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Abstract—Acquiring programming skills is daunting for most 

learners and is even more challenging in heavily attended 

courses. This complexity also makes it difficult to offer 

personalized feedback within the time constraints of instructors. 

This study offers an approach to predict programming 

weaknesses in each learner to provide appropriate learning 

resources based on machine learning. The machine learning 

models selected for training and testing and then compared are 

Random Forest, Logistic Regression, Support Vector Machine, 

and Decision Trees. During the comparison based on the features 

of prior knowledge, time spent, and GPA, Logistic Regression 

was found to be the most accurate. Using this model, the 

programming weaknesses of each learner are identified so that 

personalized feedback can be given. The paper further describes 

a controlled experiment to evaluate the effectiveness of the 

personalized programming feedback generated based on the 

model. The findings indicate that learners receiving personalized 

programming feedback achieve superior learning outcomes than 

those receiving traditional feedback. The implications of these 

findings are explored further, and a direction for future research 

is suggested. 
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I. INTRODUCTION 

The advances in Artificial Intelligence (AI) and its subfield, 
Machine Learning (ML), are rapidly transforming the 
education landscape, offering innovative approaches to 
improve teaching methods, accelerate learning, and deliver 
personalized educational experiences. AI-powered tools, 
including adaptive learning systems, intelligent tutoring 
platforms, and predictive analytics, are revolutionizing the 
traditional pedagogical landscape by generating personalized 
feedback, suggesting individualized learning pathways, and 
forecasting academic achievement [1], [2]. These technologies 
serve the diverse interests and needs of learners and support 
data-driven interventions, thereby enhancing the levels of 
engagement and retention both in traditional and online 
learning environments [3]. 

An example of this can be seen in adaptive learning 
systems that use AI to modify the material and pace of learning 
based on how each learner performs, resulting in a highly 
personalized educational experience [4]. Another AI 
application is Intelligent Tutoring Systems (ITSs), which can 
improve personalization by simulating one-on-one teaching 
and using advanced algorithms to analyze how a learner 
behaves and provide personalized guidance based on those 
metrics. Learner interaction data can also be employed as 

predictive analytics, which fully utilizes advanced ML models 
to analyze historical and real-time data, predict learners’ 
outcomes, identify at-risk learners, and allow for considerable 
strategic resource provision. ML can also guide evidence-based 
decision-making, enabling educators to adjust curricula and 
instructional strategies by appropriately identifying learner 
behavior and patterns during learner-content interaction [5]. 

Programming is one of the most common subjects taught in 
a computer science curriculum. Still, it introduces several 
challenges, including mapping abstract concepts with practical 
activities and high dropout rates in introductory courses [6]. AI 
and ML in education can help mitigate these challenges by 
creating dynamic and tailored learning experiences. AI-based 
educational systems, for example, may analyze learner-system 
interaction data to develop personalized learning pathways, 
adjusting how content is delivered to suit learners’ needs [7], 
[8]. 

Many ML models have been developed. For example, 
neural networks can be utilized to create learning 
recommendations that recommend personalized learning 
activities to keep learners engaged and retain knowledge [9]. 
Other ML models, like fuzzy logic, have also been used to 
offer personalized feedback and modify instructional 
approaches according to learners' characteristics, such as 
knowledge level and task accomplishments [10]. Recent 
approaches view chatbot-assisted programming systems 
powered by ML techniques as powerful learning tools that aid 
debugging, explain code errors, and suggest possible solutions, 
thereby serving as a proxy for a human tutor [11]. 

A vast majority of ML algorithms have been employed to 
predict programming learning performance; some of these are 
Decision trees (DT), Random Forests (RF), Support Vector 
Machines (SVM), Logistic Regression (LR), k-nearest 
Neighbors (kNN), and Artificial Neural Networks (ANN) [3], 
[12], [13], [14]. These models leverage learner engagement 
patterns, prior learning activities, and coding behavior to 
provide learners with timely intervention [15]. 

ML-enabled behavioral analytics tools can track and 
analyze learner engagement with resources such as coding 
environments, learning management systems, online coding 
platforms, and discussion forums. The analyses can reveal 
meaningful relationships between activities like active coding 
and passive lecture reviewing that may impact overall learning. 
Thus, actionable insights drive the curriculum design, define 
effective intervention strategies that address individual learning 
needs, and optimize the effectiveness of programming 
educational outcomes. 
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A key limitation in existing ML model-based investigations 
for programming education is the lack of a comprehensive 
approach that spans from data collection to evaluation in 
authentic learning environments [8], [16], [17]. While prior 
research has explored ML applications in programming 
learning, many studies focus on isolated aspects, such as 
predictive modeling or feedback generation, without fully 
integrating these components into a structured learning 
framework. This research gap highlights the need for further 
investigation into how ML models can be systematically 
leveraged to enhance personalized learning experiences. To 
address this, the present study conducts a comparative analysis 
of ML models to identify programming learning weaknesses 
based on learners’ prior knowledge, time spent, and Grade 
Point Average (GPA). Identifying the most effective ML 
model can facilitate the delivery of personalized programming 
feedback tailored to individual learners’ needs. Additionally, 
an experimental evaluation is implemented to explore the 
impact of personalized feedback on learning performance. This 
dual approach enhances the theoretical understanding of ML-
driven feedback mechanisms and provides empirical evidence 
to guide future advancements in AI-supported programming 
education. 

The key research questions are as follows: 

RQ1. How can machine learning be used to predict specific 
weaknesses in learners' programming skills, enabling feedback 
personalization? 

RQ2. Can personalized feedback derived from machine 
learning predictions enhance learning outcomes? 

This paper is structured as follows: Section II presents 
related work. Section III outlines the methodology used in this 
study. Section IV offers the results. Section V discusses the 
findings, and Section VI concludes the paper. 

II. RELATED WORK 

The recent reviews on integrating AI and ML in online 
learning platforms highlight their essential role in personalizing 
learning through customized content delivery for individual 
learners [1], [12], [13], [14]. The dynamic adaptation and 
targeted interventions through ML techniques (e.g., clustering, 
reinforcement learning, deep learning) are promising to 
enhance learner engagement, retention, and academic 
performance [18]. Yet, data privacy concerns, high resource 
requirements, and the risk of diminishing human interaction 
limit the widespread adoption. Careful implementation and 
ongoing refinement would be critical to mitigate these 
challenges and realize the potential benefits of more 
mainstream AI-based online learning platforms. 

A predictive analysis of learner performance in 
programming tutoring comparing different ML models with 
ANN on dataset input finds that ANN outperforms other 
methodologies such as SVM, DT, and kNN [19]. However, the 
study's limitations include its targeting of a specific cohort of 
Norwegian learners, domain-specific instructions, and potential 
biases integrating into the suggested framework that may 
undermine the present findings’ utility to broader domains. 

Another approach investigates how ML algorithms are 
implemented to predict learner programming performance as 
high or low based on different variables, including 
computational identity, computational thinking, programming 
empowerment, gender, and programming anxiety [16]. DT 
algorithm had the best accuracy of 96.6%, while the best cross-
accuracy was obtained with RF. On the contrary, kNN 
performed the least favorably. Their study shows that male and 
university learners scored higher than female and high school 
learners. However, the groups were not significantly different 
as far as programming anxiety is concerned. The limitations of 
the research are the focus on the demographic of Turkish 
learners, the specificity of the constructs relating to specific 
tasks, and the need for generalisability across datasets of 
different populations. 

The study in [3] offers a prediction model powered by AI 
with Genetic Programming (GP) modeling to analyze and 
predict learner academic performance in an online engineering 
education system. The performance of the GP model was better 
than that of traditional AI methods (e.g., ANN and SVM),  
demonstrating high accuracy and efficient predictions 
regarding learning effectiveness. Key determinants of 
performance are knowledge transfer, participation in class, and 
summative assessment, with prior knowledge having a limited 
effect. However, though it does advance these areas, the 
limited sample size, lack of real-time adaptability of the model, 
and locally specific findings limit its wider application and 
require additional research. 

An extensive review of ML techniques applied to predict 
the learner's performance in the context of programming 
courses emphasizes the strength of different algorithms, the 
nature of the organization of datasets, and the significance of 
the evaluation metrics [20]. According to the review results, 
SVM had the best accuracy of 93.97%, whereas deep learning 
methods like Deep Neural Networks (DNN) have achieved 
significant success in detecting complex data patterns. Most 
studies used academic records as a dataset type; however, a 
meta-analysis of multiple data sources improved prediction 
accuracy. The review highlights the importance of using 
different metrics to evaluate model performance, including 
accuracy, F1-Score, precision, and recall, especially in 
unbalanced datasets. Noted limitations include using small or 
unbalanced datasets, a narrow range of algorithms, and 
overemphasizing accuracy. The results emphasize the need for 
larger datasets, more varied evaluation methods, and more 
examination of deep learning approaches to improve models of 
future predictive capabilities. 

PerFuSIT is an example of a fuzzy logic-based module 
designed to personalize pedagogical approaches in ITSs for 
programming education [10]. This adaptive system updates 
different tutoring approaches dynamically, according to 
parameters such as performance measures, coding error types, 
help requests, and the time taken to solve a task. Therefore, 
through such an application, a fuzzy logic system can offer 
flexibility in the learning process, where the learners have 
different levels of interactivity, improving learners' 
performance and involvement. However, the dependency on 
expert regulations and the constrained testing environments 
may generate scaling challenges. 
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The study in [21] studied the relationship between the 
learning behaviors of learners and their grades in an online 
programming course employing the Random Matrix Theory to 
filter noisy data and discover possible patterns. It was observed 
that learners with superior academic performance regularly 
participated in practical tasks such as lab activities and 
exercises. The lower-achieving learners relied more on lecture 
notes and fell behind on engagement in practical tasks over 
time. This study demonstrated that data obtained from early-
stage learning behaviors can be used as powerful binary 
predictors (pass or fail) of learning outcomes, and the use of 
cleaned datasets enabled significantly improved accuracy using 
ML algorithms, specifically SVM and XGBoost. However, this 
research also granted limitations; it had one institutional focus, 
short-term job performance outcomes, and methodological 
technical complexity, limiting the additional dissemination and 
uptake by broader generalization. 

Another ML study uses data from a chatbot-assisted 
programming platform to explore the relationship between 
learning behaviors and programming performance [17]. The 
key performance features are solution verification, frequency 
of code review, code error correction using quizzes, 
programming practice logs, and engagement patterns. ANN 
produced better model predictions than other ML models like 
RF and SVM. While the study demonstrates the potential of 
ML for predicting outcomes, it is limited by its small sample 
size, single-institution focus, and short-term analysis of 
learning performance. 

As an ML model, Recurrent Neural Networks (RNN) are 
also used as a basis for a personalized learning path 
recommendation system in the programming education domain 
[22]. The system can recommend appropriate problems to help 
the learner's speed and engagement by analyzing learners' 
ability charts and clustering users with similar skill levels. 
However, the system's reliance on advanced algorithms and 
lack of scalability testing may restrict its applicability and 
implementation in real-world scenarios, as they focus on data 
generated from a single online judge. 

The study in [15] proposed personalized interventions 
based on the skills of at-risk learners as part of a Python 
programming course. Their study adopted advanced AI 
technologies (e.g., BERT and GPT-2) to generate personalized 
remedial content. Its personalized feedback significantly 
enhanced learners’ coding competencies and learning 
strategies, demonstrating the power of AI-based interventions. 
However, the study also has limitations, including a relatively 
small cohort  size, a focus on short-term outcomes, and 
reliance on resource-intensive AI models, which may limit 
applicability and scalability. 

The study detailed in this manuscript differs from the above 
efforts to apply ML to programming education in three key 
aspects. First, it can be based on data retrievable from online 
learning platforms during a preliminary, intermediate, or final 
learning process. Second, different ML models can be 
evaluated using this data to find the best model for providing 
personalized programming feedback. Third, the empirical 
efficacy of such feedback in enhancing learning outcomes is 
assessed using controlled experimental evaluation. 

III. METHOD 

The experiment aims to use ML models to identify learners' 
weaknesses in Java programming learning and provide 
personalized learning feedback. Furthermore, it seeks to 
validate the effectiveness of this feedback in improving 
programming skills. 

A. Hypotheses 

There are two main hypotheses in this study as follows: 

H1. Machine learning can be utilized to accurately predict 
specific weaknesses in learners' Java programming learning. 

H2. Providing personalized feedback based on machine 
learning predictions will improve learners' performance in Java 
programming learning. 

B. Data Collection 

The experiment administers a comprehensive pre-test 
covering the essential concepts of basic Java programming. 
These concepts include syntax, variables, control flows (if, if-
else, and switch), loops (while, do-while, and for loops), 
arrays, methods, classes, and objects. The pre-test contains 60 
questions to cover 12 Java topics. Learners’ responses to each 
concept are recorded to form the input dataset for training and 
testing the ML models. In addition, prior knowledge 
performance, time spent, and GPA are recorded. 

C. Machine Learning Models 

From data pre-processing, model selection, and training to 
evaluation, this phase lays the foundation for an ML model 
specifically designed to predict each learner’s weaknesses from 
their pre-test scores, time spent on the exam, and GPA. The 
primary step involves validating the data by cleansing missing 
data, normalizing scores, and converting the categorical data 
(e.g., concept titles or feedback categories) to numerical values 
when required. The dataset will subsequently be randomly 
partitioned, allocating 70% for training and 30% for testing. 
The training dataset is utilized to develop the ML model, 
whereas the testing dataset evaluates its performance. So, 
several ML models such as RF, LR, SVM, and DT are 
compared to identify which model could best predict learners' 
weaknesses based on their pre-test, time spent, and GPA data. 
After finding a well-performing model, personalized guidance 
feedback will accordingly be delivered. 

D. Personalized Feedback Generation 

Based on the model’s predictions, learners should be 
provided relevant feedback on the Java programming concepts 
they struggled with. For instance, personalized feedback will 
be prioritized and released when the model predicts that a 
learner struggles to grasp the programming concept while 
loops. The feedback input is pre-created per learning concept, 
with a theoretical overview, an example, an exercise, and  a 
link to a video lesson suited to reflect the various learning 
types of learners. 

E. Evaluation Metrics 

In addition to the confusion matrix and Receiver Operating 
Characteristic (ROC) curves, alongside Area Under the Curve 
(AUC) scores, the predictive performance of the ML models is 
evaluated using metrics such as accuracy, precision, recall, and 
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F1-Score (displayed in formulas 1 through 4). These metrics 
are typically used in relevant work and are suitable for this 
study [23], [24]. A post-test is also used to investigate the 
effect and provide evidence for the advantages of using 
personalized feedback regarding improved learning outcomes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁 
   (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅   
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
       (4) 

where, 

 TP: True positive 

 TN: True negative 

 FP: False positive 

 FN: False negative 

F. Procedure 

The experimental procedure is simplified and depicted in 
Fig. 1. After obtaining consent to participate in the experiment, 
a pre-test was conducted. The data collected was then used to 
train and test the ML models to select the best model for 
providing personalized feedback. Participants were randomly 
divided into two independent groups: experimental and control 
groups. The experimental group receives personalized 
feedback based on the selected ML model predictions, while 
the control group receives conventional feedback. Both groups 
were asked to follow the feedback for their learning. 

This experimental setting was conducted in computer labs 
to ensure the experiment's control and to guarantee that 
participants completed the learning process based on the 
offered feedback. This process took five sessions, with each 
session lasting about 120 minutes. Once all learning sessions 
were finished, all participants completed the post-test. 

IV. RESULTS 

This section presents the results pertaining to the prediction 
outcomes of the ML models. These predictions can be used of 
identifying the programming learning weaknesses of each 
learner. Furthermore, this section provides the results of the 
controlled experiment that aimed to investigate the 
effectiveness of learning Java programming through 
personalized feedback. 

A. Dataset 

This experiment involved 205 first-year undergraduate 
learners majoring in various computing disciplines. After 
collecting and pre-processing the pre-test results, 180 valid 
cases were identified for inclusion in the analysis of the ML 
models. The performance of these models was evaluated using 
standardized scores for each Java concept, categorizing 
learners as “weak” or “strong” according to a 50% threshold, 
time spent on the exam and GPA. Based on the optimal model, 
personalized feedback can be provided. 

 

 

Fig. 1. Experimental procedure. 

B. Analysis of the Machine Learning Models Performance 

The dataset was utilized to analyze the four ML models: 
RF, LR, SVM, and DT. Table I summarizes the results of these 
models: accuracy, precision, recall, and F1-Score. Fig. 2 and 
Fig. 3 also present the confusion matrix and ROC curves with 
AUC scores, respectively. These findings will assist in 
identifying the appropriate ML model for the dataset. 

Based on metrics analysis results, LR performs best at 
98.33% accuracy meaning less errors, followed by SVM at 
95% accuracy and finally RF at 81.67% accuracy. Looking into 
precision, SVM and LR is ahead in this perspective, with near-
perfect precision that suggests low number of false positives. 
DT and RF are less effective since they have more false  
positives. Looking at the recall results, LR is outstanding 
(100%) at detecting all of the actual positive cases. SVM 
(97%) and RF (58%) display varying performance levels, while 
DT had the lowest recall results. For the F1-Scores, SVM 
(98.59%) and LR (97.96%) achieve a strong ratio between 
precision and recall. However, DT and RF can be less effective 
based on the results. 

TABLE I.  PERFORMANCE ANALYSIS OF ML MODELS 

Model Accuracy Precision Recall F1-Score 

Random Forest 81.67% 93% 58% 72.00% 

Logistic Regression 98.33% 96% 100% 97.96% 

SVM 95.00% 100% 97% 98.59% 

Decision Tree 75.00% 83% 68% 75.00% 

In the confusion matrix results, LR has shown an 
exceptional level of accuracy and recall with a near 100% 
score in both metrics. LR can also predict positive and negative 
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outcomes with remarkable precision. SVM also had a high 
precision at 100% and a high recall at 97%, making it a strong 
candidate due to the balance between those two evaluation 
metrics. Although its recall is slightly lower than that of LR, 
this results in a much more competitive score. The RF model 
also performed well, with many true positives (35) and fewer 
false negatives (1). However, it was slightly decreased due to 
several false positives (10), leading to 93% precision. Given 
the model's simplicity, DT showed satisfactory recall (68%) 
and accuracy (75%). However, DT has also demonstrated a 
relatively high number of false negatives (11),  signifying a 
worse performance than the other ML models. 

 

Fig. 2. Confusion matrix for the machine learning models. 

 

Fig. 3. ROC curves for the machine learning models. 

When considering the ROC curves and AUS scores, LR 
stands out with an AUC of 1.00, implying perfect 
discrimination. SVM is also very close, with an AUC of 0.99, 

suggesting excellent performance. RF has a solid AUC of 0.91, 
indicating strong classification abilities but slightly worse than 
SVM and LR. DT falls behind with an AUC of 0.76, reflecting 
its lower performance in separating the weaknesses classes. 

LR had the best overall outcomes considering all these 
metrics, with perfect recall, high precision, and balanced 
metrics. SVM performed competitively, with only slightly 
lower recall. RF and DT can be supplementary models for 
exploratory analysis or explainability. Therefore, LR is the 
candidate model for classifying and predicting each learner's 
weaknesses in Java programming learning. 

C. Identifying Weaknesses of Programming Learning 

LR has been identified as the most effective model among 
the ML approaches considered. To illustrate its capability to 
discern the weaknesses of each learner, two specific scenarios 
have been selected and presented, as depicted in Fig. 4. 

Firstly, the identification of the highest-performing learner 
within the dataset is depicted in Fig. 4 (A). This learner 
exhibited deficiencies in knowledge and skills across three 
topics out of the twelve evaluated. These topics pertain to Java 
loops (including do-while and for loops) and arrays. Secondly, 
the identification of the lowest-performing learner in the 
dataset is illustrated in Fig. 4 (B). This learner demonstrated 
weaknesses in knowledge and skills across ten topics. These 
identified areas of weakness can be prioritized for each learner 
to facilitate the provision of personalized feedback. 

Based on these findings, H1 is confirmed. It can be stated 
that ML can be utilized to accurately predict specific 
weaknesses in learners' Java programming learning. 

 

 

Fig. 4. Identification of weak topics for the best-performing learner (case A) 
and the poorest-performing learner (case B) 
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D. Learning Effectiveness of Personalized feedback 

After completing the phase of selecting the best-performing 
ML model (i.e., LR), each learner can receive personalized 
learning feedback. Table II gives a sample of the personalized 
recommendations generated for three random learners from the 
dataset. 

TABLE II.  TOPIC PERSONALIZED RECOMMENDATIONS FOR LEARNERS 

Learner ID Weak topics with scores 

20161 

[('Arrays', 20), ('Do-While Loops', 40), ('Classes', 40), 
('Syntax', 60), ('Variables', 60), ('If Statements', 60), 

('Switch Statements', 60), ('While Loops', 60), ('For Loops', 

60), ('Objects', 60), ('If-Else Statements', 80), ('Methods', 
100)] 

20125 

[('Methods', 20), ('Variables', 40), ('Do-While Loops', 40), 

('For Loops', 40), ('Objects', 40), ('If Statements', 60), 

('Switch Statements', 60), ('While Loops', 60), ('Syntax', 80), 
('If-Else Statements', 80), ('Arrays', 100), ('Classes', 100)] 

20310 

[('If-Else Statements', 0), ('Do-While Loops', 0), ('For 

Loops', 0), ('Methods', 0), ('Classes', 20), ('Syntax', 40), 
('Variables', 40), ('Arrays', 40), ('Switch Statements', 60), 

('While Loops', 60), ('Objects', 60), ('If Statements', 80)] 

LR can be used to adeptly identify the specific weaknesses 
of each learner to deliver personalized feedback. Nonetheless, a 
pertinent question arises: are these recommendations practical 
for learning? To address this issue, a controlled experimental 
evaluation was undertaken, wherein learners completed the 
learning process based on either personalized or conventional 
feedback as offered according to their group. The outcomes of 
this experiment are detailed in Table III. The sample consisted 
of 40 participants (out of 180 participants) who completed the 
experiment. Each group had 20 participants randomly assigned 
to either the control or experimental groups. The pre-test 
results indicate that they had almost similar scores. In contrast, 
the experimental group had better scores than the control group 
regarding the post-test and overall learning outcome (i.e., post-
test – pre-test). 

TABLE III.  SUMMARY RESULTS OF THE PRE-TEST, POST-TEST AND 

LEARNING OUTCOME 

Variable Group N Mean SD 

Pre-test 
Control 20 39.92 3.52 

Exp. 20 41.17 3.83 

Post-test 
Control 20 59.45 10.68 

Exp. 20 73.40 13.00 

Learning outcome 
Control 20 19.53 10.47 

Exp. 20 32.23 13.29 

An independent sample t-test was run for all these 
variables. It was found that there was no statistically significant 
difference between the pre-test of the experimental group 
compared to the control group, t(38) = -1.074, p = .289. 
Regarding the post-test results, there was a statistically 
significant difference between the experimental group and the 
control group, t(38) = -3.708, p<.001. For the overall learning 
outcome, there was also a statistically significant difference 
between the experimental group and the control group, t(38) = 
-3.358, p = .002. According to the findings, H2 can be 
confirmed. It can be stated that providing personalized 

feedback based on ML predictions will improve learners' 
performance in Java programming learning. 

V. DISCUSSION 

The research presented in this study aimed to explore the 
use of ML to predict the programming learning weaknesses of 
learners. It emphasized the importance of learners’ key data as 
input to ML models to identify learning patterns and gaps of 
programming concepts to provide adaptive and personalized 
interventions with relevant learning resources and feedback. 
The data features considered were prior knowledge obtained 
from a pre-test, time spent on the test, and GPA. 

The study findings found that LR was the most effective 
model for identifying the programming learning weaknesses of 
learners compared to other ML models. It achieved the highest 
accuracy among other models, confirming its suitability for 
educational data analytics, particularly on the identified 
features for the programming domain. SVM also had a 
competitive performance but with lower recall compared to 
LR. This finding confirms the importance of precision and 
sensitivity in programming learning platforms when using ML. 
However, the limited utility of other models (i.e., RF and DT) 
is due to the higher false positives, though they can be helpful 
to exploratory analyses. These results align with previous 
research highlighting the robustness of LR and SVM in 
educational contexts [6], [7]. 

The presented study also took a step further by conducting 
a controlled experimental evaluation to investigate the 
effectiveness of personalized feedback based on the results of 
the selected ML model (i.e., LR). The findings revealed that 
providing personalized feedback based on LR predictions 
improves learners' outcomes in Java programming. By 
addressing these learning weaknesses, instructors and online 
learning platforms can implement targeted interventions to 
bridge learning gaps, thereby enhancing overall comprehension 
and engagement [10], [15]. These findings highlight the 
importance of integrating ML tools into programming curricula 
to meet individual learning needs. This is consistent with 
existing literature highlighting individualized learning 
pathways as a form of personalization for deeper understanding 
and long-term knowledge retention [2], [22]. 

The presented study offers significant implications for the 
design and deployment of ML in programming education 
interventions. This study demonstrated how ML can be used to 
provide precise and actionable insights that enhance learning 
performance. The findings also underscore the potential of 
integrating ML tools into computer science curricula to meet 
the diverse needs of learners effectively. However, some 
limitations need to be considered. Generalization can be 
limited since the results were based on a dataset from a single 
institute with restricted data features. Thus, more experiments 
and diverse data features are needed in future research. 
Nevertheless, this study provided initial findings that can serve 
as a foundation for further explorations highlighting the 
importance of ML-enabled personalization in education.  

VI. CONCLUSION  

This study addressed the challenge of identifying and 
resolving weaknesses in programming education using ML. 
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Three key contributions were made. First, multiple ML models 
were evaluated to predict learners' programming difficulties 
based on prior knowledge, time spent, and GPA. Second, a 
comparative analysis determined that LR was the most 
effective model for generating personalized feedback. Third, a 
controlled experimental evaluation provided empirical 
evidence that personalized feedback significantly enhances 
programming learning outcomes compared to conventional 
methods. 

These findings highlight the potential of ML-driven 
personalized learning in programming education. Future 
research will enhance this approach by incorporating additional 
learner-system interaction features, such as time spent on 
specific concepts, quiz scores, quiz attempts, and lesson visits, 
to build more dynamic learner profiles. By leveraging these 
profiles, intelligent online learning platforms can be developed 
to generate adaptive learning pathways, provide targeted 
feedback, and integrate gamification elements to boost 
engagement and motivation. Furthermore, a more extensive 
experimental evaluation will be conducted to assess the long-
term impact of personalized feedback on learning 
effectiveness. 
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