
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1091 | P a g e

www.ijacsa.thesai.org

Machine Learning-Enabled Personalization of

Programming Learning Feedback

Mohammad T. Alshammari

College of Computer Science and Engineering, University of Ha’il, Ha’il, Saudi Arabia

Abstract—Acquiring programming skills is daunting for most

learners and is even more challenging in heavily attended

courses. This complexity also makes it difficult to offer

personalized feedback within the time constraints of instructors.

This study offers an approach to predict programming

weaknesses in each learner to provide appropriate learning

resources based on machine learning. The machine learning

models selected for training and testing and then compared are

Random Forest, Logistic Regression, Support Vector Machine,

and Decision Trees. During the comparison based on the features

of prior knowledge, time spent, and GPA, Logistic Regression

was found to be the most accurate. Using this model, the

programming weaknesses of each learner are identified so that

personalized feedback can be given. The paper further describes

a controlled experiment to evaluate the effectiveness of the

personalized programming feedback generated based on the

model. The findings indicate that learners receiving personalized

programming feedback achieve superior learning outcomes than

those receiving traditional feedback. The implications of these

findings are explored further, and a direction for future research

is suggested.

Keywords—Machine learning; programming; learning

outcome; feedback; personalization

I. INTRODUCTION

The advances in Artificial Intelligence (AI) and its subfield,
Machine Learning (ML), are rapidly transforming the
education landscape, offering innovative approaches to
improve teaching methods, accelerate learning, and deliver
personalized educational experiences. AI-powered tools,
including adaptive learning systems, intelligent tutoring
platforms, and predictive analytics, are revolutionizing the
traditional pedagogical landscape by generating personalized
feedback, suggesting individualized learning pathways, and
forecasting academic achievement [1], [2]. These technologies
serve the diverse interests and needs of learners and support
data-driven interventions, thereby enhancing the levels of
engagement and retention both in traditional and online
learning environments [3].

An example of this can be seen in adaptive learning
systems that use AI to modify the material and pace of learning
based on how each learner performs, resulting in a highly
personalized educational experience [4]. Another AI
application is Intelligent Tutoring Systems (ITSs), which can
improve personalization by simulating one-on-one teaching
and using advanced algorithms to analyze how a learner
behaves and provide personalized guidance based on those
metrics. Learner interaction data can also be employed as

predictive analytics, which fully utilizes advanced ML models
to analyze historical and real-time data, predict learners’
outcomes, identify at-risk learners, and allow for considerable
strategic resource provision. ML can also guide evidence-based
decision-making, enabling educators to adjust curricula and
instructional strategies by appropriately identifying learner
behavior and patterns during learner-content interaction [5].

Programming is one of the most common subjects taught in
a computer science curriculum. Still, it introduces several
challenges, including mapping abstract concepts with practical
activities and high dropout rates in introductory courses [6]. AI
and ML in education can help mitigate these challenges by
creating dynamic and tailored learning experiences. AI-based
educational systems, for example, may analyze learner-system
interaction data to develop personalized learning pathways,
adjusting how content is delivered to suit learners’ needs [7],
[8].

Many ML models have been developed. For example,
neural networks can be utilized to create learning
recommendations that recommend personalized learning
activities to keep learners engaged and retain knowledge [9].
Other ML models, like fuzzy logic, have also been used to
offer personalized feedback and modify instructional
approaches according to learners' characteristics, such as
knowledge level and task accomplishments [10]. Recent
approaches view chatbot-assisted programming systems
powered by ML techniques as powerful learning tools that aid
debugging, explain code errors, and suggest possible solutions,
thereby serving as a proxy for a human tutor [11].

A vast majority of ML algorithms have been employed to
predict programming learning performance; some of these are
Decision trees (DT), Random Forests (RF), Support Vector
Machines (SVM), Logistic Regression (LR), k-nearest
Neighbors (kNN), and Artificial Neural Networks (ANN) [3],
[12], [13], [14]. These models leverage learner engagement
patterns, prior learning activities, and coding behavior to
provide learners with timely intervention [15].

ML-enabled behavioral analytics tools can track and
analyze learner engagement with resources such as coding
environments, learning management systems, online coding
platforms, and discussion forums. The analyses can reveal
meaningful relationships between activities like active coding
and passive lecture reviewing that may impact overall learning.
Thus, actionable insights drive the curriculum design, define
effective intervention strategies that address individual learning
needs, and optimize the effectiveness of programming
educational outcomes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1092 | P a g e

www.ijacsa.thesai.org

A key limitation in existing ML model-based investigations
for programming education is the lack of a comprehensive
approach that spans from data collection to evaluation in
authentic learning environments [8], [16], [17]. While prior
research has explored ML applications in programming
learning, many studies focus on isolated aspects, such as
predictive modeling or feedback generation, without fully
integrating these components into a structured learning
framework. This research gap highlights the need for further
investigation into how ML models can be systematically
leveraged to enhance personalized learning experiences. To
address this, the present study conducts a comparative analysis
of ML models to identify programming learning weaknesses
based on learners’ prior knowledge, time spent, and Grade
Point Average (GPA). Identifying the most effective ML
model can facilitate the delivery of personalized programming
feedback tailored to individual learners’ needs. Additionally,
an experimental evaluation is implemented to explore the
impact of personalized feedback on learning performance. This
dual approach enhances the theoretical understanding of ML-
driven feedback mechanisms and provides empirical evidence
to guide future advancements in AI-supported programming
education.

The key research questions are as follows:

RQ1. How can machine learning be used to predict specific
weaknesses in learners' programming skills, enabling feedback
personalization?

RQ2. Can personalized feedback derived from machine
learning predictions enhance learning outcomes?

This paper is structured as follows: Section II presents
related work. Section III outlines the methodology used in this
study. Section IV offers the results. Section V discusses the
findings, and Section VI concludes the paper.

II. RELATED WORK

The recent reviews on integrating AI and ML in online
learning platforms highlight their essential role in personalizing
learning through customized content delivery for individual
learners [1], [12], [13], [14]. The dynamic adaptation and
targeted interventions through ML techniques (e.g., clustering,
reinforcement learning, deep learning) are promising to
enhance learner engagement, retention, and academic
performance [18]. Yet, data privacy concerns, high resource
requirements, and the risk of diminishing human interaction
limit the widespread adoption. Careful implementation and
ongoing refinement would be critical to mitigate these
challenges and realize the potential benefits of more
mainstream AI-based online learning platforms.

A predictive analysis of learner performance in
programming tutoring comparing different ML models with
ANN on dataset input finds that ANN outperforms other
methodologies such as SVM, DT, and kNN [19]. However, the
study's limitations include its targeting of a specific cohort of
Norwegian learners, domain-specific instructions, and potential
biases integrating into the suggested framework that may
undermine the present findings’ utility to broader domains.

Another approach investigates how ML algorithms are
implemented to predict learner programming performance as
high or low based on different variables, including
computational identity, computational thinking, programming
empowerment, gender, and programming anxiety [16]. DT
algorithm had the best accuracy of 96.6%, while the best cross-
accuracy was obtained with RF. On the contrary, kNN
performed the least favorably. Their study shows that male and
university learners scored higher than female and high school
learners. However, the groups were not significantly different
as far as programming anxiety is concerned. The limitations of
the research are the focus on the demographic of Turkish
learners, the specificity of the constructs relating to specific
tasks, and the need for generalisability across datasets of
different populations.

The study in [3] offers a prediction model powered by AI
with Genetic Programming (GP) modeling to analyze and
predict learner academic performance in an online engineering
education system. The performance of the GP model was better
than that of traditional AI methods (e.g., ANN and SVM),
demonstrating high accuracy and efficient predictions
regarding learning effectiveness. Key determinants of
performance are knowledge transfer, participation in class, and
summative assessment, with prior knowledge having a limited
effect. However, though it does advance these areas, the
limited sample size, lack of real-time adaptability of the model,
and locally specific findings limit its wider application and
require additional research.

An extensive review of ML techniques applied to predict
the learner's performance in the context of programming
courses emphasizes the strength of different algorithms, the
nature of the organization of datasets, and the significance of
the evaluation metrics [20]. According to the review results,
SVM had the best accuracy of 93.97%, whereas deep learning
methods like Deep Neural Networks (DNN) have achieved
significant success in detecting complex data patterns. Most
studies used academic records as a dataset type; however, a
meta-analysis of multiple data sources improved prediction
accuracy. The review highlights the importance of using
different metrics to evaluate model performance, including
accuracy, F1-Score, precision, and recall, especially in
unbalanced datasets. Noted limitations include using small or
unbalanced datasets, a narrow range of algorithms, and
overemphasizing accuracy. The results emphasize the need for
larger datasets, more varied evaluation methods, and more
examination of deep learning approaches to improve models of
future predictive capabilities.

PerFuSIT is an example of a fuzzy logic-based module
designed to personalize pedagogical approaches in ITSs for
programming education [10]. This adaptive system updates
different tutoring approaches dynamically, according to
parameters such as performance measures, coding error types,
help requests, and the time taken to solve a task. Therefore,
through such an application, a fuzzy logic system can offer
flexibility in the learning process, where the learners have
different levels of interactivity, improving learners'
performance and involvement. However, the dependency on
expert regulations and the constrained testing environments
may generate scaling challenges.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1093 | P a g e

www.ijacsa.thesai.org

The study in [21] studied the relationship between the
learning behaviors of learners and their grades in an online
programming course employing the Random Matrix Theory to
filter noisy data and discover possible patterns. It was observed
that learners with superior academic performance regularly
participated in practical tasks such as lab activities and
exercises. The lower-achieving learners relied more on lecture
notes and fell behind on engagement in practical tasks over
time. This study demonstrated that data obtained from early-
stage learning behaviors can be used as powerful binary
predictors (pass or fail) of learning outcomes, and the use of
cleaned datasets enabled significantly improved accuracy using
ML algorithms, specifically SVM and XGBoost. However, this
research also granted limitations; it had one institutional focus,
short-term job performance outcomes, and methodological
technical complexity, limiting the additional dissemination and
uptake by broader generalization.

Another ML study uses data from a chatbot-assisted
programming platform to explore the relationship between
learning behaviors and programming performance [17]. The
key performance features are solution verification, frequency
of code review, code error correction using quizzes,
programming practice logs, and engagement patterns. ANN
produced better model predictions than other ML models like
RF and SVM. While the study demonstrates the potential of
ML for predicting outcomes, it is limited by its small sample
size, single-institution focus, and short-term analysis of
learning performance.

As an ML model, Recurrent Neural Networks (RNN) are
also used as a basis for a personalized learning path
recommendation system in the programming education domain
[22]. The system can recommend appropriate problems to help
the learner's speed and engagement by analyzing learners'
ability charts and clustering users with similar skill levels.
However, the system's reliance on advanced algorithms and
lack of scalability testing may restrict its applicability and
implementation in real-world scenarios, as they focus on data
generated from a single online judge.

The study in [15] proposed personalized interventions
based on the skills of at-risk learners as part of a Python
programming course. Their study adopted advanced AI
technologies (e.g., BERT and GPT-2) to generate personalized
remedial content. Its personalized feedback significantly
enhanced learners’ coding competencies and learning
strategies, demonstrating the power of AI-based interventions.
However, the study also has limitations, including a relatively
small cohort size, a focus on short-term outcomes, and
reliance on resource-intensive AI models, which may limit
applicability and scalability.

The study detailed in this manuscript differs from the above
efforts to apply ML to programming education in three key
aspects. First, it can be based on data retrievable from online
learning platforms during a preliminary, intermediate, or final
learning process. Second, different ML models can be
evaluated using this data to find the best model for providing
personalized programming feedback. Third, the empirical
efficacy of such feedback in enhancing learning outcomes is
assessed using controlled experimental evaluation.

III. METHOD

The experiment aims to use ML models to identify learners'
weaknesses in Java programming learning and provide
personalized learning feedback. Furthermore, it seeks to
validate the effectiveness of this feedback in improving
programming skills.

A. Hypotheses

There are two main hypotheses in this study as follows:

H1. Machine learning can be utilized to accurately predict
specific weaknesses in learners' Java programming learning.

H2. Providing personalized feedback based on machine
learning predictions will improve learners' performance in Java
programming learning.

B. Data Collection

The experiment administers a comprehensive pre-test
covering the essential concepts of basic Java programming.
These concepts include syntax, variables, control flows (if, if-
else, and switch), loops (while, do-while, and for loops),
arrays, methods, classes, and objects. The pre-test contains 60
questions to cover 12 Java topics. Learners’ responses to each
concept are recorded to form the input dataset for training and
testing the ML models. In addition, prior knowledge
performance, time spent, and GPA are recorded.

C. Machine Learning Models

From data pre-processing, model selection, and training to
evaluation, this phase lays the foundation for an ML model
specifically designed to predict each learner’s weaknesses from
their pre-test scores, time spent on the exam, and GPA. The
primary step involves validating the data by cleansing missing
data, normalizing scores, and converting the categorical data
(e.g., concept titles or feedback categories) to numerical values
when required. The dataset will subsequently be randomly
partitioned, allocating 70% for training and 30% for testing.
The training dataset is utilized to develop the ML model,
whereas the testing dataset evaluates its performance. So,
several ML models such as RF, LR, SVM, and DT are
compared to identify which model could best predict learners'
weaknesses based on their pre-test, time spent, and GPA data.
After finding a well-performing model, personalized guidance
feedback will accordingly be delivered.

D. Personalized Feedback Generation

Based on the model’s predictions, learners should be
provided relevant feedback on the Java programming concepts
they struggled with. For instance, personalized feedback will
be prioritized and released when the model predicts that a
learner struggles to grasp the programming concept while
loops. The feedback input is pre-created per learning concept,
with a theoretical overview, an example, an exercise, and a
link to a video lesson suited to reflect the various learning
types of learners.

E. Evaluation Metrics

In addition to the confusion matrix and Receiver Operating
Characteristic (ROC) curves, alongside Area Under the Curve
(AUC) scores, the predictive performance of the ML models is
evaluated using metrics such as accuracy, precision, recall, and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1094 | P a g e

www.ijacsa.thesai.org

F1-Score (displayed in formulas 1 through 4). These metrics
are typically used in relevant work and are suitable for this
study [23], [24]. A post-test is also used to investigate the
effect and provide evidence for the advantages of using
personalized feedback regarding improved learning outcomes.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

where,

 TP: True positive

 TN: True negative

 FP: False positive

 FN: False negative

F. Procedure

The experimental procedure is simplified and depicted in
Fig. 1. After obtaining consent to participate in the experiment,
a pre-test was conducted. The data collected was then used to
train and test the ML models to select the best model for
providing personalized feedback. Participants were randomly
divided into two independent groups: experimental and control
groups. The experimental group receives personalized
feedback based on the selected ML model predictions, while
the control group receives conventional feedback. Both groups
were asked to follow the feedback for their learning.

This experimental setting was conducted in computer labs
to ensure the experiment's control and to guarantee that
participants completed the learning process based on the
offered feedback. This process took five sessions, with each
session lasting about 120 minutes. Once all learning sessions
were finished, all participants completed the post-test.

IV. RESULTS

This section presents the results pertaining to the prediction
outcomes of the ML models. These predictions can be used of
identifying the programming learning weaknesses of each
learner. Furthermore, this section provides the results of the
controlled experiment that aimed to investigate the
effectiveness of learning Java programming through
personalized feedback.

A. Dataset

This experiment involved 205 first-year undergraduate
learners majoring in various computing disciplines. After
collecting and pre-processing the pre-test results, 180 valid
cases were identified for inclusion in the analysis of the ML
models. The performance of these models was evaluated using
standardized scores for each Java concept, categorizing
learners as “weak” or “strong” according to a 50% threshold,
time spent on the exam and GPA. Based on the optimal model,
personalized feedback can be provided.

Fig. 1. Experimental procedure.

B. Analysis of the Machine Learning Models Performance

The dataset was utilized to analyze the four ML models:
RF, LR, SVM, and DT. Table I summarizes the results of these
models: accuracy, precision, recall, and F1-Score. Fig. 2 and
Fig. 3 also present the confusion matrix and ROC curves with
AUC scores, respectively. These findings will assist in
identifying the appropriate ML model for the dataset.

Based on metrics analysis results, LR performs best at
98.33% accuracy meaning less errors, followed by SVM at
95% accuracy and finally RF at 81.67% accuracy. Looking into
precision, SVM and LR is ahead in this perspective, with near-
perfect precision that suggests low number of false positives.
DT and RF are less effective since they have more false
positives. Looking at the recall results, LR is outstanding
(100%) at detecting all of the actual positive cases. SVM
(97%) and RF (58%) display varying performance levels, while
DT had the lowest recall results. For the F1-Scores, SVM
(98.59%) and LR (97.96%) achieve a strong ratio between
precision and recall. However, DT and RF can be less effective
based on the results.

TABLE I. PERFORMANCE ANALYSIS OF ML MODELS

Model Accuracy Precision Recall F1-Score

Random Forest 81.67% 93% 58% 72.00%

Logistic Regression 98.33% 96% 100% 97.96%

SVM 95.00% 100% 97% 98.59%

Decision Tree 75.00% 83% 68% 75.00%

In the confusion matrix results, LR has shown an
exceptional level of accuracy and recall with a near 100%
score in both metrics. LR can also predict positive and negative

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1095 | P a g e

www.ijacsa.thesai.org

outcomes with remarkable precision. SVM also had a high
precision at 100% and a high recall at 97%, making it a strong
candidate due to the balance between those two evaluation
metrics. Although its recall is slightly lower than that of LR,
this results in a much more competitive score. The RF model
also performed well, with many true positives (35) and fewer
false negatives (1). However, it was slightly decreased due to
several false positives (10), leading to 93% precision. Given
the model's simplicity, DT showed satisfactory recall (68%)
and accuracy (75%). However, DT has also demonstrated a
relatively high number of false negatives (11), signifying a
worse performance than the other ML models.

Fig. 2. Confusion matrix for the machine learning models.

Fig. 3. ROC curves for the machine learning models.

When considering the ROC curves and AUS scores, LR
stands out with an AUC of 1.00, implying perfect
discrimination. SVM is also very close, with an AUC of 0.99,

suggesting excellent performance. RF has a solid AUC of 0.91,
indicating strong classification abilities but slightly worse than
SVM and LR. DT falls behind with an AUC of 0.76, reflecting
its lower performance in separating the weaknesses classes.

LR had the best overall outcomes considering all these
metrics, with perfect recall, high precision, and balanced
metrics. SVM performed competitively, with only slightly
lower recall. RF and DT can be supplementary models for
exploratory analysis or explainability. Therefore, LR is the
candidate model for classifying and predicting each learner's
weaknesses in Java programming learning.

C. Identifying Weaknesses of Programming Learning

LR has been identified as the most effective model among
the ML approaches considered. To illustrate its capability to
discern the weaknesses of each learner, two specific scenarios
have been selected and presented, as depicted in Fig. 4.

Firstly, the identification of the highest-performing learner
within the dataset is depicted in Fig. 4 (A). This learner
exhibited deficiencies in knowledge and skills across three
topics out of the twelve evaluated. These topics pertain to Java
loops (including do-while and for loops) and arrays. Secondly,
the identification of the lowest-performing learner in the
dataset is illustrated in Fig. 4 (B). This learner demonstrated
weaknesses in knowledge and skills across ten topics. These
identified areas of weakness can be prioritized for each learner
to facilitate the provision of personalized feedback.

Based on these findings, H1 is confirmed. It can be stated
that ML can be utilized to accurately predict specific
weaknesses in learners' Java programming learning.

Fig. 4. Identification of weak topics for the best-performing learner (case A)
and the poorest-performing learner (case B)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1096 | P a g e

www.ijacsa.thesai.org

D. Learning Effectiveness of Personalized feedback

After completing the phase of selecting the best-performing
ML model (i.e., LR), each learner can receive personalized
learning feedback. Table II gives a sample of the personalized
recommendations generated for three random learners from the
dataset.

TABLE II. TOPIC PERSONALIZED RECOMMENDATIONS FOR LEARNERS

Learner ID Weak topics with scores

20161

[('Arrays', 20), ('Do-While Loops', 40), ('Classes', 40),
('Syntax', 60), ('Variables', 60), ('If Statements', 60),

('Switch Statements', 60), ('While Loops', 60), ('For Loops',

60), ('Objects', 60), ('If-Else Statements', 80), ('Methods',
100)]

20125

[('Methods', 20), ('Variables', 40), ('Do-While Loops', 40),

('For Loops', 40), ('Objects', 40), ('If Statements', 60),

('Switch Statements', 60), ('While Loops', 60), ('Syntax', 80),
('If-Else Statements', 80), ('Arrays', 100), ('Classes', 100)]

20310

[('If-Else Statements', 0), ('Do-While Loops', 0), ('For

Loops', 0), ('Methods', 0), ('Classes', 20), ('Syntax', 40),
('Variables', 40), ('Arrays', 40), ('Switch Statements', 60),

('While Loops', 60), ('Objects', 60), ('If Statements', 80)]

LR can be used to adeptly identify the specific weaknesses
of each learner to deliver personalized feedback. Nonetheless, a
pertinent question arises: are these recommendations practical
for learning? To address this issue, a controlled experimental
evaluation was undertaken, wherein learners completed the
learning process based on either personalized or conventional
feedback as offered according to their group. The outcomes of
this experiment are detailed in Table III. The sample consisted
of 40 participants (out of 180 participants) who completed the
experiment. Each group had 20 participants randomly assigned
to either the control or experimental groups. The pre-test
results indicate that they had almost similar scores. In contrast,
the experimental group had better scores than the control group
regarding the post-test and overall learning outcome (i.e., post-
test – pre-test).

TABLE III. SUMMARY RESULTS OF THE PRE-TEST, POST-TEST AND

LEARNING OUTCOME

Variable Group N Mean SD

Pre-test
Control 20 39.92 3.52

Exp. 20 41.17 3.83

Post-test
Control 20 59.45 10.68

Exp. 20 73.40 13.00

Learning outcome
Control 20 19.53 10.47

Exp. 20 32.23 13.29

An independent sample t-test was run for all these
variables. It was found that there was no statistically significant
difference between the pre-test of the experimental group
compared to the control group, t(38) = -1.074, p = .289.
Regarding the post-test results, there was a statistically
significant difference between the experimental group and the
control group, t(38) = -3.708, p<.001. For the overall learning
outcome, there was also a statistically significant difference
between the experimental group and the control group, t(38) =
-3.358, p = .002. According to the findings, H2 can be
confirmed. It can be stated that providing personalized

feedback based on ML predictions will improve learners'
performance in Java programming learning.

V. DISCUSSION

The research presented in this study aimed to explore the
use of ML to predict the programming learning weaknesses of
learners. It emphasized the importance of learners’ key data as
input to ML models to identify learning patterns and gaps of
programming concepts to provide adaptive and personalized
interventions with relevant learning resources and feedback.
The data features considered were prior knowledge obtained
from a pre-test, time spent on the test, and GPA.

The study findings found that LR was the most effective
model for identifying the programming learning weaknesses of
learners compared to other ML models. It achieved the highest
accuracy among other models, confirming its suitability for
educational data analytics, particularly on the identified
features for the programming domain. SVM also had a
competitive performance but with lower recall compared to
LR. This finding confirms the importance of precision and
sensitivity in programming learning platforms when using ML.
However, the limited utility of other models (i.e., RF and DT)
is due to the higher false positives, though they can be helpful
to exploratory analyses. These results align with previous
research highlighting the robustness of LR and SVM in
educational contexts [6], [7].

The presented study also took a step further by conducting
a controlled experimental evaluation to investigate the
effectiveness of personalized feedback based on the results of
the selected ML model (i.e., LR). The findings revealed that
providing personalized feedback based on LR predictions
improves learners' outcomes in Java programming. By
addressing these learning weaknesses, instructors and online
learning platforms can implement targeted interventions to
bridge learning gaps, thereby enhancing overall comprehension
and engagement [10], [15]. These findings highlight the
importance of integrating ML tools into programming curricula
to meet individual learning needs. This is consistent with
existing literature highlighting individualized learning
pathways as a form of personalization for deeper understanding
and long-term knowledge retention [2], [22].

The presented study offers significant implications for the
design and deployment of ML in programming education
interventions. This study demonstrated how ML can be used to
provide precise and actionable insights that enhance learning
performance. The findings also underscore the potential of
integrating ML tools into computer science curricula to meet
the diverse needs of learners effectively. However, some
limitations need to be considered. Generalization can be
limited since the results were based on a dataset from a single
institute with restricted data features. Thus, more experiments
and diverse data features are needed in future research.
Nevertheless, this study provided initial findings that can serve
as a foundation for further explorations highlighting the
importance of ML-enabled personalization in education.

VI. CONCLUSION

This study addressed the challenge of identifying and
resolving weaknesses in programming education using ML.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

1097 | P a g e

www.ijacsa.thesai.org

Three key contributions were made. First, multiple ML models
were evaluated to predict learners' programming difficulties
based on prior knowledge, time spent, and GPA. Second, a
comparative analysis determined that LR was the most
effective model for generating personalized feedback. Third, a
controlled experimental evaluation provided empirical
evidence that personalized feedback significantly enhances
programming learning outcomes compared to conventional
methods.

These findings highlight the potential of ML-driven
personalized learning in programming education. Future
research will enhance this approach by incorporating additional
learner-system interaction features, such as time spent on
specific concepts, quiz scores, quiz attempts, and lesson visits,
to build more dynamic learner profiles. By leveraging these
profiles, intelligent online learning platforms can be developed
to generate adaptive learning pathways, provide targeted
feedback, and integrate gamification elements to boost
engagement and motivation. Furthermore, a more extensive
experimental evaluation will be conducted to assess the long-
term impact of personalized feedback on learning
effectiveness.

REFERENCES

[1] Gligorea, M. Cioca, R. Oancea, A.-T. Gorski, H. Gorski, and P.
Tudorache, “Adaptive learning using artificial intelligence in e-learning:
a literature review,” Educ Sci (Basel), vol. 13, no. 12, p. 1216, 2023.

[2] M. Tedre et al., “Teaching machine learning in K–12 classroom:
Pedagogical and technological trajectories for artificial intelligence
education,” IEEE Access, vol. 9, pp. 110558–110572, 2021.

[3] P. Jiao, F. Ouyang, Q. Zhang, and A. H. Alavi, “Artificial intelligence-
enabled prediction model of student academic performance in online
engineering education,” Artif Intell Rev, vol. 55, no. 8, pp. 6321–6344,
2022, doi: 10.1007/s10462-022-10155-y.

[4] M. T. Alshammari and A. Qtaish, “Effective Adaptive E-Learning
Systems According to Learning Style and Knowledge Level.,” Journal
of Information Technology Education: Research, vol. 18, pp. 529–547,
2019, doi: https://doi.org/10.28945/4459.

[5] R. Mustapha, G. Soukaina, Q. Mohammed, and A. Es-Saadia, “Towards
an Adaptive e-Learning System Based on Deep Learner Profile,
Machine Learning Approach, and Reinforcement Learning,”
International Journal of Advanced Computer Science and Applications,
vol. 14, no. 5, pp. 265–274, May 2023.

[6] S. Marwan, G. Gao, S. Fisk, T. W. Price, and T. Barnes, “Adaptive
Immediate Feedback Can Improve Novice Programming Engagement
and Intention to Persist in Computer Science,” in Proceedings of the
2020 ACM Conference on International Computing Education Research,
in ICER ’20. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 194–203. doi: 10.1145/3372782.3406264.

[7] M. Murtaza, Y. Ahmed, J. A. Shamsi, F. Sherwani, and M. Usman, “AI-
based personalized e-learning systems: Issues, challenges, and
solutions,” IEEE Access, vol. 10, pp. 81323–81342, 2022.

[8] W. Xu and F. Ouyang, “A systematic review of AI role in the
educational system based on a proposed conceptual framework,” Educ
Inf Technol (Dordr), vol. 27, no. 3, pp. 4195–4223, 2022.

[9] T. Saito and Y. Watanobe, “Learning path recommendation system for
programming education based on neural networks,” International
Journal of Distance Education Technologies (IJDET), vol. 18, no. 1, pp.
36–64, 2020.

[10] K. Chrysafiadi and M. Virvou, “PerFuSIT: Personalized Fuzzy Logic
Strategies for Intelligent Tutoring of Programming,” Electronics (Basel),
vol. 13, no. 23, p. 4827, 2024.

[11] M. Abolnejadian, S. Alipour, and K. Taeb, “Leveraging ChatGPT for
Adaptive Learning through Personalized Prompt-based Instruction: A
CS1 Education Case Study,” in Extended Abstracts of the 2024 CHI
Conference on Human Factors in Computing Systems, in CHI EA ’24.
New York, NY, USA: Association for Computing Machinery, 2024. doi:
10.1145/3613905.3637148.

[12] P. L. S. Barbosa, R. A. F. do Carmo, J. P. P. Gomes, and W. Viana,
“Adaptive learning in computer science education: A scoping review,”
Educ Inf Technol (Dordr), 2023, doi: 10.1007/s10639-023-12066-z.

[13] A. T. Bimba, N. Idris, A. Al-Hunaiyyan, R. B. Mahmud, and N. L. B.
M. Shuib, “Adaptive feedback in computer-based learning
environments: a review,” Adaptive Behavior, vol. 25, no. 5, pp. 217–
234, 2017, doi: 10.1177/1059712317727590.

[14] F. Okubo, T. Shiino, T. Minematsu, Y. Taniguchi, and A. Shimada,
“Adaptive Learning Support System Based on Automatic
Recommendation of Personalized Review Materials,” IEEE
TRANSACTIONS ON LEARNING TECHNOLOGIES, vol. 16, no. 1,
pp. 92–105, Feb. 2023, doi: 10.1109/TLT.2022.3225206.

[15] A. Y. Q. Huang et al., “Personalized Intervention based on the Early
Prediction of At-risk Students to Improve Their Learning Performance,”
Educational Technology & Society, vol. 26, no. 4, pp. 69–89, 2023,
[Online]. Available: https://www.jstor.org/stable/48747521

[16] A. Durak and V. Bulut, “Classification and prediction-based machine
learning algorithms to predict students’ low and high programming
performance,” Computer Applications in Engineering Education, vol.
32, no. 1, p. e22679, Jan. 2024, doi: https://doi.org/10.1002/cae.22679.

[17] Y.-S. Su, Y.-D. Lin, and T.-Q. Liu, “Applying machine learning
technologies to explore students’ learning features and performance
prediction,” Front Neurosci, vol. 16, 2022, [Online]. Available:
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.
2022.1018005

[18] Y. Jing, L. Zhao, K. Zhu, H. Wang, C. Wang, and Q. Xia, “Research
Landscape of Adaptive Learning in Education: A Bibliometric Study on
Research Publications from 2000 to 2022,” Sustainability, vol. 15, no. 4,
2023, doi: 10.3390/su15043115.

[19] M. Ilić, G. Keković, V. Mikić, K. Mangaroska, L. Kopanja, and B.
Vesin, “Predicting Student Performance in a Programming Tutoring
System Using AI and Filtering Techniques,” IEEE Transactions on
Learning Technologies, vol. 17, pp. 1891–1905, 2024, doi:
10.1109/TLT.2024.3431473.

[20] J. P. J. Pires, F. Brito Correia, A. Gomes, A. R. Borges, and J.
Bernardino, “Predicting Student Performance in Introductory
Programming Courses,” Computers, vol. 13, no. 9, p. 219, 2024.

[21] T. T. Mai, M. Bezbradica, and M. Crane, “Learning behaviours data in
programming education: Community analysis and outcome prediction
with cleaned data,” Future Generation Computer Systems, vol. 127, pp.
42–55, 2022, doi: https://doi.org/10.1016/j.future.2021.08.026.

[22] T. Saito and Y. Watanobe, “Learning path recommendation system for
programming education based on neural networks,” International
Journal of Distance Education Technologies (IJDET), vol. 18, no. 1, pp.
36–64, 2020.

[23] Y. A. Alsariera, Y. Baashar, G. Alkawsi, A. Mustafa, A. A. Alkahtani,
and N. Ali, “Assessment and Evaluation of Different Machine Learning
Algorithms for Predicting Student Performance,” Comput Intell
Neurosci, vol. 2022, no. 1, p. 4151487, Jan. 2022, doi:
https://doi.org/10.1155/2022/4151487.

[24] H. Luan and C.-C. Tsai, “A Review of Using Machine Learning
Approaches for Precision Education,” Educational Technology &
Society, vol. 24, no. 1, pp. 250–266, 2021, [Online]. Available:
https://www.jstor.org/stable/26977871

