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Abstract—In order to improve the level of logistics service 

and considering the impact of uncertainties such as bad weather 

and highway collapse on fourth party logistics routing 

optimization problem, this paper adopts Conditional Value-at-

Risk (CVaR) to measure the tardiness risk, which is caused by 

the uncertainties, and proposes a nonlinear programming 

mathematical model with minimized CVaR. Furthermore, the 

proposed model is compared with the VaR model, and an 

improved Q-learning algorithm is designed to solve two models 

with different node sizes. The experimental results indicate that 

the proposed model can reflect the mean value of tardiness risk 

caused by time uncertainty in transportation tasks and better 

compensate for the shortcomings of the VaR model in measuring 

tardiness risk. Comparative analysis also shows that the 

effectiveness of the proposed improved Q-learning algorithm. 
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I. INTRODUCTION 

With the deepening of economic globalization and the 
intensification of competition in the logistics market, service-
oriented manufacturing enterprises are pursuing more 
hierarchical and integrated logistics services, so the problem of 
third-party logistics (3PL) is becoming increasingly prominent. 
For example, the Toyota listed on its website that Toyota 
outsources its logistics services to the 3PL to focus on their 
core product business, on 10th May 2021 [1]. In order to obtain 
more orders, competition among 3PL enterprises is becoming 
more fierce. There is a lack of resource sharing among various 
3PL service providers, which makes it difficult to accurately 
grasp logistics information and meet the current rapidly 
growing logistics demand. As a result, the traditional 3PL 
model cannot adapt to the pace of the times and restricts the 
progress of logistics globalization. Instead of relying on the 
3PL providers, some large manufacturers (e.g. Haier [2] and 
Hisense) have recently cooperated with Cainiao Logistics (the 
largest fourth party logistics [4PL] provider in China) in supply 
chain solutions. 4PL [3] is necessary to integrate and 
effectively connect resources so as to achieve complementary 
advantages. 4PL supplier is an integrator of the supply chain 
that integrates and manages different resources, capabilities, 
and technologies of a company and complementary service 
providers, and performs a detailed analysis of the entire supply 
chain system or industry logistics system where enterprise 
customers are located. Thus, it provides a comprehensive 
solution for the design, construction, and operation of the 

supply chain. Many enterprises have used 4PL to complete 
their own logistics tasks. For example, Cainiao Logistics, the 
largest Chinese 4PL provider founded by the Alibaba Group, 
incorporates over thirty 3PL providers to serve Taobao.com 
and Tmall.com, two largest online markets in China [4]. 

With the continuous development of 4PL, many experts 
and scholars have begun to focus on and study various aspects 
of 4PL. They are committed to in-depth exploration of issues 
related to risk management [4], network design [5-6], 
combinatorial auctions [7], contract design [8-9], and routing 
optimization [10] in 4PL, which have proposed a series of 
theoretical and practical achievements. 

The Fourth Party Logistics Routing Optimization Problem 
(4PLROP) is one of the most important problems and a hot 
topic about 4PL. As the creator of transportation plans, 4PL 
needs to optimize and design distribution routes. Based on 
factors such as transportation time, transportation capacity, 
reputation indicators, and throughput of 3PLs, it selects and 
allocates 3PLs that provide distribution services to achieve path 
optimization and select satisfactory transportation plans for 
enterprises. 

However, in the actual delivery process, due to 
unpredictable reasons such as transportation, bad weather, and 
human error operations, all of them may cause the transit time 
and transportation time to be not fixed but random during the 
transportation process, which may lead to the risk of delivery 
tardiness. The impact of this randomness makes 4PL suppliers 
to be unable to provide timely delivery plans that satisfy 
customers, it may lead to additional costs and a decrease in 
customer satisfaction. This situation may even affect the 
reputation of 4PL enterprises, leading to customer churn, and 
having adverse effects on their long-term development. 
Therefore, when solving 4PLROP, the influence of the risk 
caused by the uncertainty cannot be ignored. 

This article adopts CVaR to describe and measure the 
average risk of tardiness induced by multiple factors in the real 
delivery process of 3PL providers in a 4PL operation. In 
addition, a mathematical model is proposed with CVaR 
minimization as the objective function and delivery cost as the 
constraint, and the suggested CVaR model is compared to the 
VaR model [11]. Then, an improved Q-learning algorithm is 
proposed to solve examples with different scales of the two 
models, and the effectiveness of the proposed CVaR model is 
verified. Finally, the proposed algorithm is compared with GA 
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embedded with Dijkstra [12] and the results verify the 
feasibility of improved Q-learning algorithm for solving this 
problem. 

The principal contributions of this article are as follows: 

1) In the context of uncertain environment, a novel 4PL 

route optimization problem that considers the risk of delays 

has been investigated; 

2) The CVaR is employed to characterize risk, and a 

nonlinear programming model is established with constraint 

on delivery costs, aiming to minimize the risk as the objective; 

3) An improved Q-learning algorithm is proposed to solve 

the model presented. Through this approach, 4PL can better 

adapt to the ever-changing market environment, ensuring the 

stability and efficiency of the supply chain. 

The structure of this paper is arranged as follow: Section Ⅱ 
gives the establishment of mathematical models and the 
transformations of CVaR model. Section Ⅲ introduces the 
overall design of the proposed algorithm. Section Ⅳ performs 
some numerical computations. Section Ⅴ finally concludes this 
paper. 

II. LITERATURE REVIEW 

The current research on 4PLROP can be broadly divided 
into problem structure, solution approach, and distribution 
factors. Huang et al. [13] studied 4PLROP from single point to 
single point and single task, and established a mathematical 
model based on nonlinear integer programming and multiple 
graphs. Li et al. [14] studied the routing optimization problem 
of multi-point to multi-point 4PL systems with reliability 
constraints. Tao et al. [15] established a mixed integer 
programming model for 4PLROP from the perspective of cost 
discount. Hong et al. [16] studied a multi-objective 
transportation optimization model according to queuing theory, 
considering the option of 3PL providers, routes, as well as 
transportation methods. They used a priority based stochastic 
enhanced elite genetic algorithm (GA) to solve the infeasible 
solutions in 4PLROP. According to the prospect theory of 
customer psychological behavior and customer service level, 
Huang et al. [17] developed a nonlinear integer programming 
model for the design of 4PL network and offered an 
approximation linear approach to convert the model to an 
equivalent linear model so as to demonstrate the efficacy of the 
proposed method. Yue et al. [18] designed a particle swarm 
optimization with adaptive inertia weight to solve the proposed 
mathematical model. Lu et al. [19] designed a combination of 
ant colony optimization algorithm and improved grey wolf 
optimization algorithm to solve the 4PLROP. Huang et al. [20] 
studied the risk management of outsourcing logistics under the 
principal-agent framework from the perspective of product 
quality. 

For the 4PLROP, most studies are based on the 
determination of delivery time, which assumes that the delivery 
cost and delivery time used in the transportation process are 
fixed quantities, such as references [14,15]. However, in the 
actual delivery process, due to unpredictable reasons such as 
transportation, bad weather, and human error operations, all of 

them may cause the transit time and transportation time to be 
not fixed but random during the transportation process, which 
may lead to the risk of delivery tardiness. The impact of this 
randomness makes 4PL suppliers to be unable to provide 
timely delivery plans that satisfy customers, it may lead to 
additional costs and a decrease in customer satisfaction. This 
situation may even affect the reputation of 4PL enterprises, 
leading to customer churn, and having adverse effects on their 
long-term development. Therefore, when solving 4PLROP, the 
influence of the risk caused by the uncertainty cannot be 
ignored. 

The important question is how to define, measure, and 
control the risk to improve their logistics service quality, which 
is in the best interest of 4PL and creates a win-win for both 
parties. This is the focus of our paper. Value-at-Risk (VaR) 
was used to measure the time risk in Reference[13,21], the 
VaR model only considered the possible tardiness time that 
will not exceed VaR with the confidence level, but it did not 
take into account the extreme events (when the amount of 
tardiness time exceeds the VaR value), in which the tardiness 
risk mean value should be considered. 

Conditional Value-at-Risk (CVaR) is a risk measurement 
tool proposed by Rockafellar et al. [22] on the basis of VaR, 
which considers the tardiness risk mean value. It is mainly used 
in combinatorial optimization, setting risk limits, resource 
allocation, and financial supervision and credit risk 
measurement of various financial regulators on relevant 
enterprises and institutions. In recent years, it has been widely 
used in inventory management optimization [23], supply chain 
[24], selection of fourth party logistics suppliers, network 
design and other fields for risk measurement and optimization 
[25]. 

In summary, this paper adopts a new risk measure tool, 
CVaR, to measure the delay risk, sets up a stochastic 
programming mathematical model, and designs an improved 
Q-learning algorithm. The aim is to help 4PL to provide an 
optimal supply chain distribution solution and improve the 
level of logistics service. 

III. MATHEMATICAL MODEL 

A. Problem Description 

In this section, the 4PLROP with consideration of delay 
risk is described, and the notations used throughout the paper 
are introduced. 

A manufacturing company (such as Haier) wants to invest 
in designing a distribution route to deliver its products and 
services from plant to customer through DCs and 3PL 
providers to reduce costs and improve customer satisfaction. 
As a result, it employs a 4PL provider to offer a comprehensive 
supply chain solution. Specifically, manufacturing companies 
are investors. A 4PL provider needs to help investors integrate 
3PL providers, select the number and location of DCs, and 
complete the distribution of product from plants to customer. 

The 4PLROP requires not only the selection of the route 
from the plant to the customer, but also the determination of 
3PL providers which provide the delivery service. That 
increases the difficulty of solving 4PLROP. 
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Fig. 1. Multiple graph for the 7-node problem. 

A multiple graph, shown in Fig. 1, is used to describe the 
potential distribution network and demonstrate 4PLROP, 
where V represents the node cities, and E represents the edges. 
Among all nodes, indicates the supply city, indicates the target 
city, and others indicate the transit cities. All nodes have 
attributes such as time, cost, carrying capacity and reputation. 
In addition, there may be several edges between any two nodes 
because multiple 3PL suppliers may offer delivery services for 
any two cities. And each edge represents a 3PL, and the 
numeral on the edge is the serial number of 3PL. 

Transportation time management is especially critical for 
4PL providers. Traffic congestion, adverse weather, a surge in 
holiday order volumes, and node transfers can all cause 
uncertainty in time, leading to the risk of tardiness. Delayed 
delivery can directly affect customer interests, reduce the 
reputation of 4PL companies, and lead to customer loss, 
indirectly affecting the long-term development of 4PL supplier 
enterprises. Therefore, in order to improve customer 
satisfaction, 4PL suppliers need to consider the tardiness risk 
caused by time uncertainty. If the cost is within customer’s 
budget, the less risk of tardiness, the better. Therefore, 4PL 
suppliers should monitor the tardiness risk mean value that 
may occur during transportation in real-time. Based on the 
above considerations, CVaR is introduced to quantify the 
average level of tardiness risk in delivery path, and a model 
with minimized CVaR and delivery cost as the constraint is 
developed. 

TABLE I.  THE DEFINITION OF PARAMETERS AND VARIABLES 

Variables Definition 

ijr
 

The quantity of 3PLs that offer transportation services between 
node cities i and j (i.e. the quantity of edges connecting two 

nodes) 

ijkC
 

The transportation cost required for the k-th 3PL supplier between 

node cities i and j 

ijkT
 

Random transportation time required for the k-th 3PL supplier 

between node cities i and j 
'

jC
 

Transfer cost required when passing through node city j 

'

jT
 

Random transit time required when passing through node city j 

R
 

A path containing a set of nodes and edges, i.e. 

2 3,2, ,1, ,2, }{ s tR      can be used to represent the red path in 

Fig. 1. 

In order to set up the mathematical model, the definition of 
the parameters and variables are listed in Table Ⅰ, the decision 
variables are defined as follows: 

1 The -th edge between nodes  

( ) and  belongs to path 

0 others

ijk

k i

x R j R




 

          (1) 

1 Node  belongs to path 
( )

0 others
j

j R
y R


 
           (2) 

where ( )ijkx R  is used to determine whether the 3PL 

supplier provides a delivery task between cities i and j, and 

( )jy R  indicates whether node city j provides a transfer task. 

B. Mathematical Model Based on CVaR Criterion 

The VaR model [21] only considered the possible tardiness 
time that will not exceed VaR with the confidence level  , but 

it did not take into account the extreme events (remaining 
1  when the amount of tardiness time exceeds the VaR 

value), the tardiness risk mean value is generated. Therefore, 
this paper adopts CVaR to improve the objective function of 
the model at the confidence level  , as shown in (3), the 

tardiness risk mean value generated when the tardiness time 
exceeds VaR, i.e. minimizing CVaR, is calculated to determine 
the delivery path with the lowest average tardiness risk. 
Therefore, the following mathematical model is established: 

min ( )CVaR T 
                          (3) 

0

1 1 1 1

s.t. ( ) ( )
ijrn n n

ijk ijk j j

i j k j

C x R C y R C
   

  
      (4) 

~ ~

0

1 1 1 1

( ( ) ( ))
ijrn n n

ijk ijk j ijk

i j k j

T T x R T x R T
   

    
     (5) 

 , , , , , ,s i j kR k G        
              (6) 

( ), ( ) {0,1}ijk jx R y R 
                    (7) 

Eq. (3) represents the objective function, which minimizes 
CVaR, where indicates the level of confidence, indicating the 
customer's level of risk aversion. The delivery cost constraint 
shown in (4) is the highest cost which is acceptable to the 
investor. Eq. (5) states the delayed time that the total delivery 
time needed on the route exceeds the due date, which is a 
random variable. Eq. (6) represents the constraint on the path, 
ensuring that it is a legitimate connecting path from the origin 
city to the target city. And then the constraints on decision 
variables are represented by (7). 

C. Transformation of Mathematical Models 

Theorem 1. The linear combination of a finite number of 
independent normal distribution random variables still obeys 
normal distribution. For a set of random variables

1 2, ,..., ,...,k nX X X X , if 2

1 1 1~X N  （ ， ） , 
2

2 2 2~X N  （ ， ）,..., 2~k k kX N  （ ， ）,..., 2~n n nX N  （ ， ）, 

there is 2

1 1 1

~ ( , )
n n n

k k k

k k k

X N  
  

   . 
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Theorem 2. When the random variable follows the normal 

distribution, then 
1( ) ( ) ( ) ( )CVaR T E T c STD T      , 

where ( )E T  refers to the expectation of random variable, 

( )STD T refers to the standard deviation of random variable, 
1 1

1( ) ( ( )) (1 )c        , 1( )  refers to the inverse 

function of standard normal distribution function, and ( )  

refers to the probability density of standard normal distribution 
[26]. 

This article assumes the random variable 
~

2~ ( , )ijk ijk ijkT N    

and 
~

2~ ( , )j j jT N    in (5), so the objective function (3) can be 

converted to (8). Consequently, the proposed CVaR model 
includes (8), (4), (5), (6) and (7). 

0

1 1 1

2 2 2 2

1

1 1 1

( ) )

( ) ( ) ( )

min(
rij

ij

n n n

ijk ijk j j

i j k j

rn n n

ijk ijk j j

i j k j

x R y T

c x R y R

  

  

  

 

 

 

 

  

           

(8) 

IV. ALGORITHM DESIGN 

At present, the solution of the 4PLROP mainly includes the 
branch and bound, cut plane method, and other accurate 
solution algorithms that can only solve the optimization 
problem meeting specific conditions, as well as GA [27], 
particle swarm optimization algorithm [18] and ant colony 
algorithm [19], harmony search algorithm [13] and other 
simulation natural processes to form intelligent optimization 
algorithms. In solving 4PLROP, intelligent optimization 
algorithms can be roughly separated into two types, one 
approach is using repair strategies to repair illegal roads and 
obtain legitimate paths, which may result in the loss of good 
solution information during the repair process; another method 
is to utilize intelligent algorithms to construct simple graphs, 
followed by exact algorithms to discover the shortest path 
across the simple graph, which will waste a lot of storage space 
and computational time. Therefore, the Q-learning algorithm is 
used to solve the 4PL path problem in this article, directly 
resolving the proposed mathematical model on multiple graphs 
by setting state action pairs and reward values. 

The Q-learning algorithm is proposed by Watkins [28] 
which involves the interaction between intelligent agents and 
the environment, constantly trying and learning, and ultimately 
obtaining one or more excellent behavior strategies. In a typical 
Q-learning algorithm, an intelligent agent decides to execute an 
action on the basis of the current state as well as past empirical 
knowledge. After executing the action, the agent transits to the 
following state according to a certain state transition strategy 
and obtains a return value. The Q-learning algorithm 
establishes a Q table based on the agent's state space and action 
space, which stores the corresponding Q values of all state 
action pairs. At the same time, the intelligent agent can be 
punished or rewarded by designing a reward function. When 
the action selected by the intelligent agent has an advantage in 
the environment, the state action pair can receive positive 

rewards from the environment, and the corresponding Q value 
of the state action pair will continue to increase. When the 
action selected by the intelligent agent is at a disadvantage in 
the environment, its state action pair will receive negative 
rewards from the environment, and its corresponding Q value 
will continue to decrease. The Q function is used to obtain the 
anticipated return value of a specific state action, which is 
updated in each training round and gradually approaches the 
optimal value. As shown in (9), the Q function is viewed as 
past-experienced knowledge that the agent has acquired, which 
is constantly updated and improved. 

 *( , ) ( , ) ( , , ) max ( , ) ( , )Q s a Q s a R s a s Q s a Q s a      
 (9) 

where (0,1)   is the discount factor, representing the 

degree of impact of the next state's Q value on the 
corresponding Q value of the current state, that is, the 
importance of immediate and future benefits. The larger the  , 

the greater the weight given to prior experiences. The smaller 
the  , the more emphasis is placed on immediate benefits R. 

When 0  ,it means only focusing on current interests and 

not considering future interests. When 1  , it indicates a 

focus on past experience and future interests. Parameter   is 

the learning rate, which represents the learning speed of the 
agent throughout the entire learning process. Its range is 

(0,  1)  , and it determines the degree that the new 

information obtained by the agent in the environment covers 
the old experience. The larger the  , the less effective it is to 

retain the previous training. The smaller the  , the more the 

effect of previous training will be retained. 

A. Action State Settings 

This article applies Q-learning algorithm to the 4PLROP, 
treating the selection of actions as a 3PL supplier selection 
problem, and treating node cities as different states. When the 
current node is s , the 3PL suppliers related to the node cities 

can be represented by action spaces 

 1 2, ,..., ,..., , 1,2,...,k KA a a a a k K  , with every state action 

pair matching a Q value. 

Taking 7 nodes as an example, as shown in Fig. 1, the 
initial node can be regarded as the initial state s . The nodes 

connecting the initial node are Transport Node 1 and Transport 
Node 2, respectively. There are three 3PL suppliers that can be 
selected from the initial node to Transport Node 1, with serial 

numbers 1, 2, and 3. Actions can be set to 
1 2 3,  ,  a a a , 

respectively. There are four 3PL suppliers that can be selected 
from the initial node to Transport Node 2, with serial numbers 
1, 2, 3, and 4, respectively, The action sequence numbers can 

be set to 
4 5 6 7,  ,  ,a a a a , and there are 7 corresponding actions 

that can be selected in the initial state. They are set to jump to 
the next state, namely transfer node 1, when the initial node 

selection action is 
1 2 3,  ,  a a a , and also set to jump to the next 

state, namely transfer node 2, when the initial node selection 

action is 
4 5 6 7,  ,  ,  a a a a . Other node action sets can be set by 

analogy. The selected the action and its corresponding next 
state for 7-node problem is shown in Table II. 
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TABLE II.  7-NODE PROBLEM ACTIONS AND CORRESPONDING NEXT 

STATES SETTINGS 

Selected Action The Corresponding Next State 

 1 2 3, ,A a a a  Transit Node City 1 

 4 5 9, , ,A a a a   Transit Node City 2 

 10 11 14 15 16, , , ,A a a a a a  Transit Node City 3 

 12 13 21 22 23, , , ,A a a a a a  Transit Node City 4 

 17 18 19 20 24 25, , , , ,A a a a a a a  Transit Node City 5 

 26 27 33, , ,A a a a   Transit Node City t 

B. Exploration Strategy 

 When the intelligent agent interacts with the 
environment for learning, while selecting the known 
action with the maximum reward value, it is also 
necessary to ensure that more experience can be learned 
in the unknown environment, laying the foundation for 
obtaining more cumulative rewards. Therefore, it is 
necessary to set appropriate exploration strategies to 
achieve the optimal training effect. The exploration 
strategy adopted in this article is ε-greedy strategy. 

 The mathematical description of the ε-greedy strategy is 
as follows: 

arg max ( , ) 1
( , )

random

Q s a
a s

a







 
           (10) 

 For (10), it can be understood as a certain probability ε. 
Randomly select the actions that can be selected in the 
current state, with 1-ε probability selects the action 
corresponding to the maximum Q value in the current 
action. 

C. Construction of Reward Function 

Due to the fact that the Q-learning algorithm is on the basis 
of the Markov Decision Process model, a more 
computationally efficient discrete reward and penalty function 
is adopted. Eq. (11) indicates that when there is a connection 
between two cities and it is not the endpoint, the reward is 1. 
When there is no connection between two cities, the reward is -
1. When there is a connection between two cities and it is the 
endpoint, the reward is 100. 

1 i. j has a connection point j is not a termination node

( , ) 1 i. j is not connected

100 i. j is connected and j is the termination node

r s a




 

  (11) 

Considering that the size of the reward is related to the 
mean and variance in the objective function, while also 
meeting certain cost constraints, the reward value function (12) 
can be constructed to ensure that the agent does not violate the 
constraints and obtains the optimal delivery path for the 

objective value. As shown in (13), 
1  is related to the delivery 

cost related to the selected 3PL provider and transportation 
node, and the smaller the delivery cost, the larger the reward 

value obtained; 
2 , shown in (14), is related to the mean of the 

random time related to the selected 3PL provider and transit 
node. The smaller the mean of the random time, the greater the 

reward value obtained; as shown in (15), 
3  is related to the 

variance of the random time related to the selected 3PL 
provider and transit node. While the variance of the random 

time is smaller, the reward value obtained is larger, where 
1k  

and 
2k are the weighting coefficients of the reward function. 

1 2 3( , ) ( , ) ( , )r r s a r s a r s a    
                    (12) 

1

1

ijk j

k

C C
 


                                (13) 

2

2

ijk j

k


 



                               (14) 

1 2

3 2 2

1

ijk j

k k


 

 



                            (15) 

D. Model Training 

The agent is trained by designing a Q table, in which each 
row represents all the states that the agent can choose, each 
column represents the actions that the agent can perform in the 
corresponding state, each state represents different city nodes 
in multiple graphs, and each action represents different 3PL 
suppliers in multiple graphs. Initially, set all states in the Q 
table to 0, and then calculate the reward values obtained by 
executing different actions (selecting different suppliers) based 
on the reward matrix established by the reward function. Use 
(9) to update the values of each element in the Q table. Treat 
each iteration as a training session for the agent. For each 
training session, the agent attempts to reach the destination 
node from the initial node, and after each action, updates the 
elements in the Q table. 

E. Improved Q-learning Algorithm Process and Steps 

When the improved Q-learning algorithm is used to solve 
4PLROP, first initialize the elements in the matrix using a 
reward function based on existing data. Due to the existence of 
several various 3PL providers across two node cities, there is 
one state corresponding to multiple. Consequently, it is 
necessary to set the corresponding actions for each state, and 
then train and update the matrix Q through the setting of matrix 
R and related parameters. Finally, the optimal path planning 
can be obtained based on the Q table. The specific steps for 
solving the proposed model using the improved Q-learning 
algorithm are as follows: 

Step 1: Preprocess the known factors of the problem. 

Step 2: Import known information into Matlab. 

Step 3: Initialize the parameters  ,   and Q table, set the 

initial and final states, and generate a reward matrix using (12) 
based on existing data. 

Step 4: Initialize the state to the initial node. 

Step 5: Utilize ε-greedy strategy selection action (the 
optional 3PL supplier corresponding to the state). 
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Step 6: Execute the action a  (select a 3PL supplier from 

the current node), transfer to a new state s (next node city), 

and update the Q table based on the reward matrix R and 
related parameter settings. 

Step 7: Determine whether s  is in a terminated state. If 

not, proceed to step 5. Else, proceed to step 8. 

Step 8: Determine whether the training frequency has been 
reached. If not, continue with step 4, otherwise continue with 
step 9. 

Step 9: After training, output the Q table. 

Step 10: Output the optimal delivery plan based on the Q 
table. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

The improved Q-learning algorithm is used to solve 
different scale examples in this section to analyse the algorithm 
performance and the model effectiveness. The proposed CVaR 
model effectiveness is verified by comparing and analyzing the 
solution results of the two models. The algorithm is 
implemented using software MATLAB and runs in the Intel (R) 
Core (TM) i7-2600 @ 3.40GHz environment. 

A. Parameter Testing Analysis 

By conducting extensive experimental simulations to test 
parameters, the method is to observe the impact of certain 
parameters change on the solution results while keeping other 
parameters constant. The experimental results demonstrate that 

the optimal parameters are 0.8  , 0.9  , 100episode  , 

0.95  . 

On the basis of the data in Table Ⅲ, through repeated 

experiments on the weighting coefficients 
1k  and 

2k  in reward 

functions of different scales, the improved Q-learning 
algorithm performs best. 

B. Model Performance Analysis 

Verify the effectiveness of the proposed CVaR model and 
improved Q-learning algorithm by solving several different 
scale examples. First, the 7-node problem is used as an 
instance, and the solution results obtained using this algorithm 
are carefully analyzed. Then, to demonstrate the validity of the 
model, VaR and CVaR values are solved for four examples of 
different sizes with 7, 15, 30 and 50 nodes, and the results are 
analyzed. 

The solution results of the VaR model and CVaR model for 
the 7-node problem with different values are shown in TABLE 
Ⅳ, where  denotes the confidence level, i.e., the risk attitude 

of the customer, T0 denotes the customer's latest acceptable 
delivery time, C0 is the customer's latest acceptable delivery 
cost. The value of VaR is the optimal solution obtained from 
the VaR model, the value of CVaR is the optimal solution 
obtained from the CVaR model, the Best Path is the 
distribution path that corresponds to the optimal solution, and 
Best Rate is the probability that the total number of runs 
obtains the best solution when the algorithm is used to solve. 
At this time, the total number of runs is 100, Time/s indicates 
the time for the algorithm to run once. 

TABLE III.  SOLUTIONS AND PARAMETER SETTINGS FOR DIFFERENT INSTANCES 

Number ofNodes k1 k2 Episode CVaR Best Path Time/s 

7 0.6 0.3 100 32.0456 2 3{ ,2, ,2, ,1, }s tR      0.9s 

15 0.1 0.7 200 3.8184  2 6 13,1, ,2, ,3, ,2,s tR       1s 

30 0.37 0.357 200 13.6412 
4 8 12

15 18 21 25

,1, , 2, ,1, ,1,

, 2, , 4, ,1, ,1, }

{ s

t

R    

    

  1.5s 

50 0.2 0.5 500 8.3652 
39 28 29

10 42 37

,3, ,1, ,1, ,1,

,1, ,3, ,3, }

{ s

t

R    

   

  9.2s 

TABLE IV.  SOLUTION RESULTS OF 7-NODE PROBLEM WHEN T0=80 AND C0=73. 

β T0 C0 VaR CVaR Best Path Best Rate Time/s 

0.9 80 73 10.9730 22.0456 2 3{ ,2, ,2, ,1, }s tR      1 0.9s 

0.95 80 73 19.4699 29.2428 2 3{ ,2, ,2, ,1, }s tR      1 0.9s 

0.99 80 73 35.4087 43.3341 2 3{ ,2, ,2, ,1, }s tR      1 0.9s 
 

From the data in the Table Ⅳ, it can be seen that the best 
path corresponding to the best VaR value and CVaR value is 
the same. When the confidence level is 0.9 and the VaR value 
that meets the cost constraint is 10.9730, it means that the 4PL 
supplier has a 90% probability of ensuring that the delay 
amount will not exceed 10.9730. The CVaR value that satisfies 
the cost constraint is 22.0456, indicating that the tardiness risk 
mean value when the delivery task's delay exceeds the VaR is 
22.0456, The related delivery cost is 73, and the best delivery 

path is 
2 3{ ,2, ,2, ,1, }s tR     , which refers to the selection 

of transit cities 2 and 3 for transportation from the source node 
city s  to the destination node city t , and the numbers of the 

3PL supplier chosen between every two cities are 2, 2, and 1. 
When the confidence level is 0.95 and the VaR value that 
satisfies the cost constraint is 19.4699, it means that the 4PL 
supplier has a 95% probability of ensuring that the delay 
amount will not exceed 19.4699. The CVaR value that satisfies 
the cost constraint is 29.2428, indicating that the tardiness risk 
mean value when the delivery task's delay exceeds the VaR is 
29.2428. The associated delivery cost is 73, and the best 
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delivery path is 
2 3{ ,2, ,2, ,1, }s tR     , which refers to the 

selection of transit cities 2 and 3 for transportation from the 
source node city s  to the destination node city t , and the 3PL 

supplier numbers selected between each two cities are 2, 2, and 
1. When the confidence level is 0.99 and the VaR value that 
satisfies the time constraint is 35.4087, it means that the 4PL 
supplier has a 99% probability of ensuring that the delay 
amount will not exceed 35.4087. The CVaR value that satisfies 
the cost constraint is 43.3341, indicating that the tardiness risk 
mean value when the delivery task's delay exceeds VaR is 
43.3341. The associated delivery cost is 73, and the best 

delivery path is 
2 3{ ,2, ,2, ,1, }s tR     , which refers to the 

selection of transit cities 2 and 3 for transportation from the 
source node city s  to the destination node city t , and the 3PL 

supplier numbers selected between each two cities are 2, 2, and 
1. The above data indicates that when other constraints are 
constant, as the confidence level grows, the best delivery path 
will not change. However, customers will face higher tardiness 
risks, and the corresponding VaR is often smaller than CVaR. 
This also verifies that the VaR model can only evaluate the 
probability of risk occurrence, while the CVaR model can 
effectively measure tail risk and estimate the tardiness risk 
mean value faced by delivery tasks in extreme situations. 
Compared to VaR models, it can better reflect potential 
tardiness risks. 

The statistics in Table Ⅴ show that the 7-node problem's 
solution is provided for various combinations of confidence 
level, delivery time, and delivery cost. We know from 
analyzing these data that while the confidence level and time 
constraints are consistent, as the delivery cost increases, the 
corresponding VaR and CVaR values will decrease, indicating 
that the delay risk faced by the delivery path will be reduced. 
When the delivery cost and time constraints remain unchanged 
and the confidence level increases, the corresponding VaR and 
CVaR values will increase, indicating an increase in the risk of 
tardiness faced by the delivery path. When the confidence level 
and delivery cost are constant, as the time constraint increases, 
the corresponding VaR and CVaR values will increase, and 

thus the delay risk faced by the distribution path will rise. In 
addition, by comparing the VaR value and the CVaR value, it 
can be seen that when other conditions are the same, the CVaR 
value obtained is always greater than the VaR value, which 
also verifies that CVaR is more able to reflect the potential 
value at risk than VaR. Therefore, when using the VaR model 
to measure tardiness risk failure, 4PL suppliers can use the 
CVaR model to make up for the shortcomings of the VaR 
model. Combined with the risk tolerance of customers, they 
can comprehensively consider the risk level and expected 
tardiness risk of the distribution scheme, monitoring of 
potential tardiness risks in real time, providing customers with 
the delivery path with the minimum tardiness risk mean value 
at a given confidence level, and estimating the tardiness risk 
generated when extreme events occur, making reasonable 
delivery service decisions, thereby improving customer 
satisfaction. 

Tables Ⅵ to Ⅷ provide the solution results of the VaR 
model and CVaR model for the 15 node problem with time 
constraints, cost constraints, 30 node problem with time 
constraints, and 50 node problem with time constraints and 
cost constraints, respectively. When using the Q-learning 
algorithm to solve the proposed model, the solution time for 
small and medium-sized examples is about 1 second, and for 
large-scale problems, the solution time does not exceed 10 
seconds. This fully demonstrates that the Q-learning algorithm 
has a high solution speed and high stability. When solving a 15 
node problem, the training number is 200, and the optimal 
solution rate of the algorithm is as high as 98%, that is, the 
algorithm runs 100 times, 98 times can obtain the optimal 
solution, and when solving the 50 node problem, the best rate 
also reaches 95%, that is, the algorithm runs 100 times, and 95 
times can obtain the optimal solution. 

C. The Influence of Confidence Level 

To investigate the influence of confidence level β on the 
4PLROP, we provide three values of β with four different cases, 
which is customer’s degree of risk appetite, shown in Tables Ⅴ 
to Ⅷ. 

TABLE V.  SOLUTION FOR 7-NODE PROBLEMS UNDER DIFFERENT CONFIDENCE LEVELS, TIME CONSTRAINTS, AND COST CONSTRAINTS 

β T0 C0 Episode VaR CVaR Best Path Time/s 

0.9 

70 
73 100 20.9730 32.0456 2 3{ ,2, ,2, ,1, }s tR      0.9s 

75 100 17.2239 28.0198 2 3{ ,3, ,2, ,1, }s tR      0.9s 

80 
73 100 10.9730 22.0456 2 3{ ,2, ,2, ,1, }s tR      0.9s 

75 100 7.2239 18.0198 2 3{ ,3, ,2, ,1, }s tR      0.9s 

0.95 

70 
73 100 29.4699 39.2428 2 3{ ,2, ,2, ,1, }s tR      0.9s 

75 100 25.5084 35.0371 2 3{ ,3, ,2, ,1, }s tR      0.9s 

80 
73 100 19.4699 29.2428 2 3{ ,2, ,2, ,1, }s tR      0.9s 

75 100 15.5084 25.0371 2 3{ ,3, ,2, ,1, }s tR      0.9s 

0.99 

70 
73 100 45.4087 53.3341 2 3{ ,2, ,2, ,1, }s tR      0.9s 

75 100 41.0489 48.7762 2 3{ ,3, ,2, ,1, }s tR      0.9s 

80 
73 100 35.4087 43.3341 2 3{ ,2, ,2, ,1, }s tR      0.9s 

75 100 31.0489 38.7762 2 3{ ,3, ,2, ,1, }s tR      0.9s 
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TABLE VI.  SOLUTION FOR THE 15-NODE PROBLEM WHEN T0=70, C0=115  

β Eposide VaR CVaR Best Path Best Rate Time/s 

0.9 200 0.5969 3.7728  2 6 13,1, ,2, ,3, ,2,s tR       0.98 1s 

0.95 200 3.0340 5.8371  2 6 13,1, ,2, ,3, ,2,s tR       0.98 1s 

0.99 200 7.3406 9.4295  2 6 13,2, ,2, ,3, ,2,s tR       0.98 1s 

TABLE VII.  SOLUTION FOR THE 30-NODE PROBLEM WHEN T0=115, C0=190 

β Eposide VaR CVaR Best Path Best Rate Time/s 

0.9 200 10.5009 13.6412 
4 8 12

15 18 21 25

,1, , 2, ,1, ,1,

, 2, , 4, ,1, ,1, }

{ s

t

R    

    


 0.97 1.5s 

0.95 200 12.9107 15.6825 
4 8 12

15 18 21 25

,1, , 2, ,1, ,1,

, 2, , 4, ,1, ,1, }

{ s

t

R    

    


 0.97 1.5s 

0.99 200 17.4312 19.679 
4 8 12

15 18 21 25

,1, , 2, ,1, ,1,

, 2, , 4, ,1, ,1, }

{ s

t

R    

    


 0.97 1.5s 

TABLE VIII.  SOLUTION FOR THE 50-NODE PROBLEM WHEN T0=150, C0=165 

β Eposide VaR CVaR Best Path Best Rate Time/s 

0.9 500 4.4900 8.3652 
39 28 29

10 42 37

,3, ,1, ,1, ,1,

,1, ,3, ,3, }

{ s

tv

R    

  


 0.95 1.5s 

0.95 500 7.4637 10.4637 
39 28 29

10 42 37

,3, ,1, ,1, ,1,

,1, ,3, ,3, }

{ s

t

R    

   


 0.95 1.5s 

0.99 500 13.042 15.8157 
39 28 29

10 42 37

,3, ,1, ,1, ,1,

,1, ,3, ,3, }

{ s

t

R    

   


 0.95 1.5s 

 

The result in these four tables shows that the CVaR, the 
tardiness risk, increases with the confidence level β increasing. 
Because with a smaller β, the 3PL can make more effort and 
the tardiness risk is smaller. 4PL can select the proper delivery 
solution for the investor to control the tardiness risk according 
to the customer’s degree of risk aversion. 

D. The Influence of Cost and Due Date 

To investigate the influence of cost C0 and due date T0 on 
the 4PLROP, we provide two values of C0 and T0 with 7-node 
problem, shown in Table Ⅴ. 

The result in Table Ⅴ shows that the CVaR, the tardiness 
risk, decreases with the C0 and T0 increasing when β in fixed. 
Because with a fixed β, if the budget or time is enough, the 
3PL can make more effort and the tardiness risk is smaller. 
4PL can select the proper delivery solution for the investor to 
control the tardiness risk according to the customer’s budget 
and due date. 

E. Algorithm Comparison 

This section uses the improved Q-learning and GA 
embedded with Dijkstra algorithm to solve three different scale 
examples, and the comparative data is shown in Table Ⅸ. 

TABLE IX.  COMPARISON OF RESULTS OF DIFFERENT ALGORITHMS 

Number of Nodes Algorithm CVaR Best Path Best Rate Time/s 

7 
Improved Q-learning 22.0456 2 3{ ,2, ,2, ,1, }s tR      1 0.9s 

GA embedded with Dijkstra 22.0456 2 3{ ,2, ,2, ,1, }s tR      0.95 19.4s 

15 
Improved Q-learning 3.7728  2 6 13,1, ,2, ,3, ,2,s tR       0.98 1s 

GA embedded with Dijkstra 3.7728  2 6 13,1, ,2, ,3, ,2,s tR       0.94 24.5s 

30 

Improved Q-learning 13.641 
4 8 12

15 18 21 25

,1, , 2, ,1, ,1,

, 2, , 4, ,1, ,1, }

{ s

t

R    

    


 0.95 1.5s 

GA embedded with Dijkstra 13.641 
4 8 12

15 18 21 25

,1, , 2, ,1, ,1,

, 2, , 4, ,1, ,1, }

{ s

t

R    

    

  0.9 28.5s 

 

It can be seen from the Table Ⅸ that both methods can find 
the optimal solution when solving small-scale problems with 7 
nodes. However, the latter performs poorly in solving speed 
because that GA embedded with Dijkstra algorithm is used to 
generate the simple graph based on the multi-graph shown in 

Fig. 1 and the Dijkstra algorithm is used to generate the 
shortest path on the generated simple graph, but the shortest 
path may be not met the constraints. Thus, it needs a lot of time 
to find the feasible solution of the problem. However, the 
improved Q-learning algorithm directly solves the problem on 
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the multi-graph shown in Fig. 1, which saves much 
computational time. Furthermore, as the solution size increases, 
the improved Q-learning algorithm exhibits higher solving 
speed and quality. 

F. Discussion 

In summary, the results show that when the delivery costs 
and time constraints remain unchanged, the higher the 
confidence level, the higher the corresponding values of VaR 
and CVaR, which means that the risk of delivery tardiness 
faced by customers will increase. When other conditions such 
as confidence level, time, and cost constraints are the same, the 
obtained CVaR value is always greater than the VaR value. 
The proposed CVaR model can reflect the average delay risk 
of delayed delivery exceeding the VaR value due to various 
factors, better compensating for the shortcomings of the VaR 
model in measuring tardiness risk, and real-time monitoring of 
potential tardiness risks that may occur during the delivery 
process. 4PL can adjust the customer’s aversion to risk, use this 
model to calculate the tardiness risk mean value and provide a 
reliable delivery plan. 

VI. CONCLUSION 

This article fully considers the tardiness risk caused by the 
uncertainty of transit time and transportation time in the actual 
delivery process in complex and uncertain environments. A 
risk measurement tool CVaR is introduced to measure and 
control the risk, and a mathematical model with CVaR 
minimization as the optimization objective and distribution 
cost as the constraint is established. Meanwhile, the proposed 
algorithm is compared with GA embedded with Dijkstra. The 
results demonstrate that the proposed model is effective for the 
4PLROP and improved Q-learning algorithm can solve the 
large-scale 4PL path problem rapidly and with excellent 
stability. 4PL can adjust the customer’s aversion to risk, use 
this model to calculate the tardiness risk mean value and 
provide a reliable delivery plan. Customers can obtain multiple 
schemes according to their risk preferences and take 
corresponding measures. This article provides scientific 
decision making basis and efficient and safe distribution plans 
for the 4PL, which can improve the level of logistics service. 

Meanwhile, the stochastic variables’ probability 
distributions may follow other distributions, such as the 
exponential distribution, uniform distribution, etc. Therefore, 
our research can be extended to a robust 4PLROP considering 
delay risk or multiple risks. 
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