition-driven multi-
objective optimization algorithm (MOEA/D-EoD) for mobile 
edge computing systems. Using estimation-of-distribution 
models, the proposed algorithm can optimize continuous and 
discrete decision variables associated with resource allocation 
and task offloading. It has been shown to perform very well in 
multi-user, multi-server collaborative edge systems. 

Yin, et al. [14] presented an effective convergent firefly 
algorithm, called the ECFA, for coordinating sensitive tasks in 
a cloud-edge environment. This approach introduces novel 

concepts of boundary traps to enhance exploration and improve 
convergence. Testing on several cloud-edge scheduling 
problems demonstrates its better performance than the standard 
Firefly algorithm. Wang, et al. [15] introduced Quantum 
Particle Swarm Optimization (QPSO) for device-edge-cloud 
cooperative computing (DE3C). QPSO outweighs the other 
metaheuristics on user experience or resource efficiency but has 
shortcomings in large-scale problems. 

Salehnia, et al. [16] suggested a Multiple-Objective Moth-
Flame Optimization (MOMFO) algorithm for task scheduling 
in IoT-based fog-cloud systems. This approach reduced energy 
consumption and CO2 emissions, along with task delays, while 
improving IoT system performance. Khiat, et al. [17] presented 
a genetic-based scheduling algorithm (GAMMR) to lower 
latency and energy consumption. Several datasets simulated 
with GAMMR performed better than the standard genetic 
algorithms by 3.4%. 

Although some of the methods summarized in Table I 
provide valuable insights into resource allocation and task 
scheduling, significant gaps still need to be addressed. Various 
methods, such as ERSGWO and MOEA/D-EoD, are algorithm-
specific, limiting their adaptability to diverse and dynamic 
edge-cloud environments. Besides, hybrid methods in ACO-
GA and ECFA predominantly suffer from an inability to 
balance exploration and exploitation, returning suboptimal 
solutions in multi-objective contexts. 

TABLE I. AN OVERVIEW OF PREVIOUS RESOURCE ALLOCATION AND TASK SCHEDULING METHODS 

Reference Contribution Limitation 

[10] 

Proposed a hybrid ACO-GA algorithm for resource 

allocation, maximizing utility while reducing cost and 
latency. 

Computational overhead due to the complexity of combining ACO and GA makes it 

less practical for large-scale and highly dynamic edge-cloud scenarios. 

[11] 

Compared GA and PSO for resource allocation in edge-

fog cloud environments, highlighting strengths and 
weaknesses. 

GA requires significant computational resources and a large number of iterations to 

converge, while PSO's performance heavily depends on parameter tuning and may 
lead to premature convergence. 

[12] 

Developed ERSGWO, a hybrid RSA-GWO algorithm, 

enhancing exploration and avoiding local optima for MEC 
environments. 

The algorithm's design focuses exclusively on MEC-specific scenarios, making it less 
generalizable to broader edge-cloud or fog-cloud architectures. 

[13] 

Designed MOEA/D-EoD, a multi-target algorithm for task 

offloading and resource allocation in collaborative MEC 

systems. 

The approach is limited by its scalability issues, particularly when handling a large 
number of mobile users and servers in complex, real-world edge-cloud environments. 

[14] 
Introduced ECFA for task scheduling in cloud-edge 

systems, enhancing convergence and robustness. 

Sensitive to parameter settings, requiring extensive tuning for different applications, 

and prone to falling into local optima in highly dynamic conditions. 

[15] 
Applying QPSO for task scheduling in DE3C systems 

improves resource efficiency and customer satisfaction. 

While effective for small to medium-sized problems, QPSO struggles with scalability 

and fails to deliver consistent performance for large-scale task scheduling. 

[16] 
Proposed MOMFO for IoT task scheduling, reducing 
energy consumption, CO2 emissions, and task delays. 

The algorithm is tailored for fog-cloud systems, limiting its application to more 

generalized edge-cloud environments or scenarios with highly dynamic task 

demands. 

[17] 
Designed GAMMR to optimize latency and energy in fog-
cloud systems, achieving improved scheduling efficiency. 

Achieves only marginal improvements (3.4%) over the standard GA, making it less 
competitive in scenarios demanding significant enhancements in performance. 

 

Scalability remains an issue, as most approaches like 
GAMMR and QPSO represent low efficiency when dealing 
with large-scale problems. Besides, approaches like MOMFO 
and MOEA/D-EoD need to be better generalized for different 
architectures. Along this line of thought, this paper presents a 
hybrid ABC-BA algorithm that incorporates ABC's global 
exploration capability and the efficient exploitation of BA. The 
proposed design targets the shortcomings identified and aims to 
elevate adaptability, scalability, and resource optimization in an 
edge-cloud system. 

III. SYSTEM MODEL 

As depicted in Fig. 1, the resource allocation system model 
integrates edge resources, cloud resources, and mobile users in 
an edge-cloud environment. Mobile users initiate requests for 
task executions, which are forwarded by a local dispatch system 
to the edge servers managed by the orchestrator of each edge. 
An edge orchestrator comprises three modules: a task analyzer 
and policy enhancement module, a task scheduler, and a global 
resource manager. Table II summarizes the mathematical 
symbols and notations used throughout this study. 
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Fig. 1. System model. 

TABLE II. SYMBOLS AND DESCRIPTIONS 

Symbol Description Symbol Description 

pl Probability of selecting individual ℓ in ABC phase t Number of iterations 

gc General number of cycles tBA Remaining iterations for bat algorithm 

N Population size sc Success control parameter 

𝑧𝑗
𝑙 Component of individual ℓ for ABC algorithm mnc Maximum number of changes between BA and ABC 

f(x) Target function 𝜐𝑖
𝑡 Velocity of the 𝑖th bat at time 𝑡 

x* Best solution in the population 𝑥𝑖
𝑡 Position of the 𝑖th bat at time 𝑡 

max_i Maximum iteration D Dimension of the problem space 

A Loudness in the bat Algorithm hj Hourly resource leasing price 

r Pulse emission rate tij Task execution time 

tABC Remaining iterations for ABC algorithm cij Communication time 

C Total cost M Makespan 
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The task analyzer subjects the tasks to a task dependency 
model that enforces execution to avoid delays and deadlocks. 
Another essential component is the global resource manager, 
responsible for monitoring real-time network metrics to make 
resource allocation decisions. The scheduler utilizes the hybrid 
ABC-BA algorithm to assign tasks to edge or cloud resources 
based on execution order, task requirements, and current 
network performance. ABC-BA couples the global searching 
capability of the ABC algorithm with the fast local searches of 
the BA to provide optimal task allocation and adaptation to 
dynamic conditions. 

The task scheduling algorithm takes the request from the 
task requests by going through QoS requirements and 
constraints. It decides whether tasks should be executed on 
cloud resources, edge resources, or even both to minimize 
execution time and cost. Resource utilization rates, such as the 
usage hour rate for a cloud virtual machine or the per-minute 
rate for an edge server, form the basis for calculating the 
execution cost of a task. This model can upload dependent and 
independent tasks on which different cost structures, like 
Amazon EC2 and Microsoft Azure, differ for various providers. 

Makespan measures the total time needed to accomplish all 
tasks, influenced by task execution time on edge or cloud 
devices and communication delays, calculated as follows: 

𝑀 = 𝑚𝑎𝑥 (𝑚𝑎𝑥
𝑡𝑖∈𝐶𝑖

(𝑡𝑖𝑐 + 𝑐𝑖𝑐) + 𝑚𝑎𝑥
𝑡𝑖∈𝐸𝑖

(𝑡𝑖𝑒)) (1) 

Where 𝑡𝑖𝑒 is the execution time on edge VMs, 𝑡𝑖𝑐 is the 
execution time on cloud VMs, and 𝑐𝑖𝑐 is the communication 
delay between edge and cloud. Cost is mathematically modeled 
as follows: 

𝐶 = ∑ ∑ Cost𝑖𝑗

𝑛

𝑗=1

𝑘

𝑖=1

,  where Cost𝑖𝑗 = ℎ𝑗 × 𝑡𝑖𝑗 (2) 

Where ℎ𝑗 denotes the resource price per hour, and 𝑡𝑖𝑗 
represents the task execution duration. 

A Directed Acyclic Graph (DAG) represents the 
dependencies between tasks to ensure the order is respected and 
prevent deadlocks. Therefore, nodes represent tasks, and an 
edge implies dependency. The finish time of each task and the 
dependency constraint are computed as follows. 

𝐹𝑖 = 𝑆𝑖 + 𝐷𝑖 ,  ∀𝑡𝑖 ∈ 𝑇 (3) 

𝑆𝑗 ≥ 𝐹𝑖 ,  ∀(𝑡𝑖 , 𝑡𝑗) ∈ 𝐸 (4) 

Where 𝑆𝑖 is the start time, 𝐷𝑖 is the duration, and 𝐹𝑖 is the 
finish time of task 𝑡𝑖. 

The network model optimizes interactions between edge 
devices, servers, and cloud resources. Each edge device 
connects to one edge server, computed as: 

∑ 𝑧𝑖𝑗

𝑗∈𝐸

= 1,  ∀𝐸𝐷𝑖 ∈ 𝐷 (5) 

Where 𝑧𝑖𝑗 indicates a connection between edge device 𝐸𝐷𝑖 
and edge server 𝐸𝑆𝑗. Edge servers can connect to multiple cloud 
servers: 

∑ 𝑤𝑖𝑗𝑗∈𝐶 ≥ 0,  ∀𝐸𝑆𝑖 ∈ 𝐸   (6) 

The flow conservation constraint ensures data stability 
across nodes: 

∑ 𝑓𝑘𝑖

𝑘:(𝑘,𝑖)∈𝐿

− ∑ 𝑓𝑖𝑘

𝑘:(𝑖,𝑘)∈𝐿

= 𝑏𝑖 ,  ∀𝑖 ∈ 𝐷 ∪ 𝐸 ∪ 𝐶 (7) 

Where 𝑏𝑖 represents data flow demand, and 𝑓𝑖𝑘 denotes data 
flow between nodes. This model ensures efficient task 
execution by integrating the hybrid ABC-BA algorithm into 
resource and network management in the edge-cloud 
continuum. 

IV. BACKGROUNDS 

A. Artificial Bee Colony Algorithm 

The ABC algorithm takes inspiration from the foraging 
behavior of honeybee colonies. Presented by Karaboga and 
Akay [18], it was used to solve continuous optimization 
problems. This algorithm works in iterative phases, comprising 
several steps to effectively achieve optimum solutions for 
optimization problems. In the initial phase, a population of 𝑁𝑝 
individuals (candidate solutions) is generated using Eq. 8, 
randomly within a specified range [−100, 100]𝑚, where 𝑚 
represents the problem's dimensionality. 

𝑧𝑗
𝑙 = 𝑧min + (𝑧max − 𝑧min) ⋅ rand(),  𝑙

∈ {1,2, … , 𝑁𝑝},  𝑗 ∈ {1,2, … , 𝑚} 
(8) 

𝑧min and 𝑧max denote the bounds, and rand() is a random 
scalar in the range [ 0 , 1 ). 

Employed bees search for improved solutions near their 
current positions. A new solution 𝑣𝑗 is generated as follows: 

𝑣𝑗 = 𝑧𝑗
𝑙 + (2 ⋅ rand() − 1) ⋅ (𝑧𝑗

𝑙 − 𝑧𝑗
𝑘) (9) 

Where 𝑘 is a random individual index (𝑘 ≠ 𝑙). The fitness 
of each candidate solution is evaluated using the objective 
function, defined as: 

𝑓𝑖𝑡𝑙 = {

1

1 + 𝑓𝑙

,     𝑖𝑓 𝑓𝑙 ≥ 0     

1 + |𝑓𝑙|,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (10) 

Each solution's probability of being selected for further 

exploration is determined as: 

𝑝𝑙 =
fit𝑙

∑ fit𝑡
𝑁𝑝

𝑡=1

,  𝑙 ∈ {1,2, … , 𝑁𝑝} (11) 

Onlooker bees exploit food sources based on probabilities 

calculated in the previous step. Similar to the employed bees, a 

new solution is generated using Eq. 12. 

𝑣𝑗 = 𝑧𝑗
𝑙 + (2 ⋅ rand() − 1) ⋅ (𝑧𝑗

𝑙 − 𝑧𝑗
𝑘) (11) 

If a food source cannot be improved after a defined limit of 
attempts, the corresponding bee becomes a scout and generates 
a new random solution as follows: 

[𝑣𝑗 = 𝑧min + (𝑧max − 𝑧min) ⋅ rand() (12) 
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B. Bat Algorithm 

The BA is a heuristic algorithm inspired by echolocation 
patterns, where bats employ sound waves to locate their prey 
and avoid collision with objects. The delay between high-
frequency sound pulse transmission and reception determines 
bats' distance from their prey. This echolocation capability 
provides the basis for BA's mechanism of exploration and 
exploitation in search spaces. This algorithm follows the 
following underlying principles: 

 Echolocation is used by bats to determine their distance 
from prey. 

 Bats move at a velocity 𝑣 𝑖  toward a position 𝑥 𝑖  
spanning a frequency spectrum [𝑓 min, 𝑓 max], making 
sounds at various frequencies 𝜆  and loudness 𝐴  to 
discover their prey. 

 Bats adjust their signal's wavelength and pulse rate 
dynamically while calculating distances. 

 The loudness drops from a maximum (𝐴 0) to a 
minimum value (𝐴 min) as a bat approaches its prey, 
while the pulse emission rate 𝑟  rises. 

In a 𝐷-dimensional sphere, the frequency, velocity, and 
position of the 𝑖th bat are updated as follows: 

Frequency calculation: 

𝑓𝑖 = 𝑓min + (𝑓max − 𝑓min) ⋅ 𝛽 (13) 

Where 𝛽 is a random number in [0, 1]. 

Velocity update: 

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑥∗) ⋅ 𝑓𝑖 (14) 

Where 𝑥∗ is the current global best position. 

Position update: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡  (14) 

For local exploitation, a new solution is generated around 
the best current solution using a random step as follows: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜖 ⋅ 𝐴𝑡 (15) 

Where 𝜖 is a random value in [− 1, 1], and 𝐴𝑡 represents the 
average loudness of all bats at time 𝑡. 

As bats converge toward the prey, the loudness decreases 
exponentially while the pulse emission rate increases as 
follows: 

𝐴𝑖
𝑡+1 = α ⋅ 𝐴𝑖

𝑡 (16) 

𝑟𝑖
𝑡+1 = 𝑟0 ⋅ [1 − 𝑒−γ𝑡] (17) 

Where 𝛼 and 𝛾 are constants that control the rate of 
adaptation. 

BA dynamically alters the relationship between exploration 
on the global scale and exploitation on the local scale by 
dynamically adjusting its parameters. Frequency guides the 
range of movements, while loudness and pulse rate control the 
tradeoff between exploring new areas and refining existing 

solutions. These allow the algorithm to maintain a balance 
between exploration and exploitation. 

V. PROPOSED HYBRID ALGORITHM 

The proposed hybrid algorithm, ABC-BA, is an 
amalgamation of the strengths of BA and ABC in an attempt to 
balance the tradeoffs between exploitation and exploration. 
Integrating the two algorithms, ABC-BA enhances global 
search capabilities, population diversity, and solution quality. 
ABC-BA rectifies BA structural defects by dynamically 
updating the pulse emission rate (r), along with loudness (A). 
As iterations progress, r increases, allowing the algorithm to 
focus on local search, while A decreases to refine the solutions. 
To enhance the search capability, an inertia weight coefficient 
(𝑤) is introduced into the velocity formula of BA. 

𝑣𝑖
𝑡 = 𝜔. 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑥∗) ⋅ 𝑓𝑖 (18) 

This coefficient improves global search during initial 
iterations and gradually emphasizes local search as iterations 
progress. 

The hybrid algorithm divides the population into two equal 
parts. The BA processes one part, while the other part is treated 
by the ABC. Both algorithms work independently; however, at 
certain periods, they share their information with the other to 
enhance the performance of the whole. After a predetermined 
iteration cycle (𝑠𝑐), the performance of ABC and BA is 
assessed based on the number of new solutions generated. If BA 
performs better (based on 𝑏𝑎_𝑠𝑛), its best solutions replace the 
worst solutions in the ABC group and vice versa for ABC: 

 𝑏 𝑎 _ni: Number of new solutions generated by BA. 

 𝑏 ee_ni: Number of new solutions generated by ABC. 

 𝑏 𝑎 _sn and bee_sn: Counters tracking successful 
exchanges. 

Solutions are exchanged between BA and ABC based on 
success rates. The parameter 𝑎𝑐 determines the number of 
individuals to replace, calculated as follows: 

𝑚𝑛𝑐 = (
max(𝑓) − iteration

𝑠𝑐
) ⋅ 0.6 (19) 

The hybrid algorithm's complexity depends on the separate 
complexities of BA and ABC. For a problem size D, the worst-
case computational complexity for fitness evaluation is (D), 
while the complexity of the algorithms is (D⋅𝑁), where 𝑁 is the 
population size. During parallel execution, the complexity is: 

𝑡 ⋅ (𝑂 (𝑃 ⋅
𝑁

2
) + 𝑂 (2 ⋅ 𝑃 ⋅

𝑁

2
)) (20) 

If one algorithm dominates, the complexity becomes: 

𝑡1 ⋅ (𝑂 (𝑃 ⋅
𝑁

2
) + 𝑡2. 𝑂 (2 ⋅ 𝑃 ⋅

𝑁

2
)) (21) 

Where 𝑡1 and 𝑡2 are the respective iteration counts for BA 
and ABC. 

By incorporating BA and ABC, the ABC-BA algorithm 
combines ABC's global search capability with BA's detailed 
local exploitation advantageously. Such synergy avoids early 
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convergence of the algorithm to poor suboptimal solutions, 
improves solution quality, and effectively adapts the algorithm 
to dynamic optimization problems. Significant exploration and 

exploitation improvements are shown in the proposed 
algorithm, especially for large-scale, complex search spaces. 
Fig. 2 shows the pseudo-code of the proposed hybrid algorithm. 

 
Fig. 2. Pseudo-code of hybrid algorithm.

VI. PERFORMANCE EVALUATION 

This section compares the performances of ABC-BA 

against two benchmark algorithms, Fruit fly Simulated 

Annealing Optimization Scheme (FSAOS) [19] and Quantum-

behaved Particle Swarm Optimization (QPSO) [20], 

implemented using an Edge-CloudSim simulator. In this 

regard, two edge data centers and one cloud data center were 

configured by setting different resources to make the scenarios 

realistic. In ABC-BA, maximum iterations were 100, the 

population size was 50, and a dynamic switch probability was 

adopted to balance exploration with exploitation. The 

experiments were conducted based on task execution metrics: 

makespan, cost, resource utilization, and task count ranging 

from 100 to 1000. Makespan measures the total task completion 

time, while cost evaluates resource utilization expenses. 

Simulation findings highlight ABC-BA’s capability to optimize 

resource allocation and task scheduling across edge and cloud 

environments. 

As shown in Fig. 3 and 4, ABC-BA consistently 
outperformed FSAOS and QPSO in terms of makespan. On the 
cloud, ABC-BA had an increased trend in makespan from 74.69 
for 100 tasks to 503.85 for 1000 tasks, while QPSO and FSAOS 
presented a much larger increase. Similarly, in the case of the 
edge environment, ABC-BA had lower makespan values, 
ranging from 31.66 to 339.93, compared to QPSO (41.16 to 
441.91) and FSAOS (47.49 to 490.56). These results 
demonstrate ABC-BA's efficiency in minimizing task 
execution time, critical for latency-sensitive applications like 
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IoT and real-time analytics. The findings emphasize its 
scalability and robustness under increasing workloads. 

Cost analysis further demonstrated ABC-BA's superiority 
in resource efficiency. In the cloud environment, as shown in 
Fig. 5, ABC-BA achieved the lowest costs, starting at 25.21 and 
increasing to 333.43, outperforming QPSO and FSAOS, which 
exhibited costs ranging from 30.25 to 400.12 and 55.86 to 
485.06, respectively. On the edge, as shown in Fig. 6, ABC-
BA’s costs increased from 12.51 to 126.11, while QPSO. 

 
Fig. 3. Makespan results on cloud servers. 

 

Fig. 4. Makespan results on edge servers. 

 
Fig. 5. Task execution on cloud servers. 

Ranged from 15.46 to 151.34, and FSAOS ranged from 
17.54 to 162.30. The results highlight ABC-BA’s ability to 
minimize operational expenses by optimizing resource 
allocation. This cost efficiency makes ABC-BA an ideal choice 
for resource-constrained edge environments and large-scale 
cloud systems, ensuring reduced execution time and financial 
overheads while maintaining high performance. 

 
Fig. 6. Task execution on edge servers. 

The resource utilization analysis highlights the efficiency of 
the ABC-BA algorithm in both cloud and edge environments. 
As shown in Fig. 8, on the edge, the resource utilization values 
for ABC-BA steadily increase from 1.90 at 100 tasks to 19.05 
at 1000 tasks. As shown in Fig. 7, utilization starts at 0.17 in 
the cloud and rises to 1.68 for the same task sizes. 
Comparatively, the benchmark algorithms, QPSO and FSAOS, 
demonstrate higher resource usage in both environments, 
reflecting less efficient optimization. 

 
Fig. 7. Resource utilization on edge servers. 

 

Fig. 8. Resource utilization on cloud servers. 
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VII. CONCLUSION 

This paper proposed a hybrid ABC-BA algorithm for 
resource allocation and task scheduling in edge-cloud 
environments. By leveraging the strengths of ABC and BA, 
ABC-BA addressed the vital challenges of exploration-
exploitation balance, reduction of time taken to execute tasks, 
and optimization of resource utilization. The testing evidence 
proved that the proposed algorithm performed better than the 
benchmark methods regarding makespan, cost, and resource 
utilization. ABC-BA has constantly outperformed the 
comparatives for a wide range of simulations in both cloud and 
edge computing under various task size and resource 
constraints, proving its robustness and scalability. 

Future works may implement an improved ABC-BA, 
considering other optimization algorithms like multi-objective 
algorithms or deep reinforcement learning methods that might 
improve the performance even further. The implementation of 
ABC-BA using real-world edge-cloud environments on 
different workloads and their integration with sophisticated 
network models will be of greater value in eliciting insight into 
the practical workability proposed in this approach. More 
generally, the proposed ABC-BA algorithm may be able to 
point out a new frontier in resource optimization and task 
scheduling, fostering further research in the direction of more 
efficient and scalable edge-cloud solutions. Additionally, future 
research will incorporate robust fault tolerance mechanisms to 
address node failures, including dynamic task reallocation, 
node health monitoring, and redundancy protocols. By 
integrating these strategies, we aim to enhance the resilience 
and practical applicability of the proposed algorithm in 
unpredictable real-world environments. 
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