
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

109 | P a g e

www.ijacsa.thesai.org

Performance Evaluation and Selection of Appropriate

Congestion Control Algorithms for MPT Networks

Naseer Al-Imareen, Gábor Lencse

Department of Telecommunications, Széchenyi István University, Győr, Hungary

Abstract—Recent academic research highlights a growing

interest in multipath technologies, which offer promising solutions

to networking challenges in complex environments. This interest

is reflected in the emergence of protocols such as Multipath TCP

(MPTCP) and Multipath UDP-in-GRE (MPT-GRE). The

development of network protocols, particularly various iterations

of the Transmission Control Protocol (TCP), has been

distinguished by congestion detection and control algorithms, such

as HighSpeed, CUBIC, Reno, LP, BBR, and Illinois. This paper

evaluates the performance and suitability of these algorithms for

multipath MPT-GRE networks under varying conditions,

including delay, jitter, and data loss at different transmission

speeds (both symmetric and asymmetric). Using StarBED

resources, we applied delay, jitter, or packet loss to one of two

physical paths to simulate congestion. The results demonstrate

that some algorithms, HighSpeed and BBR among them,

significantly enhance Quality of Service (QoS) metrics and

network throughput in multipath MPT-GRE networks. These

findings provide valuable insights into their performance and

practical applications.

Keywords—Packet loss; congestion control; MPT-GRE; delay;

throughput; jitter

I. INTRODUCTION

The rapid advancement of network applications has
increased demands on network infrastructure, posing challenges
to its capacity and efficiency. Many emerging applications
require high bandwidth and low latency to function effectively.
These requirements strain current network capabilities,
exacerbating bottlenecks and highlighting the need for robust,
efficient data transmission methods [1] [2].

Modern communication technology supports a variety of
devices equipped with multiple interfaces, enabling networks
and applications to handle complex communication demands.
However, the effectiveness of these communication sessions is
constrained by the TCP/IP protocol architecture, which, by
default, supports only single-session handling. Leveraging
multiple network interfaces during communication sessions
enhances flexibility and reliability, particularly in addressing
network disruptions. By dynamically switching traffic between
available paths, communication systems can ensure
uninterrupted data transmission, even in the face of link failures,
congestion, or performance degradation [3].

This approach significantly improves fault tolerance, load
balancing, and network stability, making it an essential feature
for modern networking environments that demand high
reliability and performance.

To address the growing demand for efficient multipath
solutions, numerous methods have been developed, including
MPT-GRE [4] and MPTCP [5]. MPT-GRE enables the creation
of a virtual tunnel across multiple physical paths, distinguishing
it from alternatives like MPTCP and Huawei’s Generic Routing
Encapsulation (GRE) Tunnel Bonding Protocol. While
multipath approaches offer significant advantages, throughput
performance in these networks often suffers due to delays and
congestion [6].

Various TCP congestion control algorithms, such as
HighSpeed, LP, Reno, Vegas, and CUBIC, have been designed
to mitigate these challenges. These algorithms detect, control,
and preempt congestion, reducing packet loss and delays. Their
effectiveness stems from their ability to monitor and manage
packet transmission from source to destination. Some
algorithms dynamically adjust the congestion window size
based on round-trip time (RTT), while others, particularly those
optimized for high-bandwidth networks, expand the window to
enhance throughput.

Efficient congestion management in multipath networks
improves stability, ensures proper packet reordering, and
minimizes data loss and delays. Furthermore, the fair allocation
of network resources among competing packets prevents
bandwidth monopolization, safeguarding throughput and overall
network performance [7] [8].

Multipath congestion control is an active area of research
focused on maximizing resource utilization by leveraging the
available bandwidth across multiple paths while maintaining
fairness toward competitive single-path transfers—a constraint
referred to as TCP-friendliness. Congestion control techniques
are crucial in optimizing network resource use, enabling
throughput aggregation, and reducing bandwidth waste.

However, the rise of multipath communication has
introduced new challenges. Research has identified side effects,
particularly the lack of TCP-friendliness in some
implementations. For example, the uncoupled congestion
control approach in Multipath TCP (MPTCP) treats each sub
flow as an independent TCP connection. This can result in
imbalanced resource allocation, where individual subflows
dominate bandwidth, leading to unfairness and performance
degradation in multipath network environments [8][9].

The MPT-GRE software is designed to enhance data
transmission by distributing the load across multiple paths, often
achieving throughput capacities close to the combined total of
the physical paths [10]. The integration of congestion control
algorithms in multipath networks holds significant promise for
building robust and efficient network infrastructures. These

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

110 | P a g e

www.ijacsa.thesai.org

algorithms ensure fair resource allocation and improve overall
network performance by enhancing fault tolerance, reducing
congestion, and increasing throughput through effective traffic
management across multiple paths.

Our contributions to this paper are as follows:

1) Evaluation of congestion control algorithms: We

analyze multiple congestion control algorithms within

multipath MPT-GRE network environments.

2) Performance assessment under diverse network

conditions: We assess the performance of these algorithms

under various network conditions, including delay, jitter,

combined delay and jitter, and packet loss. The evaluation also

considers both symmetric and asymmetric transmission speed

environments.

3) Identification of throughput-optimizing algorithms: We

identify algorithms that significantly enhance network

throughput under the evaluated network conditions.

II. RELATED WORK

Many studies have explored congestion control approaches
in multipath networks, each focusing on optimizing network
performance in various ways. These studies have examined how
congestion control algorithms can effectively handle multiple
paths, reduce packet loss, minimize latency, and ensure fair
resource allocation among packet flows. Additionally,
researchers have worked on utilizing algorithms that can adapt
dynamically to changing network conditions, such as
fluctuations in bandwidth, jitter, and delay, to maximize
throughput and minimize congestion.

Szabolcs Szilágyi and Imre Bordán [11] examined the
impact of various TCP congestion control algorithms on
multipath communication technologies, specifically MPTCP
and MPT-GRE. The researchers compared the performance of
seven congestion control algorithms (CUBIC, Reno, Illinois,
Scalable, Veno, High-Speed, and Vegas) in quad-path
IPv4/IPv6 Fast Ethernet environments. Their findings show that
CUBIC provided the best performance for MPTCP and MPT-
GRE, while Vegas had the lowest performance. The study used
these comparisons to emphasize CUBIC’s effectiveness as the
default algorithm in modern operating systems and aimed to
extend the evaluation to more advanced network environments
and recent TCP algorithms.

To address the energy consumption challenge in Multipath
TCP (MPTCP), the authors [3] analyzed existing congestion
control algorithms and identified the key factors influencing
energy efficiency. They conducted real-world experiments
using the MPTCP Linux kernel and found that energy
consumption is closely related to throughput, path delay, and
varying network scenarios. To improve energy efficiency, they
proposed a congestion control model with a window-increasing
factor to direct traffic toward low-delay paths and an energy-
aware compensatory parameter for hierarchical Internet
topologies. Their experiments confirmed that the enhanced
model can increase energy efficiency without compromising
transmission performance.

Yu Cao et al. [12] addressed the limitations of coarse-
grained load balancing in multipath congestion control, which
relies heavily on packet loss as a congestion indicator. They
formulated the “Congestion Equality Principle,” showing that
fair and efficient traffic shifting occurs when flows equalize
perceived congestion across all paths. To achieve this, they
proposed the delay-based algorithm Weighted Vegas (wVegas),
which uses queuing delays for fine-grained load balancing.
Simulations showed that wVegas responds faster to congestion
changes than loss-based algorithms, improving intra-protocol
fairness and reducing packet loss. The study highlights wVegas
as a complement to algorithms like TCP-Vegas and TCP-Reno.

Balancing fairness, responsiveness, and window oscillation
in Multipath TCP (MPTCP) congestion control is crucial for
efficient multipath communication. MPTCP distributes traffic
across multiple paths to enhance resource utilization and
connection robustness. However, this distribution poses the
challenge of adjusting transmission rates across these paths
without disrupting other network traffic. To address this,
researchers [13] proposed a novel fairness-based congestion
control algorithm (FCCA) designed to enhance fairness among
subflows while maintaining key performance metrics such as
responsiveness and stability of the congestion window. FCCA
dynamically adjusts the congestion window for each path based
on real-time congestion feedback, optimizing bandwidth usage,
improving network performance, and ensuring smooth traffic
flow even under varying congestion conditions. The
introduction of FCCA marks a significant step toward achieving
more equitable and efficient traffic management in MPTCP,
contributing to enhanced network performance and fairness in
multipath communication scenarios.

III. BACKGROUND

This section discusses the MPT-GRE multipath network and
congestion control algorithms in detail.

A. MPT-GRE Network Technology

The MPT-GRE network is a multipath technology based on
the GRE-in-UDP tunnel specification (IETF RFC 8086 [2]).
MPT-GRE extends the traditional GRE-in-UDP architecture by
supporting multiple physical paths and enhancing network
performance through load balancing. Using the UDP source port
for hashing distributes traffic more efficiently across numerous
equal-cost multipath (ECMP) routes. This architecture shares
some similarities with Multipath TCP (MPTCP) in its utilization
of multiple paths. Still, it differs significantly in its underlying
technology. MPT-GRE relies on UDP at the transport layer,
building on GRE-in-UDP for a tunnel IP layer that supports TCP
and UDP protocols. Huawei’s GRE Tunnel Bonding Protocol
has a similar objective but lacks UDP encapsulation, limiting its
scalability to just two physical interfaces. In contrast, MPT-
GRE’s use of GRE-in-UDP offers greater flexibility, enabling a
more scalable and robust multipath solution.

The MPT-GRE software architecture, shown in Fig. 1,
introduces a logical tunnel layer that works independently of the
physical network paths. This unique approach sets MPT apart
from traditional TCP/IP protocols by directing application layer
data to a tunnel path instead of directly to a physical path. The
MPT-GRE software distributes incoming packets from the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

111 | P a g e

www.ijacsa.thesai.org

logical tunnel interface across available physical paths in this
environment. It allows for seamless multipath communication
for applications, which only need to interact with the tunnel
interface. This mechanism enables efficient traffic redistribution
without changing the application’s communication model.
Additionally, the MPT-GRE software supports the transition to
IPv6, as both IP tunnel and path versions can operate
independently within the MPT-GRE library. Fig. 2 shows how
data packets are transmitted and received in MPT-GRE.

Fig. 1. Conceptual architecture of MPT-GRE [4].

Fig. 2. Theoretical process of the MPT-GRE mechanism [4].

Upon receiving a packet from the tunnel interface, the MPT-
GRE software identifies the connection specification and
determines traffic distribution across multiple paths. The user
data packet is then encapsulated into a GRE-in-UDP data unit.
This unit may include optional GRE Sequence Numbers for
reordering. The GRE header contains 16 bits of zeros and
identifies the protocol type (e.g., 0x0800 for IPv4 or 0x86DD

for IPv6). The GRE-in-UDP data unit is encapsulated within a
UDP/IP data unit with the destination port set to 4754, which is
the GRE-in-UDP port. The packet is then transmitted via the
designated physical interface. Upon arrival, the MPT-GRE
software verifies the packet by checking the destination port,
validating the connection based on the tunnel IP header, and
performing checks on the GRE sequence number or GRE Key
value, if present. If the packet passes all checks without
reordering, it is forwarded to the transport and application layers
via the tunnel interface. If reordering is necessary, the packet is
temporarily stored in a buffer for reordering before being
transmitted [14].

B. Congestion Control Algorithms

Congestion control in computer networks is crucial for
ensuring efficient data transfer and preventing issues such as
increased latency, packet loss, and reduced throughput [15].
When network demand exceeds available bandwidth or specific
data flows dominate resources, congestion control algorithms
are essential for maintaining network stability. These algorithms
handle transmission data by dynamically adjusting transmission
rates and implementing mechanisms like slow start and fast
retransmission, which help to alleviate congestion and reduce
packet loss. They are designed to respond to dynamic and
unpredictable network traffic, employing different strategies to
manage congestion by monitoring packet flows and adjusting
sending rates accordingly [11][16]. Widely used congestion
control algorithms, such as LP, Veno, H-TCP, CUBIC, Reno,
Hybla, Vegas, HSTCP, BBR, Westwood, BIC, and Scalable,
adjust the rate of transmission to adapt to varying network
structures and conditions. For example, CUBIC and Vegas
monitor estimated round-trip times (RTT) to detect congestion
and dynamically adjust transmission rates, while other
algorithms like BBR estimate bandwidth to optimize throughput
[17]. These algorithms are generally classified based on their
method of detecting and responding to congestion as the
following: loss-based, delay-based, hybrid (loss + delay), and
bandwidth estimation-based algorithms [18][19][20][21].

1) Loss-based algorithms: Loss-based congestion control

algorithms detect network congestion by identifying packet

loss. Typically, this occurs when network buffers overflow due

to congestion. When packet loss is detected, the sender reduces

the congestion window, which is the amount of data allowed in

transit without acknowledgment. The sender then gradually

increases the congestion window to probe the available

bandwidth. These algorithms use packet loss as a congestion

signal, detected through duplicate acknowledgments or

timeouts. Upon congestion detection, the sender reduces the

congestion window, often by half, and slowly increases it using

strategies like additive increase multiplicative decrease

(AIMD). Examples of loss-based algorithms include Reno,

shown in Eq. (1) and (2), a traditional algorithm that reduces

the congestion window after detecting packet loss, and CUBIC,

shown in Eq. (3), which employs a cubic function to manage

window growth but still relies on packet loss for congestion

detection.

Reno equations:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

112 | P a g e

www.ijacsa.thesai.org

𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑 +
1

𝑐𝑤𝑛𝑑
 (𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒)

𝑐𝑤𝑛𝑑 =
𝑐𝑤𝑛𝑑

2
 (𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒)

CUBIC equation:

𝑐𝑤𝑛𝑑(𝑡) = 𝐶 ⋅ (𝑡 − 𝐾)3 + 𝑊𝑚𝑎𝑥

where C is a scaling element that holds the window growth
rate, and t is the time since the last congestion event (loss),

whereas 𝐾 = √
𝑊𝑚𝑎𝑥.𝛽

𝐶

3
 is the time when the window moves

𝑊𝑚𝑎𝑥 again. And 𝑊𝑚𝑎𝑥 is the congestion window size at the last
congestion event (maximum window size before packet loss). β
represents a multiplicative decrease factor, usually set at 0.7.

HighSpeed, Binary Increase Congestion Control (BIC),
Scalable, and Hamilton TCP (H-TCP) are advanced loss-based
congestion control algorithms designed specifically for high-
speed, high-latency networks. HighSpeed aggressively
increases the standard congestion window, enhancing
throughput in environments with a large bandwidth-delay
product (BDP) shown in Eq. (4). BIC uses a binary search
method for adjusting the window size, effectively balancing
rapid bandwidth probing with a cautious approach to packet
loss, as shown in Eq. (5). Scalable adopts a fixed-increment
growth strategy based on the current window size, allowing it to
maintain high throughput in high-capacity networks, as shown
in Eq. (6). On the other hand, H-TCP dynamically adjusts its
window growth by monitoring changes in network congestion
and round-trip time (RTT), enabling it to respond effectively to
fluctuations in network conditions and improve performance in
high-BDP scenarios shown in Eq. (7).

HighSpeed equation:

𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑 +
𝑎(𝑐𝑤𝑛𝑑)

𝑐𝑤𝑛𝑑

where 𝑎 (𝑐𝑤𝑛𝑑) is an adaptive increase factor that scales
with the size of 𝑐𝑤𝑛𝑑. This factor becomes more significant as
𝑐𝑤𝑛𝑑 grows.

BIC equation:

𝑐𝑤𝑛𝑑 =
(𝑐𝑤𝑛𝑑𝑚𝑎𝑥+𝑐𝑤𝑛𝑑𝑚𝑖𝑛)

2

where 𝑐𝑤𝑛𝑑max and 𝑐𝑤𝑛𝑑min represent the maximum and
minimum congestion window sizes that have been reached so
far.

Scalable equation:

𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑 + 𝑎. 𝑐𝑤𝑛𝑑

where α is a constant scaling factor typically set to a small
value, such as 0.01 to 0.1.

H-TCP Equation:

𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑 + (2 × (𝑡 − 𝑇))

where t is the elapsed time since the last congestion event,
and T is a constant.

2) Delay-based algorithms: Delay-based algorithms

monitor round-trip time (RTT) changes or delays to detect

network congestion, allowing them to adjust the sending rate

before packet loss occurs. For example, Vegas continuously

monitors RTT to adjust the congestion window size based on

observed delays, as shown in Equation 8. Hybla compensates

for longer RTTs by scaling window growth proportionally to

RTT values, improving performance in high-latency networks,

as shown in Eq. (9). On the other hand, LP (Low Priority)

reduces its window size when delays increase, prioritizing

higher-priority traffic and ensuring smooth operation in mixed-

traffic environments, as shown in Eq. (10) and Eq. (11).

Vegas equations:

∆= (𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡)

cwnd=cwnd+α, if Δ<γ

cwnd=cwnd−β, if Δ>δ
where α is the increase factor. β is the decrease factor. Δ is

the difference between expected and actual throughput. γ and δ
are thresholds for adjusting the window.

Hybla equation:

𝜌 =
𝑅𝑇𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑅𝑇𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡

where 𝑅𝑇𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is a reference for round-trip time

(RTT), usually for a low-latency network

LP equation:

∆=
(𝑅𝑇𝑇𝑐𝑢𝑟𝑟𝑛𝑡−𝑅𝑇𝑇𝑚𝑖𝑛)

𝑅𝑇𝑇𝑚𝑖𝑛

If Δ > γ, LP reduces the congestion window as follows:

𝑐𝑤𝑛𝑑𝑛𝑒𝑤 =
𝑐𝑤𝑛𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡

2

where the threshold for the increase in RTT is denoted by γ.

3) Hybrid (Loss + Delay) algorithms: These algorithms

leverage packet loss and delay to adjust the congestion window.

For example, Illinois uses delay and loss metrics to adjust the

window size dynamically, enabling more adaptable congestion

control. Veno combines Reno and Vegas’s strategies, using

delay and packet loss signals to optimize the balance between

performance and congestion avoidance. Similarly, YEAH uses

delay as an early indicator of congestion and relies on packet

loss as a secondary, more conservative signal to adjust the

transmission rate.

Illinois equation:

𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑 +
𝛼(𝑑𝑒𝑙𝑎𝑦)

𝑐𝑤𝑛𝑑

Veno equation:

𝑐𝑤𝑛𝑑𝑛𝑒𝑤 = 𝑐𝑤𝑛𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +
1

𝑐𝑤𝑛𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 (𝐴𝑑𝑑. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒)

YEAH Equation:

cwndincrease =
MSS

RTTmin

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

113 | P a g e

www.ijacsa.thesai.org

where, MSS stands for Maximum Segment Size, referring to
the most significant amount (in bytes) of data that a TCP
segment can carry in the payload part of a packet, excluding the
TCP and IP headers.

4) Bandwidth estimation-based algorithms: These

algorithms estimate the available bandwidth in the network and

adjust the sending rate accordingly, optimizing performance

based on network capacity. For example, TCP Westwood

estimates bandwidth using packet loss and throughput

measurements. It adjusts the congestion window dynamically,

making it particularly effective in wireless networks where

packet loss is common. Similarly, Bottleneck Bandwidth and

Round-trip propagation time (BBR) models available

bandwidth and round-trip delay to efficiently manage the

congestion window and transmission rate.

Westwood equation:

BWE =
∑ 𝐴𝐶𝐾𝑒𝑑_𝑑𝑎𝑡𝑎

𝛥𝑡

where BWE is the bandwidth estimate, ACKed_data is the
amount of acknowledged data, and Δt is the time interval
between receiving ACKs.

BBR equation:

Throughput =
Bottleneck Bandwidth

𝑅𝑇𝑇𝑚𝑖𝑛

where Bottleneck Bandwidth is the maximum rate at which
data can be transmitted along the path.

IV. TEST ENVIRONMENT

A. Hardware Environment Setting

As illustrated in Fig. 3, the test setup consisted of three Dell
PowerEdge R650 servers, each equipped with the following:

 CPU: Intel Xeon Gold 6330N 2.2G, 28C/56T, 11.2GT/s,
42M cache, turbo, HT (165W) DDR4-2666 x 2.

 Memory: 32GB RDIMM, 3200MT/s, dual rank 16Gb
base x 16 = 512GB.

 Storage: SSD 480GB SSD SATA Read Intensive 6Gbps
512, 2.5inch Hot Plug x 2 (RAID1).

 Network Interface: 25GigE×4.

This experimental design was carefully structured to
evaluate the performance of the MPT-GRE multipath network,
mainly focusing on the impact of congestion control algorithms
on throughput and network efficiency. The experiments were
conducted using Ubuntu 22.04.4 LTS (Jammy Jellyfish) / Linux
operating system servers. These experiments were designed to
evaluate the performance of the MPT-GRE tunnel throughput
library and to monitor and prove the effectiveness of various
congestion control algorithms.

B. MPT-GRE Configuration Setting

The version of MPT used in this experiment, mpt-gre-lib64-
2019.tar.gz, is available publicly from GitHub [22]. Two
primary configuration files within the MPT installation directory

were modified to enable the effective operation of the MPT-
GRE multipath system across the network infrastructure.

Fig. 3. Experimental topology of the MPT-GRE multipath network.

The first file, conf/interface.conf, contains essential
parameters for network interfaces and tunnels. Adjustments
were made to specify the Local Command UDP Port Number
for managing communication between MPT-GRE and network
interfaces; define the Interface Number, maximum transfer unit
(MTU), and permissions for remote requests; and establish the
tunnel interface name, IPv4 address, and subnet prefix. This file
also manages tunnel traffic protocols, with the same
configuration mirrored on the second server to maintain
consistency in the multipath environment.

The second file, conf/connections/IPv4.conf, manages
logical connections and defines transmission paths. Each MPT-
GRE tunnel has its own connection file, specifying IP addresses
for both tunnel endpoints and using IPv4 encapsulation within
an IPv4 GRE tunnel. Previous publications [10][23] have
provided detailed information on MPT-GRE configuration
settings, and the updated configuration files for this study have
also been made available on GitHub [24].

V. EXPERIMENTS, RESULTS, AND PERFORMANCE

ANALYSIS

The primary objective of this study is to confirm the
influence of congestion control algorithms on MPT-GRE
multipath networks and determine the optimal throughput
aggregation value for the tunnel. A detailed evaluation of tunnel
throughput is critical for enhancing our understanding of MPT-
GRE operations.

Various scenarios were designed for the experiments to
ensure precision and effectiveness. A Python script, available on
GitHub [25], was employed to automate and facilitate the
experimental process over a period of 30 seconds. This script not
only enabled frequent execution but also automated the saving
of tunnel throughput results, thereby enhancing consistency and
repeatability. Additionally, a set of congestion control
algorithms was integrated into the Python code and executed
using iperf3 [26].

To evaluate the impact of various Quality of Service (QoS)
metrics, we used a middle server to adjust traffic parameters
with the Linux tc command, experimenting with delay, jitter,
packet loss, and transmission speed limits. Each set of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

114 | P a g e

www.ijacsa.thesai.org

congestion control algorithms was tested under various
scenarios using the same QoS metrics.

In the first scenario, the transmission speeds were configured
with eth1 set at 1000 Mbps, while eth2 varied incrementally
from 100 Mbps to 1000 Mbps in steps of 100 Mbps. In the
second scenario, similar network conditions were applied; the
transmission speeds were reduced tenfold, with eth1 set to 100
Mbps and eth2 ranging from 10 Mbps to 100 Mbps in
increments of 10 Mbps.

Due to the large number of results without loss of generality,
the remaining transmission cases follow the same approach. The
following cases are discussed in detail:

 The symmetrical case: eth1 = 1000 Mbps and eth2 =
1000 Mbps under the effect of all QoS metrics.

 The case of asymmetric paths: eth1 = 100 Mbps and eth2
= 10, 20, 30... 100 Mbps under the effect of delay and
packet loss.

A. First Scenario: Analyzing QoS of Symmetrical Paths

1) Assessment impact of delay metric: We applied delays

across both server network interfaces, ensuring bidirectional

effects on transmitted packets. The delay parameter x was set at

intervals of 10 ms, 20 ms, 30 ms, 40 ms, and 50 ms, using the

tc command:

tc qdisc add dev eth1 root netem delay xms

For example, when symmetric paths (eth1=1000 Mbps and
eth2=1000 Mbps) are used, the impact of the delay metric on
loss-based algorithms, delay-based algorithms, hybrid
algorithms, and bandwidth estimation-based algorithms is as is
shown in Fig. 4. Analyzing throughput values across different
congestion control algorithms under various delay conditions
reveals key performance characteristics for each category.

The HighSpeed algorithm demonstrates the throughput
achieving 1160 Mbps at 10 ms in the loss-based algorithms
category. It sustains a relatively high performance of 202 Mbps
even under moderate delays, making it particularly effective in
environments with low to medium delays. The Scalable and
CUBIC algorithms also perform well in this category, especially

at lower delays; the Scalable algorithm reaches 531 Mbps at 20
ms. While CUBIC maintains competitive throughput as delay
increases, it is less effective than the HighSpeed algorithm. The
BIC algorithm offers balanced performance, achieving high
throughput at low delays (1160 Mbps at 10 ms) and proving
suitable in mixed delay environments. Therefore, HighSpeed
and Scalable are the optimal loss-based algorithms for their peak
performance and resilience under medium delays.

In the delay-based algorithms, at lower delay values (10 ms),
Hybla achieves a higher throughput of 1180 Mbps compared to
LP’s 1080 Mbps, demonstrating better performance under
minimal delay conditions. However, as the delay increases from
20 ms to 50 ms, LP outperforms Hybla, maintaining higher
throughput at greater delays. For example, LP achieves 239
Mbps compared to Hybla’s 178 Mbps at 40 ms. In contrast,
Vegas experiences a steep drop in throughput as delay increases,
making it less suitable for high-delay conditions.

Hence, while Hybla excels in low-delay situations, LP is the
better option for higher-delay scenarios.

Within the hybrid (loss + delay) algorithms, Illinois stands
out for its high throughput, reaching up to 1150 Mbps at 10 ms
and demonstrating adaptability even at higher delays, achieving
215 Mbps at 40 ms. This makes it highly suitable for
environments characterized by both loss and delay. Veno and
YEAH exhibit medium performance but show sharper
reductions in throughput as delay increases.

Therefore, Illinois is the most effective hybrid algorithm,
excelling in mixed loss and delay conditions while consistently
maintaining high throughput. In contrast, Veno and YEAH
perform well in low-delay scenarios but underperform in higher-
delay environments.

2) Assessment impact of jitter metric: We measured the

throughput of the MPT-GRE tunnel under jitter values of 2 ms,

4 ms, 6 ms, 8 ms, and 10 ms while keeping the delay set to zero.

This was done both with and without congestion control

algorithms. To enable a more comprehensive assessment, we

also combined delay with jitter using the following command:

tc qdisc add dev eth1 root netem delay dms jms

Fig. 4. Throughput performance of the MPT-GRE tunnel under varying delay metrics (eth1 = 1000 Mbps, eth2 = 1000 Mbps)/.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

115 | P a g e

www.ijacsa.thesai.org

Fig. 5. Throughput performance of the MPT-GRE tunnel under varying jitter metrics (eth1 = 1000 Mbps, eth2 = 1000 Mbps).

The analysis presented in Fig. 5 illustrates the performance
trends of various congestion control algorithms based on
throughput at different jitter levels. Reno exhibits a consistent
throughput of 1860 Mbps in the loss-based algorithms under low
to moderate jitter conditions (ranging from 2 to 6 ms). However,
its performance significantly declines to 1530 Mbps at 8 ms and
drops further to 876 Mbps at 10 ms, indicating that it is sensitive
to higher jitter levels. Other algorithms like CUBIC and H-TCP
maintain relatively good throughput, showing reductions as
jitter increases. Scalable and BIC perform well up to 8 ms, but
they experience a significant decline in performance at 10 ms.
In contrast, HighSpeed displays stable performance under low
jitter levels and maintains a better throughput of 1270 Mbps at 8
ms and 1050 Mbps at 10 ms than other algorithms under higher
jitter conditions.

HighSpeed’s balanced performance makes it more suitable
for environments with increased jitters, while Reno performs
better in certain low-jitter situations.

In the delay-based algorithms, throughput remains high for
Hybla and LP, maintaining a consistent 1860 Mbps under low
to moderate jitter conditions (2–6 ms). However, as jitters
increase to 8 ms and 10 ms, their throughput decreases, with
Hybla reaching 1520 Mbps and 929 Mbps and LP achieving
1530 Mbps and 900 Mbps, respectively. In contrast, Vegas
performs poorly across all jitter levels. Hybla and LP effectively

manage moderate jitter, whereas Vegas is unsuitable for jitter-
sensitive environments.

Of the hybrid (loss + delay) algorithms, Illinois and Veno
show robust throughput despite jitter. Illinois performs slightly
better at higher jitter levels, achieving 943 Mbps at 10 ms, while
Veno reaches 895 Mbps. However, YEAH is less adaptable in
high-jitter scenarios.

Finally, in the bandwidth estimation-based algorithms, there
is a considerable difference in the performance of Westwood
and BBR under jitter conditions. For example, at 10 ms of jitter,
Westwood significantly outperforms BBR, achieving 949 Mbps
compared to BBR’s 51 Mbps.

Overall, some congestion control algorithms performed
better than the Uncontrolled case (the performance baseline
without applying any congestion control algorithm). For
instance, the HighSpeed congestion control algorithm
outperformed the Uncontrolled case in all scenarios.

To better understand the effects and identify the optimal
congestion control algorithm, delay and jitter were applied
simultaneously, with the jitter value set to 20% of the delay. Fig.
6 analyzes the performance of various congestion control
algorithms compared to the Uncontrolled case. Several
algorithms performed better than the Uncontrolled throughput,
particularly under different delay and jitter conditions.

Fig. 6. Throughput performance of the MPT-GRE tunnel under combined delay and jitter metrics (eth1 = 1000 Mbps, eth2 = 1000 Mbps).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

116 | P a g e

www.ijacsa.thesai.org

In comparison, Reno shows a more rapid and consistent
decline in throughput, starting at 530 Mbps and dropping to 82.6
Mbps under higher jitter and delay, indicating a less adaptive
response to congestion than the Uncontrolled case. The
Uncontrolled case performs better than CUBIC and BIC under
low delay and jitter conditions, specifically at 2 ms/10 ms and 4
ms/20 ms. However, as network conditions worsen, these
algorithms outperform the Uncontrolled case.

Notably, the BIC algorithm excels under higher delay and
jitter conditions, achieving throughput values of 200 Mbps, 154
Mbps, and 120 Mbps at 6 ms/30 ms, 8 ms/40 ms, and 10 ms/50
ms, respectively. Similarly, the Scalable algorithm outperforms
the Uncontrolled case as delay and jitter increase, with
throughput values of 308 Mbps, 206 Mbps, 156 Mbps, and 124
Mbps under jitter from 4 ms to 10 ms and delay from 20 ms to
50 ms. In contrast, the Uncontrolled case achieves 193 Mbps,
142 Mbps, and 112 Mbps under the same conditions, clearly
showing lower throughput than Scalable and BIC as delay and
jitter increase.

The HighSpeed algorithm significantly outperforms the
Uncontrolled case and other algorithms, achieving 644 Mbps at
jitter = 2 ms, delay = 10 ms, and maintaining a higher throughput

of 120 Mbps even under the highest jitter and delay conditions.
This reflects its superior congestion control capabilities.

Some of these algorithms, such as H-TCP, Hybla, and
Illinois, achieved throughput levels close to those in the
Uncontrolled case. In contrast, algorithms like Vegas,
Westwood, YEAH, Veno, and LP consistently performed worse
than the Uncontrolled values. Additionally, their performance
declined as delay and jitter increased.

3) Assessment impact of packet loss metric: We tested

packet loss conditions with loss rates set at 1%, 2%, 3%, 4%,

and 5%. These rates were applied to network interfaces as

follows:

tc qdisc add dev eth1 root netem loss x

Fig. 7 illustrates the impact of packet loss on the
performance of various congestion control algorithms.
Analyzing these results, it is evident that packet loss leads to a
decline in throughput for all algorithms as the percentage of loss
increases. This decrease is expected, as packet loss commonly
results in retransmissions and delays, negatively affecting
network throughput.

Fig. 7. Throughput performance of the MPT-GRE tunnel under varying packet loss metrics (eth1 = 1000 Mbps, eth2 = 1000 Mbps).

Among the congestion control algorithms examined, BBR is
the most resilient to packet loss, consistently achieving
significantly higher throughput across all levels of packet loss.
Even at a packet loss rate of 5%, BBR maintains a throughput of
9.9 Mbps, far surpassing the performance of other algorithms.
BBR’s effectiveness minimizes the adverse effects of packet
loss on throughput.

In contrast, the Uncontrolled case (i.e., without any
congestion control algorithm applied) experiences substantial
reductions in throughput as packet loss increases, with values
dropping below 1.5 Mbps at 5% packet loss. These results
highlight that congestion control algorithms significantly
influence MPT-GRE tunnel throughput under varying packet
loss conditions. While some algorithms perform better than
others in the presence of packet loss, BBR stands out as the most
promising option for maintaining higher throughput in
challenging conditions.

B. Second scenario: Analyzing QoS of Appropriate

Algorithms

In the second scenario, we analyzed:

 The HighSpeed congestion control algorithm compared
to the Uncontrolled case on symmetric and asymmetric
paths, where eth1 is set to 100 Mbps, and eth2 varies
from 10 to 100 Mbps in increments of 10 Mbps under the
delay metric.

 The BBR algorithm under the packet loss metric.

The results showed a significant increase in tunnel
throughput under these specified delay and packet loss
conditions. An analysis of the results, as demonstrated in Fig. 8,
indicates that the HighSpeed algorithm achieved improved
tunnel throughput. The MPT-GRE tunnel throughput
performance between the HighSpeed algorithm and the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

117 | P a g e

www.ijacsa.thesai.org

Uncontrolled case was assessed across symmetric and
asymmetric transmission speeds and delay conditions. This
analysis highlights how the HighSpeed algorithm enhances
tunnel throughput in the MPT-GRE multipath network
compared to the Uncontrolled case, particularly under increased
network delays.

In the HighSpeed algorithm case, the MPT-GRE tunnel
throughput shows a relatively modest decrease as delay
increases. For example, at asymmetric transmission speeds (eth1
= 100 Mbps and eth2 = 10 Mbps), the throughput drops only
slightly, from 103 Mbps to 102 Mbps, as the delay increases
from 10 ms to 50 ms. At symmetric transmission speeds (eth1 =
100 Mbps and eth2 = 100 Mbps), the throughput decreases from
186 Mbps to 184 Mbps. This throughput stability under higher
delays suggests that the HighSpeed congestion control algorithm
efficiently manages congestion and minimizes throughput loss
even as network delay increases.

In contrast, the Uncontrolled case exhibits a more significant
degradation in MPT-GRE tunnel throughput with increasing
delays. At asymmetric transmission speeds (eth1 = 100 Mbps
and eth2 = 10 Mbps), throughput decreases from 102 Mbps at a
10 ms delay to 93.3 Mbps at a 50 ms delay, indicating greater
sensitivity to delay. At symmetric transmission speeds (eth1 =
100 Mbps and eth2 = 100 Mbps), throughput drops from 183
Mbps at a 10 ms delay to 137 Mbps at a 50 ms delay. This
reduced responsiveness to delay leads to more pronounced
degradation in MPT-GRE tunnel throughput.

On the other hand, Fig. 9 illustrates how varying levels of
packet loss affect the throughput aggregation of the MPT-GRE
tunnel. Under packet loss conditions, the BBR algorithm
maintains higher throughput across all transmission speeds
compared to the Uncontrolled case. An exception occurs when
eth1 = 100 Mbps and eth2 = 10 Mbps at 1% packet loss, where
throughput for the Uncontrolled case and BBR is 24.4 Mbps and
23.9 Mbps, respectively—a slight difference.

For example, at transmission speeds of eth1 = 100 Mbps and
eth2 = 20 Mbps, BBR achieves a throughput of 33.5 Mbps,
while the Uncontrolled case drops to 14.8 Mbps, representing
nearly a 56% reduction in MPT-GRE tunnel throughput. This
trend persists at all packet loss rates, with BBR consistently
mitigating the negative effects of packet loss more effectively
than the Uncontrolled case.

As packet loss increases to 5%, both scenarios experience a
decline in MPT-GRE tunnel throughput. However, the
degradation is significantly more pronounced in the
Uncontrolled case, particularly at higher transmission speeds.
For instance, when eth1 and eth2 are set to 100 Mbps,
throughput in the Uncontrolled case plummets to 1.05 Mbps at
5% packet loss, while BBR maintains a throughput of 7.83
Mbps.

This comparison highlights the resilience of the BBR
algorithm, which consistently maintains significantly higher
throughput levels than the Uncontrolled case under packet loss
conditions.

Fig. 8. Impact of the HighSpeed algorithm and the Uncontrolled case on MPT-GRE tunnel throughput under varying delay conditions.

Fig. 9. Impact of the BBR algorithm and the Uncontrolled case on MPT-GRE tunnel throughput under varying packet loss conditions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

118 | P a g e

www.ijacsa.thesai.org

C. Determine the Appropriate Algorithm

Upon analyzing the results from the two scenarios, the
HighSpeed congestion control algorithm outperforms others
when network conditions are affected by delay, jitter, or a
combination of both. This algorithm consistently maintains high
throughput despite fluctuations in delay and jitter, making it
particularly suitable for MPT-GRE multipath environments
where these factors are common.

In contrast, the BBR algorithm excels under packet loss
conditions, effectively adapting to varying levels of packet loss.
Therefore, HighSpeed is the most appropriate choice in
scenarios where delay and jitter are the primary challenges,
while BBR is the preferred solution for networks where packet
loss is the dominant issue.

When considering delay, jitter, and packet loss across
various network conditions, the HighSpeed and BBR algorithms
consistently outperform other options, making them optimal
choices for maximizing throughput in diverse scenarios.

VI. CONCLUSION

In this study, we evaluated the impact of various congestion
control algorithms on tunnel throughput in a multipath MPT-
GRE network under different network conditions. The analysis
focused on loss-based, delay-based, hybrid, and bandwidth
estimation-based algorithms, including HighSpeed, CUBIC, H-
TCP, LP, BBR, and Illinois. These algorithms were tested under
varying delay, jitter, and packet loss conditions at symmetric and
asymmetric transmission speeds.

The results indicated that some algorithms significantly
improved MPT-GRE network performance, particularly when
specific congestion control mechanisms were applied.
HighSpeed significantly improved tunnel throughput as delay
and jitter increased, while BBR enhanced throughput under
packet loss conditions. BBR consistently outperformed the
Uncontrolled case, exhibiting stable performance across various
QoS conditions.

Our findings emphasize the importance of selecting
appropriate congestion control algorithms for MPT-GRE
networks. For example. HighSpeed performs well under delay
and jitter, while BBR excels in packet loss scenarios,
maximizing throughput and leveraging MPT-GRE’s
aggregation capabilities. This enables service providers to
deliver more reliable and efficient communication solutions.

One of our future works is to create and design a specific
congestion control algorithm for the MPT library.

ACKNOWLEDGMENT

The measurements were conducted remotely using the
facilities provided by the National Institute of Information and
Communications Technology (NICT) StarBED, located at 2–12
Asahidai, Nomi-City, Ishikawa 923-1211, Japan.

The authors thank Bertalan Kovács for reading and
commenting on the manuscript.

The authors thank Brant von Goble from Széchenyi István
University for proofreading the English-language version of the
manuscript.

REFERENCES

[1] B. Nawaz, K. Mahmood, J. Khan, M. Ul, A. Munir, and M. Kashif,
“Congestion Control Techniques in WSNs: A Review,” International
Journal of Advanced Computer Science and Applications, vol. 10, no. 4,
2019, doi: 10.14569/IJACSA.2019.0100423.

[2] L. Yong, E. Crabbe, X. Xu, and T. Herbert, “GRE-in-UDP
encapsulation,” 2017.

[3] J. Zhao, J. Liu, H. Wang, C. Xu, and H. Zhang, “Multipath Congestion
Control: Measurement, Analysis, and Optimization From the Energy
Perspective,” IEEE Transactions on Network Science and Engineering,
vol. 10, no. 6, pp. 1–12, 2023, doi: 10.1109/TNSE.2023.3257034.

[4] B. Almási, G. Lencse, and S. Szilágyi, “Investigating the multipath
extension of the GRE in UDP technology,” Computer Communications,
vol. 103, pp. 29–38, May 2017, doi: 10.1016/j.comcom.2017.02.002.

[5] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch, “TCP
Extensions for Multipath Operation with Multiple Addresses,” Mar. 2020.
doi: 10.17487/RFC8684.

[6] Y. Thomas, G. Xylomenos, and G. C. Polyzos, “Multipath congestion
control with network assistance,” Computer Communications, vol. 153,
pp. 264–278, 2020, doi: https://doi.org/10.1016/j.comcom.2020.01.071.

[7] Ł. Łuczak, P. Ignaciuk, and M. Morawski, “Experimental Assessment of
MPTCP Congestion Control Algorithms for Streaming Services in Open
Internet,” in FedCSIS (Communication Papers), Oct. 2023, pp. 359–364,
doi: 10.15439/2023F9991.

[8] H. Moradiya and K. Popat, “Evaluating TCP Performance with RED for
Efficient Congestion Control,” in International Conference on
Advancements in Smart Computing and Information Security, Springer,
2024, pp. 403–414.

[9] J. Zhang, Z. Yao, Y. Tu, and Y. Chen, “A Survey of TCP Congestion
Control Algorithm,” in 2020 IEEE 5th International Conference on Signal
and Image Processing (ICSIP), 2020, pp. 828–832, doi:
10.1109/ICSIP49896.2020.9339423.

[10] N. Al-Imareen and G. Lencse, “Effect of Path QoS on Throughput
Aggregation Capability of the MPT Network Layer Multipath
Communication Library,” Infocommunications journal, vol. 15, no. 2, pp.
14–20, 2023, doi: 10.36244/ICJ.2023.2.3.

[11] S. Szilágyi and I. Bordán, “The effects of different congestion control
algorithms over multipath fast ethernet IPv4/IPv6 environments,” CEUR
Workshop Proceedings, vol. 2650, pp. 341–349, 2020, [Online].
Available: https://api.semanticscholar.org/CorpusID:221662730.

[12] Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for multipath
TCP,” Proceedings - International Conference on Network Protocols,
ICNP, pp. 1–10, 2012, doi: 10.1109/ICNP.2012.6459978.

[13] R. Melki, M. M. Mansour, and A. Chehab, “A fairness-based congestion
control algorithm for multipath TCP,” IEEE Wireless Communications
and Networking Conference, WCNC, vol. 2018-April, pp. 1–6, 2018, doi:
10.1109/WCNC.2018.8377078.

[14] G. Lencse, S. Szilagyi, F. Fejes, and M. Georgescu, “MPT Network Layer
Multipath Library,” 2021. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-lencse-tsvwg-mpt-10.

[15] M. B. M. Kamel, I. Ahmed Najm, and A. Khalaf Hamoud, “Congestion
Control Prediction Model for 5G Environment Based on Supervised and
Unsupervised Machine Learning Approach,” IEEE Access, vol. 12, pp.
91127–91139, 2024, doi: 10.1109/ACCESS.2024.3416863.

[16] R. Al-Saadi, G. Armitage, J. But, and P. Branch, “A Survey of Delay-
Based and Hybrid TCP Congestion Control Algorithms,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3609–3638,
2019, doi: 10.1109/COMST.2019.2904994.

[17] H. Jamal and K. Sultan, “Performance analysis of TCP congestion control
algorithms,” International Journal of Computers and Communications,
vol. 2, no. 1, pp. 30–38, 2008, [Online]. Available:
http://w.naun.org/multimedia/UPress/cc/cc-27.pdf.

[18] S. Patel, Y. Shukla, N. Kumar, T. Sharma, and K. Singh, “A Comparative
Performance Analysis of TCP Congestion Control Algorithms: Newreno,
Westwood, Veno, BIC, and Cubic,” in 2020 6th International Conference
on Signal Processing and Communication (ICSC), Mar. 2020, pp. 23–28,
doi: 10.1109/ICSC48311.2020.9182733.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

119 | P a g e

www.ijacsa.thesai.org

[19] A. Roy, J. L. Pachuau, and A. K. Saha, “An overview of queuing delay
and various delay based algorithms in networks,” Computing, vol. 103,
no. 10, pp. 2361–2399, Oct. 2021, doi: 10.1007/s00607-021-00973-3.

[20] M. A. Yousuf, M. M. Islam, M. S. Hosen, and M. L. Ali, “Round-Trip
Time and Available Bandwidth Estimation Based Congestion Window
Reduction Algorithm of MPTCP in Lossy Satellite Networks,” Journal of
Physics: Conference Series, vol. 1624, no. 4, p. 042024, Oct. 2020, doi:
10.1088/1742-6596/1624/4/042024.

[21] R. Gonzalez, J. Pradilla, M. Esteve, and C. E. Palau, “Hybrid delay-based
congestion control for multipath TCP,” in 2016 18th Mediterranean
Electrotechnical Conference (MELECON), Apr. 2016, pp. 1–6, doi:
10.1109/MELCON.2016.7495389.

[22] F. Fejes, “MPT – multi-path tunnel,” precompiled version can be
downloaded from:, 2019. http://github.com/spyff/mpt.

[23] N. Al-Imareen and G. Lencse, “On the Impact of Packet Reordering in
MPT-GRE Multipath Networks,” in 2023 46th International Conference
on Telecommunications and Signal Processing (TSP), Jul. 2023, pp. 82–
86, doi: 10.1109/TSP59544.2023.10197737.

[24] N. Al-Imareen and G. Lencse, “MPT connections files,” 2023. [Online].
Available: https://github.com/NaseerAJabbar/MPT_Connections_files.

[25] N. Al-Imareen and G. Lencse, “Implement congestion control algorithms
using iperf3 for MPT-GRE multipath network,” 2024.
https://github.com/NaseerAJabbar/Congestion-Control-Algorithms.

[26] K. P. Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, “Iperf3
documentation,” 2018. https://iperf.fr/iperf-doc.php.

