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Abstract—Cloud computing's exponential expansion requires 

better resource management methods to solve the existing struggle 

between system performance and energy efficiency and functional 

scalability. Traditional resource management practices frequently 

lead systems in large-scale cloud environments to produce 

suboptimal results. This research presents a brand-new 

computational framework that unites Self-Organizing Neural 

Networks (SONN) with Artificial Fish Swarm Algorithm (AFSA) 

to enhance energy efficiency alongside optimized resource 

allocation and scheduling improvements. The SONN system 

groups workload information and automatically changes its 

structure to support fluctuating demand rates then the AFSA 

optimizes resource management through swarm-based intelligent 

protocols for high performance with scalable benefits.  The SONN-

AFSA model achieves substantial performance gains by analyzing 

real-world CPU usage statistics and memory usage behavior 

together with scheduling data from Google Cluster Data. The 

experimental findings show 20.83% lower energy utilization next 

to 98.8% prediction rates alongside 95% SLA maintenance and an 

outstanding 98% task execution rate. The proposed model delivers 

reliability outcomes superior to traditional approaches PSO and 

DRL and PSO-based neural networks which achieve accuracy 

rates above 88% and reach 92% accuracy. The adaptive platform 

delivers better power management to cloud computations yet 

preserves operational agility by adapting workload distributions. 

The learning ability of SONN joined with AFSA optimization 

segments produces superior resource direction capabilities which 

yield better service delivery quality. Research will proceed beyond 

its current scope to study real-time feedback structures as it 

evaluates multi-objective enhancement through large-scale 

dataset validation work to boost cloud computing sustainability 

across various platforms. 

Keywords—Energy-efficient cloud resource management; Self-

Organizing Neural Networks (SONN); Artificial Fish Swarm 

Algorithm (AFSA); cloud optimization; swarm intelligence; 

resource utilization; task scheduling 

I. INTRODUCTION 

Modern technological development benefits substantially 
from cloud computing's emergence as a revolutionary solution 
during the past decades [1]. The internet distribution model 
known as cloud computing enables remote service access for 
computing essentials which includes servers and storage 
systems and databases and networks and applications and 
various other resources [2]. Amazon Web Services (AWS) 
together with Microsoft Azure launched their transformative 
services during early 2000s that resulted in massive cloud 
adoption [3]. The evolution of cloud computing now delivers 
three fundamental models named Infrastructure as a Service 
(IaaS) together with Platform as a Service (PaaS) and Software 
as a Service (SaaS) [4]. The technology functions as the 
backbone of current applications by facilitating web hosting 
alongside big data analytics and machine learning and IoT 
systems. The fundamental benefit package of cloud computing 
technologies drives sectoral transformation since business 
activities and service delivery models have developed new 
foundations [5]. 

Cloud resource management stands as a key element of 
cloud computing because it handles the effective utilization of 
processing power along with memory and storage capacity and 
network bandwidth allocation. The demand for cloud services 
continues to grow significantly because millions of users push 
the complexity of managing abundant digital data resources to 
new heights [6]. Complex management systems are necessary 
for cloud environments due to their shifting requirements which 
necessitate specific resource distribution for optimal user 
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performance. The primary purpose of cloud resource 
management is to achieve optimal resource use by cutting down 
wasteful usage and promoting system performance optimization 
per [7]. The primary obstacle in this context lies in controlling 
resource distributions that exceed genuine operational needs. 
The delivery of excessive resources leads to waste through both 
needless power consumption and unutilized resources that drive 
up operational costs as well as create additional environmental 
consequences. Under-provisioning of resources causes service 
quality to decrease because it creates slower response times, 
increased latency and ultimately subpar user experiences [8]. 
Stretched computing systems must receive proper resource 
configurations to maintain affordable cloud resources structures 
alongside desired service levels. The management success of 
resources heavily relies on scalability elements. Cloud system 
resources must automatically adjust through scaling processes to 
match demand fluctuations for maintaining optimal operational 
performance. 

Cloud providers need to recognize increased user activity 
peaks alongside the capability to decrease their resource 
utilization when usage reaches lower levels. Cloud systems 
utilize dynamic resource allocation strategies to manage 
workload variations efficiently thus maintaining both 
performance speed and minimal resource usage [9]. The main 
focus of cloud resource management requires energy efficiency 
since data centers present increasing operational costs coupled 
with rising environmental expenses. Cloud providers face their 
biggest operational cost in energy usage because their data 
centers use a sizeable segment of worldwide electrical demand. 
[10]. The energy demands create major environmental effects 
that remain substantial when operations use non-renewable 
power sources. Dynamic workload balancing and virtualization 
technologies and improved server utilization techniques enable 
cloud providers to reach these outcomes. By managing power 
usage through strategic resource allocation cloud providers 
simultaneously reduce operational costs while pursuing 
environmental sustainability goals. Cloud infrastructure 
resource management procedures lead to economic and 
environmental outcomes that influence billions of daily tasks 
across the network [11]. Systems with dynamic resource 
distribution adjust their design according to usage trends to 
decrease both physical infrastructure demands and 
corresponding energy usage and costs. Modern cloud service 
requirements need effective management solutions that maintain 
effective cost performance through a balance between resource 
usage and energy efficiency and scalability features [12]. The 
worldwide power consumption grows because cloud data 
centers experienced rapid growth with their exploding cloud 
computing services operations. The vast power usage needs 
created by the growing demand for computational resources 
causes crucial environmental problems with large data centers 
because of their energy demands and cooling requirements [13]. 
The economic burden to operate these facilities presents 
maximum challenge to data centers alongside mandatory 
requirements for energy-efficient resource administration. 
Thorough power utilization demands substantial pressure on 
cloud service providers to handle peak performance 
requirements when they must suppress their usage. The 
improper distribution of resources generates both economic and 
environmental challenges through poorly managed energy 

consumption resulting either from excessive resource spending 
or from underused resources [14]. Successful service quality 
preservation combined with adaptable resource management 
systems which respond to workload variations constitute 
essential requirements for reducing energy consumption [15]. 
The critical gap in the previous studies includes the failure in 
addressing the integration of the adaptive machine learning 
techniques and swarm intelligence for dynamic resource 
distribution. Incorporating of both machine learning adaptation 
with the intelligent swarm-based distribution faces lack a 
hybridized optimization method. The study develops a new 
computational framework by integrating Artificial Fish Swarm 
Algorithm (AFSA) and Self-Organizing Neural Networks 
(SONNs) to optimize cloud resource management while 
achieving power consumption minimization. The SONN neural 
model modifies its learning algorithms and structural 
arrangements to establish patterns in cloud workload 
requirements and the fish-based distribution capabilities 
demonstrated by AFSA underlie resource allocation. The 
combined adaptive features of Self-Organizing Neural 
Networks (SONNs) with Artificial Fish Swarm Algorithm 
(AFSA) optimization capabilities lead to efficient resource 
distribution while minimizing power usage while maintaining 
performance quality. The SONN-AFSA hybrid framework 
orchestrates cloud resources by maximizing energy 
consumption while achieving efficient task scheduling for cloud 
environments. Google Cluster Data served as the testing ground 
for the model through its use of authentic cloud data center 
workload logs that enabled both the application of the proposed 
framework and tests of model performance against modern 
cloud infrastructure. Through the integration of SONN and 
AFSA models the framework offers dynamic performance 
adjustments for different cloud platform operations which 
enable both precise execution and resource optimization 
regardless of workload variations. The model achieves high 
resource utilization rates combined with optimized scheduling 
techniques enabling SLA compliance thus delivering improved 
quality cloud service outcomes. The proposed approach 
achieved verification by using the Google Cluster Data which 
contains actual cloud data center workload traces for validating 
its practical application to present-day cloud infrastructure. The 
integration between SONN and AFSA runtime achieves 
dynamic flexibility which enables scalable efficiency across 
different cloud platforms with enhanced prediction precision 
and resource management particularly in situations with varying 
workload demands. Remains high while service level 
agreements (SLA) are met thanks to optimized task scheduling 
along with the model's precise prediction accuracy which leads 
to improved quality of cloud service delivery. Task scheduling 
in cloud environments. 

 Dynamic adaptability enabled by integrating SONN and 
AFSA results in predictable scalability while also 
minimizing resource misallocations in various cloud 
settings even when fluctuating workloads occur. 

 The integration of SONN and AFSA allows for dynamic 
adaptability, making the model scalable and efficient 
across different cloud environments, with improved 
prediction accuracy and resource allocation even under 
varying workloads. 
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 The proposed model reduces total energy consumption, 
demonstrating a significant improvement over traditional 
and hybrid optimization methods, ensuring sustainability 
in cloud resource management. 

 The model ensures high resource utilization efficiency 
and meets service level agreements (SLA), improving 
the quality of cloud service delivery through optimized 
task scheduling and prediction accuracy. 

The rest of the sections of this research have been organized 
as follows: Review of the existing literature Self-Organizing 
Neural Networks Integrated with Artificial Fish Swarm 
Algorithm for Energy-Efficient Cloud Resource Management in 
Section II. In Section III, proposed research Methodology is 
explained. The presents the experimental results in Section IV. 
In Section V, Conclusion and further work is mentioned and the 
study is concluded. 

II. LITERATURE REVIEW 

A. Hybrid Machine Learning Approach for Resource 

Allocation 

The paper proposes a hybrid machine learning (RATS-HM) 
approach for combined resource allocation security and efficient 
task scheduling in cloud computing to address these challenges 
according to Bal et al. [16]. The proposed RATS-HM techniques 
are given as follows: The ICSTS system which incorporates an 
improved cat swarm optimization algorithm for task scheduling 
tasks produces reduced make-span times while achieving 
maximum system throughput. A group optimization-based deep 
neural network (GO-DNN) serves as a framework for efficient 
resource allocation through bandwidth and resource load design 
constraints. NSUPREME functions as a lightweight 
authentication scheme which provides encryption services for 
data storage security. The proposed RATSHM technique 
undergoes simulation with a new setup to demonstrate its 
superiority against current state-of-the-art methods. Research 
findings demonstrate that the proposed method outperforms 
existing approaches by demonstrating better resource utilization 
alongside lower energy consumption and faster response times. 
The proposed model demonstrates longer utilization times 
which require additional improvement. 

B. Heuristic Algorithm for Cloud-Based Energy Consumption 

Sunil et al.,[17] introduces two energy efficient Virtual 
machine placement algorithms related to  bin packing heuristics 
focusing the efficiency of the physical machine’s energy, 
Energy Efficient VM Placement (EEVMP) and Modified 
Energy Efficient VM Placement (MEEVMP), which reduces the 
total energy usage in the data-center. The reduction in the energy 
consumption by 53% established using the EEVMP algorithm 
when compared with the default VM placement algorithm 
Power-Aware Best-Fit Decreasing algorithm (PABFD) of 
CloudSim, Average SLA violation of 3.5% and number of VM 
migrations by 64.47% when compare to PABFD, the MEEVMP 
algorithm achieves the reduction in energy consumption by 
54.24%, average SLA violation by 4.39% and number of VM 
migrations by 67.713 %. 

C. Hybrid Resource Allocation Solution 

Shahidinejad et al. [18] proposed a combined solution that 
manages cloud resource allocation for workloads. The k-means 
clustering and ICA method served as the resource allocation 
framework. This research used the decision tree method to 
determine an efficient resource allocation solution. The 
researchers ran the cloud workloads through real-world tests to 
measure the effectiveness of their hybrid solution. The hybrid 
method demonstrates enhanced capabilities for cloud 
optimization tasks. The model achieved its performance 
assessment on a minimal workload while the decision tree 
technique displayed unstable results. The proposed hybrid 
solution struggles to handle unpredictable workload fluctuations 
in real time and depends on static QoS criteria which may 
restrict its ability to adapt to changing user needs. 

D. Secure Sensor Cloud Architecture (SASC) 

Nezhad et al., [19] proposes a method that contains three 
phases, including the first phase as a star structure is constructed 
in which a specific key that is encrypted is shared between the 
each child and the parent to secure the communications between 
them. In second phase, the members of the cluster send their data 
to the cluster head and also the data is encrypted at the end of 
the each connection. The third phase included to improve the 
security of the inter cluster communications with the help of 
authentication protocol. By this, the cluster heads are 
authenticated before transmitting the information. The proposed 
method is also implemented using the NS2 software. The 
improvement in the energy consumption, end-to-end delay, 
flexibility and packet delivery rate results in the proposed 
method compared to other previous methods. 

E. Adaptive Heuristic Approach for Energy Efficiency 

Yadav et al. [20] developed an adaptive heuristic approach 
to reduce energy consumption while enhancing system 
performance. The researchers tested their developed method 
within the CloudSim and PlanetLab cloud simulation platforms. 
The new method shows improved performance when measured 
through energy efficiency along with SLA results. Real-time 
workload spikes might not be properly managed by the proposed 
algorithms because they require accurate CPU utilization 
predictions that prove difficult in fast-changing environments. 

F. Optimization Techniques for Load Balancing 

The research team of Goyal et al. [21] examined the energy 
efficiency and load balancing capabilities of the cloud 
environment through different optimization techniques 
including the whale optimization algorithm (WOA), cuckoo 
search algorithm (CSA), BAT, cat swarm optimization (CSO), 
and particle swarm optimization (PSO). Among the 
optimization methods WOA demonstrates the best performance 
efficiency. The integration of AFSA with SONNs remains an 
underexplored area to resolve convergence and robustness 
issues. AFSA's dynamical weight and topology optimization 
capabilities present substantial possibilities for SONN 
enhancement with faster convergence speed and improved 
accuracy and greater adaptability to complicated datasets. The 
gap between swarm intelligence and neural network training 
holds great promise for innovative research that would combine 
these two approaches. 
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G. Research Gap 

The previous studies show the key significant contributions 
in the allocation of resources, task scheduling, and conservation 
of energy in cloud computing, which includes several 
limitations. Many of the existing methods were insufficient in 
adaptability to dynamic workload changes and challenges with 
flexibility in large scale cloud environments, resulting in the 
failure of integrating the robust security mechanisms. Further, 
the static QoS criteria and limited real-time decision-making 
often restricts the effect of those techniques. 

To overcome this limitation, this proposed RATS-HM 
approach focuses on these gaps by implementing the machine 
learning with swarm intelligence, which provides more effective 
and efficient resource allocation model. By implementing the 
enhanced optimization algorithms, dynamic scheduling ideas 
and the security protocols, the RATS-HM provides a more 
comprehensive approach that overcomes the existing problems 
like resource utilization, energy efficiency and response times. 

III. RESEARCH METHODOLOGY 

The research develops an energy-effective cloud resource 
management method by utilizing Google Cluster Data to supply 
detailed metrics about CPU and memory usage with task 
identification numbers and scheduling details. The model 
integrates two key techniques: Self-Organizing Neural 
Networks (SONN) and the Artificial Fish Swarm Algorithm 
(AFSA). AFSA enables the system to allocate tasks which 
optimize energy conservation without breaking Service-Level 
Agreement parameters. The research combines these methods 
together to enhance cloud performance by improving energy 
efficiency alongside resource utilization and task execution 
efficiency. 

 
Fig. 1. AFSA-SONNs. 

The Fig. 1 represents the work flow Artificial Fish Swarm 
Algorithm (AFSA). 

A. Data Collection 

The analysis of workloads and the development of resource 
management models aim to improve cloud energy efficiency 
through study of an open-source Google Cluster Data dataset. 
The Google Cluster Data constitutes an open data repository that 

presents detailed measurements from Google's production data 
centers which extend across billions of records during 29 days 
of analysis [22]. The informative dataset Completion Time 
includes CPU performance analytics run alongside memory 
statistics with records of job and task identifiers and their 
scheduling at various priority threshold levels. The study 
employs resource prediction capabilities to develop optimal 
resource management strategies by examining workload 
patterns through analytic assessment of its attributes. The 
transparency and practicality of the open-source dataset along 
with its ability to support collaborative development emerge 
through billions of production data measurements from Google's 
data centers which were gathered for 29 days. The dataset 
includes comprehensive metrics including CPU utilization 
percentages and memory use alongside task/job identifiers and 
scheduling events and priority settings. The data characteristics 
support both workload pattern exploration and resource 
utilization forecasting and resource allocation optimization. The 
research utilizes this open-source dataset to guarantee 
transparency and real-world applicability of swarm intelligence-
based neural model development focused on energy-efficient 
cloud environments while offering reproducibility. 

B. Data Pre-Processing 

1) Normalization: The process of normalizing pixel values 

across images through blended analysis defines image pre-

processing normalization. The mathematical representation of 

normalization appears in Eq. (1): 

𝑥𝑛 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
   (1) 

2) Feature selection: Research approaches for energy-

efficient cloud resource management lead to distinctive 

mathematical formulations in feature selection. Since you're 

focusing on methods like mutual information and PCA, here are 

the basic equations for each: 

a) Mutual information: Mutual Information serves as a 

measurement tool to determine the degree at which one feature 

reveals details about another. The dependency relationship 

between each target variable feature and the designated 

outcome (climate emissions) enables selecting proper features 

through this approach. 

For two variables X and Y, the mutual information I (X; Y)is 
expressed in Eq. (2): 

𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦∈𝑌𝑥∈𝑋              (2) 

b) Principal Component Analysis (PCA): Through PCA 

we transform our features into principal components which 

maintain the key information in a set of orthogonal variables. 

Through PCA we transform our features into principal 
components which maintain the key information in a set of 
orthogonal variables as stated in Eq. (3): 

∑ =
1

𝑛−1
∑ (𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑗)𝑇𝑛

𝑖=1                 (3) 

C. Artificial Fish Swarm Algorithm (AFSA) 

The Artificial Fish Swarm Algorithm (AFSA) uses three 
fundamental fish behaviors which integrate Foraging with 
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Swarming to improve cloud environment resource management 
and following for optimization. Fig. 2 suggest work flow 
Artificial Fish Swarm Algorithm (AFSA). 

1) Foraging: The foraging phase finds optimized resource 

arrangements through individual fish exploration which 

achieves both energy optimization and proper allocation of 

resources for their assigned duties. Fish complete evaluations 

of their current positions together with alternative options using 

a fitness function that assesses both energy efficiency and 

resource distribution and service level agreement compliance. 

Each fish scans their surrounding positions to find better 

solutions before reaching points of best arrangement. System 

exploration procedures show how resource distributions can 

optimize their distribution patterns while supporting both 

energy efficiency and tasks. 

2) Swarming: Fish distribution uses clustering techniques 

to organize tasks according to workload patterns that assess 

resource requirements and task significance. When using 

assigned grouping all resources can receive tasks that their 

performance profile matches thus maximizing efficiency. The 

fish collaboration system provides optimal resource allocation 

which maximizes system operational performance while 

minimizing unnecessary resource consumption. Swarm 

behavior enables the system to allocate resources effectively 

without causing either excessive loading of individual nodes or 

resource underutilization. 

3) Following: During this phase fish utilize neighborhood 

detection to locate highly effective neighbors for which they 

follow. When fish use optimal solutions, they find their 

performance accelerates the algorithm's convergence toward 

better configurations. Fish groups enhance system effectiveness 

as they track top-performing connections among peers to 

prevent time-wasting refinements of substandard outcomes. 

D. Self-Organizing Neural Networks (SONN) 

A key component of this research uses Self-Organizing 
Neural Networks (SONNs) to conduct dynamic workload 
pattern examinations and resource forecasting that enables 
power-efficient resource control. Fig. 2 suggest the neural 
network of Self-Organizing Neural Networks (SONN). Their 
specific contributions include: 

 
Fig. 2. Self-Organizing Neural Networks (SONN). 

1) Workload pattern recognition: SONNs extract workload 

insights from cloud monitoring metrics which include CPU 

performance statistics and memory patterns alongside task 

execution information to form detailed workload patterns. 

Resource forecasting and understanding utilization become 

possible through identified patterns. 

2) Dynamic adaptation: Traditional neural networks lack 

SONN's capability to evolve its network topology through 

adjustments like vegetable or removable of computing elements 

when confronted by changing data conditions. The adaptable 

network structure permits processing of sudden workload 

fluctuations found in cloud systems which demonstrate 

unpredictable behaviors. 

3) Clustering and categorization: Workload categories 

form through network clustering to assist resource requirement 

identification. Overy/-based classification provides essential 

information about workload types that leads to better selection 

of optimal resource distribution approaches. 

4) Feedback-Driven learning: The implementation of 

feedback systems allows SONNs to enhance their prediction 

capabilities through ongoing data refinement with repeated 

improves their accuracy over time. The predicted resource 

allocation serves as feedback which prompts the network to 

change its learning process so the system does not repeat 

inefficient provisioning. 

5) Energy-Efficient decision support: The Artificial Fish 

Swarm Algorithm (AFSA) uses information from SONNs 

about resource demand forecasts and workload classifications 

to generate resource allocation decisions with energy-efficient 

outcomes. Affordable Security Fund Administration requires 

SONNs as an analytical foundation for optimally distributing 

resources through their network. 

E. Integration of SONNs and AFSA 

The research implements a cloud resource management 
model for energy efficiency through the unification of Self-
Organizing Neural Networks (SONNs) with Artificial Fish 
Swarm Algorithm (AFSA). Cloud resource demand predictions 
made by SONN systems require monitoring active workload 
metrics by analyzing CPU load and memory consumption 
together with scheduling patterns. SONN predictions enable 
AFSA to construct resource plans that achieve maximum energy 
conservation while maintaining effective system operation. Fig. 
3 represents the integration of SONNs with AFSA. 

 
Fig. 3. Integration of SONNs and AFSA. 
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Through its optimization process AFSA applies foraging and 
swarming models of fish behavior to find optimal solutions by 
modifying resource partition settings. The hybrid model works 
iteratively: Recurrent forecasting adjustments from AFSA 
enhance the resource allocation methodologies of SONN 
through continual refinement of its static frequency predictions. 
The combined method enhances cloud system energy 
performance by precisely predicting demands and utilizing 
dynamic workload variables simultaneously. 

IV. RESULTS AND DISCUSSION 

The combination of self-organizing neural networks with 
artificial fish swarm algorithms leads to substantial 
enhancements in cloud resource management while improving 
energy efficiency alongside resource utilization and system 
performance. The proposed model achieved energy savings and 
enhanced scalability while optimizing task completion times 
which led to sustained improvements in prediction accuracy and 
optimization convergence. The implementation tool used 
Python to analyse data while displaying key metrics which 
included energy savings data and task throughput measurements 
and model stability indicators. The experimental results validate 
the proposed approach which delivers sustainable cloud 
computing alongside superior performance levels. 

A. Experimental Outcome 

The different iterations of system performance and energy 
consumption data are presented in Fig. 4. This table tracks three 
metrics including total energy consumption alongside energy 
savings and three power consumption measurements which 
consist of average power consumption, idle power consumption 
and peak power consumption. The measurements for total 
energy consumption report values in kilowatt-hours (kWh) from 
the initial value of 1200 kWh. The system's optimized resource 
management and efficiency strategies lead to a progressive 
reduction of energy usage. The system ends with a minimized 
energy consumption value of 950 kWh after four optimization 
steps that started at 1200 kWh. 

 
Fig. 4. Power consumption metrics. 

Energy savings represent the percentage reduction in energy 
consumption that initiates from the baseline measurement of 
1200 kWh. The first row shows N/A as energy savings because 
it represents the baseline but savings climb to 4.17% in the 
second row and continue to 8.33% in the third row then reach 
16.67% in the fourth row and finally end at 20.83% in the last 
row. The system demonstrates increased energy efficiency 

through optimization strategies that lead to substantial energy 
savings. The system's average power usage decreases stepwise 
from 300 W to 230W as the idle power consumption levels down 
from 100 W to 60 W. Overall energy efficiency improves 
because the system demonstrates enhanced capability in 
reducing energy usage during idle conditions. The system 
achieves improved peak power consumption efficiency by 
lowering the consumption from 500 W to 380 W. The data in 
Fig. 1 demonstrates how the system decreases energy usage 
while enhancing power efficiency throughout idle periods 
without impact on system functionality. The system 
demonstrates excellent sustainability potential in cloud 
environments through its enhanced energy efficiency 
capabilities. 

B. Resource Utilization and Efficiency Improvement 

Fig. 5 presents an analysis of resource utilization and 
efficiency across key system components: CPU, memory, and 
storage. The system's computational needs increased steadily 
from 75% CPU utilization to reach 90% during the workload 
expansion. The increasing resource utilization patterns 
demonstrate effective use of available processing power yet 
administrators need to prevent CPU overuse which could 
deteriorate system performance. 

 

Fig. 5. Resource utilization and utilization improvement. 

Memory resource allocation showed efficient performance 
because usage rates started at 80% and reached 92% while 
workloads increased. The distributed system demonstrates a 
best-practice memory management which provides enough 
memory resources for operations and avoids excessive storage 
allocation. The cloud environment demonstrates effective 
resource allocation through storage utilization which increases 
from 70% to 85% to enable quick data storage and retrieval 
while maintaining performance speed. 

The combined metric measuring average resource utilization 
rose from 75% to 89% as the system evolved. The system 
demonstrated improved resource usage performance during the 
scaling process by achieving balanced resource allocation 
between different demands. Resource utilization efficiency 
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experienced an increase from 75% to 89% as the system 
demonstrated both resource effectiveness and optimized 
resource utilization to minimize waste and enhance system 
performance. System data indicates growing resource use 
alongside improved efficiencies which reveals the system can 
expand its capabilities to handle higher workloads. The system 
demonstrates superior resource management capabilities 
through its sustained improvements in efficiency and utilization 
which enables dynamic resource control for optimal system 
performance while minimizing resource waste. The system 
demonstrates excellent suitability for managing expanding 
cloud requirements. Fig. 6 examines task duration and its effects 
on SLA compliance and resource success rates while examining 
system throughput metrics. The system's task completion time 
registered a substantial improvement because it decreased from 
120 seconds to 90 seconds which led to a 25% reduction. 

 

Fig. 6. Task completion time and delay. 

The resource scheduling and allocation capabilities of this 
system demonstrate its ability to reduce task execution time. 
Task execution bottlenecks decreased by 25% in the delivery of 
key performance metrics when maximum task delay reduced 
from 200 seconds to 150 seconds. The percentage of tasks 
successfully executed within service-level agreements improved 
substantially from 85% to 95%. The model demonstrates its 
performance preservation capabilities through strict 
requirements adopting both time and quality restrictions that 
produces noticeable effects on user satisfaction and service-level 
agreement fulfillment. The system demonstrated improved 
reliability alongside stronger processing capabilities because the 
task achievement rate increased to 98% from 90%. 

The system accomplished task processing at a rate of 62 
tasks per minute which represented a 24% improvement over its 
starting point at 50 tasks per minute. The model's scaling 
performance demonstrates its capability to handle maintaining 
performance throughout increased operational task volumes. 
Experimental findings show that the proposed model performs 
effectively for real-world cloud environments through improved 
reliability and reduced delays while increasing operational 
efficiency. 

C. Prediction Accuracy and Optimization Convergence 

Fig. 7 demonstrates the important metrics regarding model 
optimization convergence alongside training scenario accuracy 

evaluation. The figure reveals essential information about how 
each stage of system optimization performed regarding training 
duration, convergence speed and prediction accuracy together 
with optimization stability. Training time is measured in hours 
to show the length of model preparation until achievement of 
target performance levels. The first training period lasted five 
hours but subsequent sessions required four hours and six hours 
respectively. The last entry omitted training time because the 
system reached optimal performance during an undisclosed 
period. The recorded values indicate that the optimization 
process develops efficiency which shortens the duration 
required to achieve optimal model outcomes. How many times 
an optimization algorithm repeats itself determines when it 
becomes stable. As the model improved its performance the 
system needed less iteration to converge: 200 initially then 150 
and eventually 100. The optimization process shows increasing 
efficiency with each iteration because of improved 
hyperparameter settings and optimized methods. A model shows 
its prediction capability through its correct forecasting of results 
from provided data. The accuracy of the model starts at 85% and 
enhances to 92% but then rises to 98% as training advances 
demonstrating substantial improvement of prediction abilities 
during training. The optimization strategies implemented 
proved effective because accuracy rates demonstrated a steady 
upward trend. 

 
Fig. 7. Prediction accuracy & optimization convergence. 

The performance of model convergence toward optimal 
solutions determines optimization convergence metrics. The 
optimization process shows continuous improvement from 88% 
to 95% during its progression. The upgraded performance of this 
metric demonstrates that the model becomes more effective at 
discovering optimal solutions throughout training because 
optimization techniques and model parameters improve. Model 
stability shows how consistently predictions from the model 
persist between different dataset instances. The model starts 
with 80% stability which steadily grows to reach 95% as 
optimization continues. Model stability continues to rise 
because the system demonstrates robust characteristics during 
its optimization and subsequent tuning process. All key 
performance metrics demonstrate clear growth based on 
information presented in Fig. 4. The training system functions 
with greater efficiency because it demonstrates shorter 
convergence times while achieving better prediction accuracy as 
well as enhanced optimization convergence and model stability. 
The optimization plus training strategies which were 
implemented in the system have proven effective because they 
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yield superior performance as the model continues its 
development. 

D. Model Scalability and Performance 

The review of Self-Organizing Neural Networks with 
Artificial Fish Swarm Algorithm (SONN-AFSA) under 1000 
tasks system load presents performance and scalability results in 
Fig. 9. The model achieved evaluation through measurement of 
average latency and throughput alongside scalability factor 
performance in dynamic cloud environments. Static and 
dynamic resource allocation wait times, reflection ratio variation 
rate and minimum processor idle time prove the efficiency of 
SONN-AFSA in optimizing cloud system resource 
management. SONN-AFSA shows sufficient deployment 
potential for practical use through its simultaneous performance 
of reduced latency and increased streamline operations while 
enabling scalable resource utilization. 

1) Latency reduction: Average execution delays of tasks 

represent the concept known as Latency (LLL). The model 

showed how its optimization processes become apparent when 

last link latency decreased from 1200ms to 800ms. The latency 

reduction appears in the Eq. (4): 

∆𝐿 =  𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙− 𝐿𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑                           (4) 

Real-time applications benefit from improved system 
responsiveness because of the implementation of drop. 

2) Throughput improvement: Real-time applications 

benefit from improved system responsiveness because of the 

implementation of drop is represented in the Eq. (5): 

𝑇 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑇𝑎𝑠𝑘𝑠

𝑇𝑖𝑚𝑒(𝑠𝑒𝑐𝑜𝑛𝑑𝑠)
                            (5) 

3) Scalability factor: The system's performance scalability 

factor (S) compares the data processing capabilities against 

design baseline specifications. It is calculated as in the Eq. (6): 

𝑆 =
𝑇𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
                                      (6) 

Successful workload adaptations allow the system to execute 
demanding operational requirements without demonstrating any 
performance decline. Fig. 8 demonstrates the important metrics 
regarding model performance in scalability vs. latency vs. 
throughput. 

 
Fig. 8. Scalability vs Latency vs Throughput. 

Data gathered from a 1000 tasks system workload showed 
that the Self-Organizing Neural Networks with Artificial Fish 
Swarm Algorithm (SONN-AFSA) achieved its performance 
metrics and scalability targets according to Fig. 9. Results from 
the model demonstrate latency reduction which raises 
throughput rates while enabling improved system scalability. 
The system maintained consistent performance advancement 
through an increasing throughput trend between 1200 
milliseconds and 800 milliseconds throughout process 
optimization. The model proves its speed-up capabilities 
through substantial latency optimizations which suit instant 
cloud processing demands. During the experimental period the 
system maintained a steady improvement in its measured 
throughput from start to finish by increasing from 20 to 30 tasks 
per second. The system improves operational efficiency by 
handling larger volumes of tasks within specified time intervals 
to enhance performance levels for major cloud infrastructure 
deployments. Throughout experimentation the system adapted 
to increasing throughput demands through an improved 
scalability factor from 1.0 up to 1.5. Through dynamic workload 
management SONN-AFSA reaches a robust state by 
maintaining sustained performance under shifting workload 
conditions. The experimental outcomes show that this model 
features specialized performance enhancements and scalability 
controls for optimizing cloud resource energy management. 
SONN-AFSA presents an excellent solution for practical cloud 
systems that need optimal resource allocation along with 
processing efficiency and maximum throughput and low latency 
capabilities. 

E. Clustering Metrics 

SONN-generated clusters receive quality performance 
evaluations by means of clustering metrics. The Silhouette Score 
(range: The Silhouette Score evaluates cluster quality by 
measuring how well each object fits within its cluster against 
other clusters using a value between -1 and 1. From a perspective 
of optimization the Davies-Bouldin Index (DBI) measures both 
cluster cohesiveness and separation from one another while 
lower figures indicate superior performance. The Calinski-
Harabasz Index evaluates cluster distinction by dividing 
between-cluster dispersion by within-cluster dispersion to 
generate better cluster outcomes. 

F. Dimensionality Reduction Metrics 

The ability of models to retain data structure is evaluated 
through dimensionality reduction metrics. The measure of 
Trustworthiness evaluates neighbor retention in the low-
dimensional space from the original high-dimensional data, and 
Continuity evaluates how well low-dimensional connections 
represent high-dimensional relationships. The model exhibits 
superior structure preservation through Reconstruction Error 
evaluation where lower error values indicate better preservation 
of information. 

G. Comparative Metrics 

Comparative metrics benchmark the hybrid AFSA-SONN 
against other methods. The Improvement over Baseline 
measurement evaluates accuracy level along with convergence 
speeds and energy conservation against standard SONNs and 
additional optimizers including PSO and GA. The model shows 
its generalizability through Cross-Dataset Performance when 
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tested on datasets with different characteristics to demonstrate 
its ability to adapt. 

H. Comparative Analysis 

The comparison shows how the proposed Self-Organizing 
Neural Network with Artificial Fish Swarm Algorithm (SONN-
AFSA) performs better than other optimization methods as well 
as learning techniques. The SONN-AFSA model demonstrates 
superior performance over all metrics because it reaches 98.8% 
accuracy and 96.5% precision while also achieving recall levels 
of 94.5% and F1-score of 95.5%. Such high-performance 
metrics highlight the model's exceptional capability to distribute 
resources effectively while generating precise system outcome 
predictions within cloud application spaces. 

1) Accuracy: Accuracy is a measure of how correctly data 

points are assigned to their respective clusters or classes. In 

clustering, accuracy is often used when ground truth labels are 

available for evaluation. 

The formula for accuracy is represented in the Eq. (7): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑝𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑖𝑛𝑡𝑠
      (7) 

2) Recall: In the context of measuring model performance 

recall indicates the correct identification percentage of actual 

positive results. Recall achieves its maximum value as a 

measure when identifying positive cases is a priority. 

The formula for recall is represented in the Eq. (8): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐹𝑁)
           (8) 

3) F1-Score: The F1 Score represents the harmonic mean 

between precision and recall which allows fair measurement of 

both incorrect positives and incorrect negatives. The method 

brings exceptional results to imbalanced datasets. 

The formula for F1 Score is represented in the Eq. (9): 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                            (9) 

Fig. 9 shows the performance metrics of the proposed 
SONN-AFSA with 98.8% accuracy, 96.5% precision, 94.5% 
recall and 95.5% F1 score. 

 

Fig. 9. Performance metrics of proposed SONN-AFSA. 

Table I illustrates the performance metrics of proposed 
method with comparison of exiting Deep learning method. 

TABLE I. COMPARATIVE ASSESSMENT 

Method Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Particle Swarm 

Optimization (PSO) 
[23] 

88.0 85.5 87.0 86.2 

Deep Reinforcement 

Learning (DRL) [24] 

90.5 89.0 90.0 89.5 

PSO-Based Neural 
Network [25] 

92.0 91.0 91.5 91.2 

Proposed SONN-

AFSA 

98.8 96.5 94.5 95.5 

The PSO-Based Neural Network delivers good performance 
measures by reaching 92.0% accuracy and 91.0% precision and 
recall and 91.2% F1-score while indicating its worth as a neural 
network optimization method with particle swarm techniques. 
Deep Reinforcement Learning (DRL) exhibits equivalent 
performance to the previous models by reaching 90.5% accuracy 
and 89.5% F1-score which demonstrates its ability to detect 
patterns in resource management systems. SONN-AFSA shows 
superior capability in true positive detection since its recall 
number (91.5%) exceeds the newly-tested scheme's recall value 
(90.0%). Fig. 10 demonstrates the comparison of performance 
metrics across methods. 

 

Fig. 10. Comparative assessment. 

When it measures accuracy and F1-score, the standalone 
Particle Swarm Optimization (PSO) method demonstrates 
results that fall below the hybridized methods with 88.0% 
accuracy and 86.2% F1-score. PSO represents an efficient 
optimization solution, however its performance suffers from 
inadequate adaptive learning capabilities found in neural 
network-based methods. Results indicate that the SONN-AFSA 
framework excels as a combination between self-organizing 
neural networks and artificial fish swarm algorithm optimization 
performance. The collaborative power between neural networks 
and artificial fish swarm optimization produces high precision 
decision-making capabilities that achieve superior outcomes 
than both traditional and hybrid models. 

I. Discussion 

Memory resource allocation showed efficient performance 
because usage rates started at 80% and reached 92% while 
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workloads increased. The distributed system demonstrates a 
best-practice memory management which provides enough 
memory resources for operations and avoids excessive storage 
allocation. The cloud environment demonstrates effective 
resource allocation through storage utilization which increases 
from 70% to 85% to enable quick data storage and retrieval 
while maintaining performance speed. 

The combined metric measuring average resource utilization 
rose from 75% to 89% as the system evolved. The system 
demonstrated improved resource usage performance during the 
scaling process by achieving balanced resource allocation 
between different demands. Resource utilization efficiency 
experienced an increase from 75% to 89% as the system 
demonstrated both resource effectiveness and optimized 
resource utilization to minimize waste and enhance system 
performance. System data indicates growing resource use 
alongside improved efficiencies which reveals the system can 
expand its capabilities to handle higher workloads. The system 
demonstrates superior resource management capabilities 
through its sustained improvements in efficiency and utilization 
which enables dynamic resource control for optimal system 
performance while minimizing resource waste. The system 
demonstrates excellent suitability for managing expanding 
cloud requirements. 

Fig. 6 examines task duration and its effects on SLA 
compliance and resource success rates while examining system 
throughput metrics. The system's task completion time 
registered a substantial improvement because it decreased from 
120 seconds to 90 seconds which led to a 25% reduction. 

The resource scheduling and allocation capabilities of this 
system demonstrate its ability to reduce task execution time. 
Task execution bottlenecks decreased by 25% in the delivery of 
key performance metrics when maximum task delay reduced 
from 200 seconds to 150 seconds. The percentage of tasks 
successfully executed within service-level agreements improved 
substantially from 85% to 95%. The model demonstrates its 
performance preservation capabilities through strict 
requirements adopting both time and quality restrictions that 
produce noticeable effects on user satisfaction and service-level 
agreement fulfillment. The system demonstrated improved 
reliability alongside stronger processing capabilities because the 
task achievement rate increased to 98% from 90%. 

The system accomplished task processing at a rate of 62 
tasks per minute which represented a 24% improvement over its 
starting point at 50 tasks per minute. The model's scaling 
performance demonstrates its capability to handle maintaining 
performance throughout increased operational task volumes. 
Experimental findings show that the proposed model performs 
effectively for real-world cloud environments through improved 
reliability and reduced delays while increasing operational 
efficiency. 

The review of Self-Organizing Neural Networks with 
Artificial Fish Swarm Algorithm (SONN-AFSA) under 1000 
tasks system load presents performance and scalability results in 
Fig. 9. The model achieved evaluation through measurement of 
average latency and throughput alongside scalability factor 
performance in dynamic cloud environments. Static and 
dynamic resource allocation wait times, reflection ratio variation 

rate and minimum processor idle time prove the efficiency of 
SONN-AFSA in optimizing cloud system resource 
management. SONN-AFSA shows sufficient deployment 
potential for practical use through its simultaneous performance 
of reduced latency and increased streamline operations while 
enabling scalable resource utilization. 

The comparison shows how the proposed Self-Organizing 
Neural Network with Artificial Fish Swarm Algorithm (SONN-
AFSA) performs better than other optimization methods as well 
as learning techniques. The SONN-AFSA model demonstrates 
superior performance over all metrics because it reaches 98.8% 
accuracy and 96.5% precision while also achieving recall levels 
of 94.5% and F1-score of 95.5%. Such high-performance 
metrics highlight the model's exceptional capability to distribute 
resources effectively while generating precise system outcome 
predictions within cloud application spaces. 

Table I illustrates the performance metrics of proposed 
method with comparison of exiting Deep learning method and 
Fig. 10 shows the performance metrics of the proposed SONN-
AFSA. 

The results indicate that the SONN-AFSA framework excels 
as a combination between self-organizing neural networks and 
artificial fish swarm algorithm optimization performance. The 
collaborative power between neural networks and artificial fish 
swarm optimization produces high precision decision-making 
capabilities that achieve superior outcomes than both traditional 
and hybrid models. 

V. CONCLUSION AND FUTURE WORK 

The research implemented an advanced framework to handle 
energy-efficient cloud resource management through the 
integration of Self-Organizing Neural Networks (SONN) and 
Artificial Fish Swarm Algorithm (AFSA). The proposed hybrid 
design performed severely better than former approaches 
including PSO and DRL alongside PSO-based Neural 
Networks. The experimental evaluation led to substantial 
conclusions about energy reduction by 20.83 percent and 89 
percent resource utilization efficiency improvement. The 
proposed model reached 98.8% prediction accuracy whereas 
PSO-based Neural Networks achieved only 92.0% accuracy as 
its best result. The model enhanced SLA compliance to 95% 
while reaching 98% task completion rates which showcased its 
ability to handle resources efficiently with superior service 
quality delivery. 

Several upcoming developments should be investigated to 
enhance both the model's scalability and its applicability 
potential. Tiny feedback systems with real-time measurements 
about cloud load dynamics and energy usage statistics enable the 
algorithm to transform efficiently as conditions in the cloud 
environment shift. Introduction of multi-objective optimization 
approaches will enable the system to achieve energy efficiency 
equilibrium with performance metrics including cost, user 
satisfaction as well as task latency. The framework requires 
testing with more extended diverse datasets to prove its potential 
application in various cloud infrastructure platforms. Federated 
learning as an advanced AI technology enables distributed cloud 
systems to achieve improved security and enhanced 
performance by addressing current challenges across cloud 
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infrastructure. The developed research framework establishes its 
core foundation as demonstrated in this study but it will use 
modern advancements to create an effective adaptable model for 
evolving cloud computing demands.al Fish Swarm Algorithm 
(AFSA). The proposed hybrid model demonstrated exceptional 
performance compared to traditional methods, such as Particle 
Swarm Optimization (PSO), Deep Reinforcement Learning 
(DRL), and PSO-based Neural Networks. Results from the 
experimental analysis highlighted a significant reduction in total 
energy consumption by 20.83%, alongside an improvement in 
average resource utilization efficiency to 89%. The model also 
achieved a 98.8% prediction accuracy, outperforming the next-
best method, PSO-based Neural Networks, which achieved an 
accuracy of 92.0%. The model enhanced SLA compliance to 
reach 95% while achieving 98% completion rates of tasks which 
showed its capacity to manage resources efficiently and 
maintain high-quality service delivery. 

Upcoming work will investigate multiple advancement 
possibilities to enhance both the scalability and usability of the 
model. The real-time feedback mechanisms that track dynamic 
workload variations and energy consumption stats enable better 
model adaptation during changing cloud environments. Mobile 
applications benefit from multi-objective optimization methods 
which simultaneously optimize energy efficiency alongside cost 
elements and task delays and user satisfaction criteria. The 
validation process merits testing using large diverse datasets that 
will show the framework's applicability across different cloud 
computing networks. The implementation of federated learning 
as an advanced AI paradigm would enhance distributed cloud 
system security and performance to address new infrastructure 
requirements in cloud computing. 

These advances will develop upon the stable structure from 
this research to keep the SONN-AFSA model functional for 
changing cloud computing environments. 
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