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Abstract—Early and accurate classification of skin lesions is 

critical for effective skin cancer diagnosis and treatment. 

However, the visual similarity of lesions in their early stages 

often leads to misdiagnoses and delayed interventions. This lack 

of transparency makes it challenging for dermatologists to 

interpret with validate decisions made by such methods, reducing 

their trust in the system. To overcome these complications, Skin 

Lesions Classification in Dermoscopic Images using Optimized 

Dynamic Graph Convolutional Recurrent Imputation Network 

(SLCDI-DGCRIN-RBBMOA) is proposed. The input image is 

pre-processed utilizing Confidence Partitioning Sampling 

Filtering (CPSF) to remove noise, resize, and enhance image 

quality. By using the Hybrid Dual Attention-guided Efficient 

Transformer and UNet 3+ (HDAETUNet3+) it segment ROI 

region of the preprocessed dermoscopic images. Finally, 

segmented images are fed to Dynamic Graph Convolutional 

Recurrent Imputation Network (DGCRIN) for classifying skin 

lesion as actinic keratosis, dermatofibroma, basal cell carcinoma, 

squamous cell carcinoma, benign keratosis, vascular lesion, 

melanocytic nevus, and melanoma.  Generally, DGCRIN does not 

express any adaption of optimization strategies for determining 

optimal parameters to exact skin lesion classification. Hence, Red 

Billed Blue Magpie Optimization Algorithm (RBBMOA) is 

proposed to enhance DGCRIN that can exactly classify type of 

skin lesion. The proposed SLCDI-DGCRIN-RBBMOA technique 

attains 26.36%, 20.69% and 30.29% higher accuracy, 19.12%, 

28.32%, and 27.84% higher precision, 12.04%, 13.45% and 

22.80% higher recall and 20.47%, 16.34%, and 20.50% higher 

specificity compared with existing methods such as a deep 

learning method dependent on explainable artificial intelligence 

for skin lesion classification (DNN-EAI-SLC), multiclass skin 

lesion classification utilizing deep learning networks optimal 

information fusion (MSLC-CNN-OIF), and classification of skin 

cancer from dermoscopic images utilizing deep neural network 

architectures (CSC-DI-DCNN) respectively. 

Keywords—Confidence partitioning sampling filtering; 

dynamic graph convolutional recurrent imputation network; ISIC-
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I. INTRODUCTION 

Skin cancer is considered one of the most dangerous cancer 
types due to its high prevalence and potential for metastasis if 
not detected early. Melanoma, in particular, has a high 
mortality rate and can spread rapidly to other organs [1]. 
Statistics show that skin cancer is more common than other 
cancers, with rising incidence rates globally. Comparative 
studies also indicate that, although treatable when caught early, 
skin cancer has a higher likelihood of fatal outcomes compared 

to many other cancer types [2]. A skin lesion refers to 
abnormal appearance otherwise growth of skin analyzed to 
surrounding region [3]. Lesions can vary in color, type, shape, 
texture, position, distribution, they are categorized to 
classification prearranged hierarchically [4]. The first two 
major classifications of this hierarchy are melanocytic, non-
melanocytic lesions [5]. The classification as melanocytic or 
non-melanocytic depends on presence or absence of 
melanocytes, melanin pigment in lesion [6]. Melanocytic 
lesions possess eight global features that assist in detailed 
categorization of pigmented skin lesions, along with fourteen 
local features provide more specific information about each 
lesion [7]. Hemoglobin causes non-melanocytic lesions to 
seem purple, red, blue, or black, while keratin causes them to 
appear orange or yellow [8]. These lesions can be either 
cancerous otherwise non-cancerous. Dermoscopic is 
commonly utilized skin imaging methods, aimed at enhancing 
diagnostic accuracy, reducing mortality from skin cancer [9]. 
This non-invasive method captures magnified with well-
illuminated image of skin, allowing for a clearer examination 
of lesion area [10]. This method improves doctors' diagnostic 
ability and is typically used to detect skin cancer in its 
premature stages [11]. Dermatologists typically utilize visual 
examination to evaluate dermoscopic images, known as 
biomedical images [12]. It takes a lot of time, is labor-
intensive, and is subject to operator bias. The reason for this is 
normal moles and skin infections can sometimes be so similar 
that a precise diagnosis might be challenging [13]. Several 
computer-aided diagnostic systems created to aid 
dermatologists identify skin cancer [14]. These methods not 
only get over the aforementioned problems but also increase 
the diagnosis system's impartiality, accuracy, and efficiency 
[15]. Deep learning approaches have established encouraging 
results, important promise in this area for data analysis and 
image processing [16]. Owing to its widespread use, distinctive 
characteristics in several complicated fields, likes object 
detection, classification, identification, and recognition, deep 
learning applied extensively [17]. The deep learning method 
gives method greater depth; changes input utilizing different 
functions enable hierarchical data representation across 
multiple levels of abstraction [18]. Because more sophisticated 
models are used, deep learning can quickly and effectively 
learn more difficult issues. The significant component of 
typical computer aided diagnostic systems is deep learning 
approaches like CNN and image processing techniques [19]. 
However, as processing cycle behind method learning with 
feature encoding is poorly implicit, utility of such computer-
aided diagnostic systems by dermatologists, patients is still 
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questionable. Without a logical justification, the model 
prevents dermatologists from making informed decisions [20]. 

The problem involves in several existing methods, skin 
cancer at premature stage owing to challenges in analyzing 
dermoscopic images of skin lesions, which are often subtle and 
require a high level of expertise. Traditional visual inspection 
by dermatologists is time-consuming, subjective, and prone to 
error, making it hard to achieve consistent and reliable results. 
There is a need for automated systems that can assist in the 
accurate, efficient, and objective classification of skin lesions 
to enhance diagnostic accuracy, ultimately lessen skin cancer 
mortality. 

This paper intends to overcome these issues to improve 
skin lesion detection methods, it is crucial to address the 
significant challenges that skin lesion. Enhancing the accuracy 
of identifying and classifying skin lesion detection is vital for 
facilitating timely and effective responses to these incidents. 
The suggested method attempts to improve detection accuracy 
and reliability by exploiting optimization using Red Billed 
Blue Magpie Optimization Algorithm. 

The novelty of SLCDI-DGCRIN-RBBMOA method lies in 
its use of Skin Lesions Classification of Dermoscopic Images 
using Optimized Dynamic Graph Convolutional Recurrent 
Imputation Network. CPSF is used for preprocessing 
dermoscopic images, effectively removing noise and resizing 
them to improve image quality. The ROI region is segmented 
utilizing HDAETUNet3+, which improves the accuracy of 
lesion detection. The main innovation of the approach lies in 
the use of the DGCRIN for classifying a diverse range of skin 
lesions. The RBBMOA strategy significantly enhances 
accuracy, precision, recall, specificity, F1-score while also 
reducing error rate compared to existing methods, making it 
more suitable for classification on Skin Lesions in the future. 

Major contribution of this investigate work is brief as 
below, 

 To propose SLCDI-DGCRIN-RBBMOA framework, 
which employs an Optimized Dynamic Graph 
Convolutional Recurrent Imputation Network to 
enhance the Skin Lesions Classification of 
Dermoscopic Images process. 

 Here, CPSF improves data integrity by efficiently for 
remove noise, resize and improve image quality within 
the dataset. 

 To segment the ROI region using the Hybrid Dual 
Attention-guided Efficient Transformer and UNet 3+ 
(HDAETUNet3+) process and to classify Skin Lesion 
using DGCRIN, thereby improving classification 
accuracy. 

 RBBMOA introduces an optimization approach to 
improve the weight parameters of the DGCRIN 
classifier. 

 Performance comparison to analyze the efficiency of 
the SLCDI-DGCRIN-RBBMOA approach in 
comparison to well-known DGCRIN in context of Skin 
Lesion. 

The proposed model addresses the limitations of previous 
approaches by enhancing transparency, accuracy, and 
optimization in skin lesion classification. To build trust in AI-
based decisions, it incorporates Hybrid Dual Attention-guided 
Efficient Transformer and UNet 3+ (HDAETUNet3+), 
enabling precise segmentation and improved interpretability. 
Confidence Partitioning Sampling Filtering (CPSF) enhances 
image quality by eliminating noise, facilitating more accurate 
early-stage lesion classification and reducing diagnostic errors. 
The model leverages Transformer-based feature extraction and 
multi-scale segmentation to refine region of interest (ROI) 
identification, outperforming conventional deep learning 
methods. Furthermore, the Dynamic Graph Convolutional 
Recurrent Imputation Network (DGCRIN) captures spatial 
relationships within dermoscopic images, offering a structured 
and adaptive classification approach. Unlike previous graph-
based models that lack effective parameter tuning, the Red 
Billed Blue Magpie Optimization Algorithm (RBBMOA) 
optimizes DGCRIN, significantly improving classification 
performance. 

Remaining part of the paper is arranged as follows: 
Literature review is presented in Section II, Methodology 
employed is discussed in Section III, and result with discussion 
is described in Section IV and conclusion in Section V. 

II. LITERATURE REVIEW 

A. Related Work 

Several investigate works are presented in literatures based 
on the Skin Lesion Classification utilizing Deep Learning. 
Table I presents various advantages and disadvantages of the 
existing Skin Lesion Segmentation and Classification model. 
In 2022, Nigar, N., et al., [21] have presented a Deep Learning 
approach based on Explainable Artificial Intelligence for skin 
lesion classification. A skin lesion classification system based 
on Explainable Artificial Intelligence is suggested to enhance 
the accuracy of skin lesion detection, aiding dermatologists in 
making more informed and rational diagnoses, particularly in 
the early stages of skin cancer. The system accurately identifies 
eight types of skin lesions: dermatofibroma, squamous cell 
carcinoma, benign keratosis, melanocytic nevus, vascular 
lesion, actinic keratosis, basal cell carcinoma, and melanoma. It 
attains high accuracy and low precision. 

In 2024, Khan, M.A., et al., [22] have presented multiclass 
skin lesion classification utilizing deep learning networks 
optimal information fusion. A computerized method for 
multiclass skin lesion classification, leveraging a fusion of 
optimal deep learning model features is developed. The 
collection of data used in is unbalanced, thus mathematical 
operations are performed to address this problem through data 
augmentation. The augmented dataset is used to refine and 
train two pre-trained deep learning models, DarkNet-19 and 
MobileNet-V2. After training, features extracted from the 
average pooling layer are optimized using a hybrid firefly 
optimization technique. The selected features are then fused 
using both the threshold-based and serial approaches, and 
classified using machine learning classifiers. It attains higher 
recall and low specificity. 
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In 2023, SM, J., et al., [23] have presented classification of 
skin cancer from dermoscopic images using deep neural 
network architectures. A deep convolutional neural network 
(DCNN) model is developed to accurately classify melanoma 
and non-melanoma skin cancer. The datasets, sourced from 
various challenges, have issues like class imbalance and 
varying image resolutions. To address these, EfficientNet with 
transfer learning is used to capture more complex patterns by 
adjusting the network’s depth, width, and resolution. The 
dataset is augmented, and metadata is incorporated to improve 
classification performance. Additionally, the EfficientNet 
model is optimized with the Ranger optimizer, reducing the 
need for extensive hyperparameter tuning. It provides high F1-
score and high computational time in 2023, Alsahafi, Y.S., et 
al., [24] have presented Skin-Net, a novel deep residual 
network for skin lesions classification. It utilizes multilevel 
feature extraction and cross-channel correlation, along with 
outlier detection. In this suggested paper, the Residual Deep 
Convolutional Neural Network is designed with multiple 
convolutional filters for multi-layer feature extraction and 
cross-channel correlation, using sliding dot product filters 
instead of sliding filters along the horizontal axis. To address 
the problem of imbalanced datasets, the method transforms the 
dataset from image-label pairs to image-weight vectors. It has 
been tested and assessed on complex and demanding datasets 
and demonstrates superior performance compared to existing 
deep convolutional networks in multiclass skin lesion 
classification. It attains higher detection accuracy and low 
kappa coefficient. 

TABLE I.  STRENGTHS AND LIMITATIONS OF THE CURRENT MODELS FOR 

CLASSIFYING SKIN LESIONS 

Authors 

Name 
Methods Advantage Limitation 

Nigar, N., 
et.al, [21] 

Convolutional neural 

network, deep neural 

network 

It achieves 

higher 

accuracy 

It provides 
low precision 

Khan, M.A., 
et.al, 

[22] 

CNN, DarkNet-19, 

MobileNet-V2 

It attains 

higher recall 

It attains low 

specificity 

SM, J., et.al, 

[23] 

Deep neural network, 

DCNN, EfficientNet, 
DenseNet 

It provides 

higher F1-
score 

It provides 
high 

computational 

time 

Alsahafi, 
Y.S., et.al, 

[24] 

Residual Deep CNN, 
DNN, Probabilistic neural 

network 

It provides 

high 

detection 
accuracy 

It provides 
low kappa 

coefficient 

Raghavendra, 
P.V., et.al, 

[25] 

Deep convolutional neural 

network, ResNet50, VGG-

16, MobileNetV2, and 
DenseNet121 

It attains 

higher RoC 

It attain slow 

precision 

Rezaee, K. 

et.al, 
[26] 

Convolutional neural 

network, ResNet-50, and 
ResNet-101 

It provides 

high 
specificity 

It provides 

high loss 
function 

Thanka, 

M.R., et.al, 

[27] 

Generative adversarial 

network, VGG16 and 

XGBoost 

It attains low 
error rate 

It attains high 
sensitivity 

In 2023, Raghavendra, P.V., et al., [25] have presented 
Deep Learning Based Skin Lesion Multi‑class Classification 
with Global Average Pooling Improvement. The model is 
trained and tested on the dataset, which includes seven distinct 

classes of skin lesions. During the preprocessing stage, the 
black hat filtering technique is applied to remove artifacts, 
along with resampling techniques to address class imbalance. 
The performance of the proposed model is evaluated by 
comparing it with several transfer learning models, including 
ResNet50, VGG-16, MobileNetV2, and DenseNet121. It 
attains high RoC and low precision. 

In 2024, Rezaee, K. et al., [26] have presented self-
attention transformer based deep learning framework for skin 
lesions classification in smart healthcare. This approach fuses 
global and local features through cross-fusion to generate fine-
grained features. The branches of the parallel systems are 
merged using feature-fusion architecture, creating a pattern that 
identifies the characteristics of various skin lesions. 
Additionally, the paper introduces an optimized and 
lightweight version of the CNN architecture, optResNet-18, 
designed to effectively discriminate between skin cancer 
lesions. It attains higher specificity and high loss function. 

In 2023, Thanka, M.R., et al., [27] have presented hybrid 
technique for melanoma classification utilizing ensemble ML 
methods and deep transfer learning. A hybrid approach 
combining a pre-trained convolutional neural network and 
machine learning classifiers is employed for feature extraction 
and classification, enhancing the model's accuracy. VGG16 is 
used for feature extraction, while XGBoost serves as the 
classifier. This combination leverages the strengths of deep 
learning for feature extraction and the power of machine 
learning for efficient classification, leading to improved 
performance in skin lesion classification. It provides low error 
rate and low sensitivity. 

B. Research Gap 

Current skin lesion classification models suffer from a lack 
of transparency, reducing trust in AI-driven diagnoses. Early-
stage lesion detection is challenging due to visual similarities. 
Existing methods struggle with accurate segmentation and 
feature extraction, while graph-based networks lack 
optimization. The proposed SLCDI-DGCRIN-RBBMOA 
improves classification through enhanced segmentation and 
advanced optimization strategies. 

III. PROPOSED METHODOLOGY 

The SLCDI-DGCRIN-RBBMOA methodology, which 
aims to classification of skin lesion, begins by input 
dermoscopic images are collected from ISIC-2019 skin disease 
dataset. The proposed block diagram of SLCDI-DGCRIN-
RBBMOA is represented in Fig. 1. Input images are pre-
processed with filtering to remove noise, improve image 
quality, followed by segmentation process, and are then fed 
into a classification process. The Dynamic Graph 
Convolutional Recurrent Imputation Network is then used to 
categorize the skin lesion as actinic keratosis, Dermatofibroma, 
Basal cell carcinoma, Squamous cell carcinoma, Melanocytic 
nevus, benign keratosis, Melanoma, vascular lesion. To 
improve classification accuracy, Red-Billed Blue Magpie 
Optimization Algorithm is utilized to enhance DGCRIN 
parameters. The overall system aims to detect, mitigate skin 
lesion, ensuring the integrity and reliability of image. 
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Fig. 1. Block diagram of SLCDI-DGCRIN-RBBMOA method. 

A. Image Acquisition 

The input data are gathered from ISIC-2019 Skin Disease 
Dataset [28]. This dataset comprises of 25,331 dermoscopic 
images, classified into eight types such as actinic keratosis, 
dermatofibroma, melanoma, benign keratosis, vascular lesion, 
basal cell carcinoma, melanocytic nevus, squamous cell 
carcinoma. The generated dataset is randomly splitted as 80% 
training, 10% testing, and 10% validation. 

B. Pre-processing utilizing Confidence Partitioning Sampling 

Filtering 

The image pre-processing utilizing CPSF [29] to eliminate 
noise, resize the image, and enhance image quality. CPSF 
methods were selected as a pre-processing technique for skin 
lesion analysis because they enhance image contrast, remove 
noise, and resize image, thereby improving the accuracy and 
clarity of lesion boundaries. This technique effectively reduces 
noise while preserving important features, enhancing the 
overall quality of segmentation. As a result, CPSF leads to 
more robust segmentation and better performance in 
subsequent analysis, providing more reliable results in 
dermoscopic images by reducing artifacts and noise. CPSF 
improves overall quality of images, enabling subsequent 
models, such as segmentation networks, to focus more 
effectively on relevant features and generate more accurate 
predictions. It also facilitates image resizing without sacrificing 
important details, which is particularly useful when working 
with datasets that require standardized input dimensions. 
Additionally, CPSF is a versatile tool that applied to different 
image types beyond dermoscopic images, making it valuable 
for medical image preprocessing as well as other computer 
vision applications. Then, the CPSF is given in Eq. (1), 
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1)(.
yqB dxyqkw

                      


where, )( yq represents the dimensional space, w denotes 

the hyper parameter, k represents the input data values, 

represents the filtering process, dx denotes the steady-state 

phase. Then, it is calculated as given in Eq. (2), 
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Here, )ˆ( hYq  represents the partitioning filtering of a 

distribution, h denotes the bounded subspace, and H

represents the sampling interval. It evaluates the correlations 
between features to predict quality images using variables that 
are strongly related. 

Let qc represents the impulse function, ty denotes the 

noise model, cty ,


represents the weighted grid samples, then  

image resize c is calculated using Eq. (3), 

   cttctt yyqcyyq ,,1
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It helps maintain the variation and structure of the original 

image, ensuring that the imputed values do not alter overall 

trends. In this step the denoise images are calculated as in Eq. 

(4), 
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In the above equation, ty represents the probability region, 

t denotes the CPSF framework, tŷ represents the denoise 

image. Then, the improved image quality is predicted as given 
in Eq. (5). 
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Here 1tc represents the estimation of the prior CPSF, 1,ty


represents the improved image quality, 2,ty


 denotes the local 

inference, tY


denotes improved image quality. Here, by using 

CPSF method it remove noise, resize and improve image 
quality. After that, the pre-processed images undergoes 
segmentation phase. 

C. Segmentation Using Hybrid Dual Attention-Guided 

Efficient Transformer and UNet 3+ 

Segmentation using HDAETUNet3+ [30, 31] method is to 
segment ROI region from dermoscopic images. The DAET and 
U-Net3+ is selected for its synergistic benefits in image 
segmentation. Dual attention mechanisms in DAET are highly 
effective at capturing long-range dependencies and fine-
grained details, which are essential for precise segmentation. 
Meanwhile, Hierarchical structure and skip connections of U-
Net3+ efficiently propagate contextual information across 
different scales, enhancing localization and boundary 
delineation. It enhances methods ability to exactly segment 
skin lesions, even with complex boundaries, by capturing both 
local and global features. This improves lesion classification 
and results in a more computationally efficient and robust 
method for skin lesion recognition in dermoscopic images. 
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Dual Attention-guided Efficient Transformer, which integrates 
spatial and channel attention, enables method to emphasis on 
the most applicable image regions and key features, resulting 
in accurate, robust segmentation of skin lesions. The 
architecture efficiently scales to learn large image sizes or long 
sequences, which is essential for tasks such as high-resolution 
medical image segmentation. By leveraging the attention 
mechanism, the model can adapt to a wide range of input data, 
including varying image sizes and resolutions, making it 
versatile for deployment across different applications. 
Additionally, the attention mechanism provides greater 
transparency into methods decision-making process, which is 
particularly valuable in high-stakes domains like medical 
imaging. Attention maps highlight areas the model prioritizes, 
offering insights into its focus during predictions and 
improving interpretability. It is given in Eq. (6). 
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Here, the term c is the embedding dimension, U  is the 

value vector of the image. Conventional self-attention may 
produce redundant context matrix, effectual way to calculate 
self-attention mechanism is provided in Eq. (7). 
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Here, 
p  

and 
k  

denotes normalization functions for 

queries, keys. These are softmax normalization functions. 
Hence, efficient attention first normalizes the keys and queries 
and then multiplies keys with values. The transpose attention is 
shown in Eq. (8). 

      YFCConvDWGELUFCYMLP  

In Eq. (8), MLP  represents the activation function, FC is the 

fully connected layer, DW is the depth wise convolution. UNet 

3+ improves lesion segmentation by leveraging nested skip 
pathways to capture features at multiple scales, which enhances 
its ability to identify lesions of different sizes and shapes. It 
ensures that intermediate layers actively contribute to the 
learning process, accelerating convergence and reducing the 
risk of overfitting, particularly when working with limited 
medical image data. Its capacity to extract fine-grained details 
while preserving global context makes the model more robust 
to noise, artifacts commonly found in dermoscopic images, 
lead to more reliable segmentation in real-world clinical 
scenarios. It is given in Eq. (9), 
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where, ijA ,  is measures impact of 
thi  location on 
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location, m  is the number of pixel values. The architecture 

diagram of HDAETUNet3+ is represented in Fig. 2. 

The HDAETUNet3+ architecture is designed for 

dermoscopic image segmentation, focusing on accurately 

segmenting regions of interest in dermoscopic images. It 

features a dual-transformer block structure, with skip 

connections and self-supervised contrastive learning to 

improve feature representation. The encoder extracts features 

progressively through patch merging and dual-transformer 

blocks, while the decoder upsamples and refines the 

segmentation mask. The network also incorporates full-scale 

intra- and inter-skip connections and ground truth supervision 

to guide the learning process. This sophisticated design aims 

to provide precise and reliable segmentation of ROIs in 

dermoscopic images, supporting the diagnosis of skin 

conditions. Then the each position of the image is given in Eq. 

(10). 
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Here
 

 qWMNGSA ,,  are features to generate the output 

image Finally, HDAETUNet3+ is used to segment the ROI 
region. Segmentation output is given into classification phase. 
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Fig. 2. Architecture of HDAETUNet3+. 

D. Classification utilizing Dynamic Graph Convolutional 

Recurrent Imputation Network 

The classification using DGCRIN is categorizing skin 
lesion such as actinic keratosis, Dermatofibroma, Basal cell 
carcinoma, benign keratosis, vascular lesion, Squamous cell 
carcinoma Melanocytic nevus, Melanoma [32]. The 
architecture diagram of DGCRIN is represented in Fig. 3. The 
DGCRIN captures the evolving relationships between image 
points over time, enabling it to adapt to changes in the image 
structure. The recurrent component adds temporal context, 
helping the model learn sequential patterns and enhance 
prediction accuracy, particularly when dealing with incomplete 
image. By incorporating imputation techniques, the model can 
effectively manage missing, leading to more robust and 
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accurate classification results. DGCRIN utilizes Graph 
Convolutional Networks to capture spatial dependencies within 
graph-structured image, making it particularly effective for 
datasets where the relationships between nodes are crucial for 
understanding missing data patterns. By incorporating both 
spatial and temporal information, DGCRIN can learn richer, 
more comprehensive representations of the image. Its ability to 
adapt to both spatial and temporal complexities enables it to 
handle intricate image patterns, making it especially well-
suited for imputation tasks where the connections between 
missing values are complex and non-linear. The architecture 
diagram illustrates the DGCRIN model, where the input to the 
process is a set of segmented images. The model consists of 
three main components: a masked GRU, a DGCGRU, and a 
graph generator. The graph generator dynamically creates a 
graph at every time step to denote the geographical correlations 

of the road network, using both historical data and the current 
imputed data. The DGCGRU effectively captures the 
spatiotemporal relationships in the data by integrating the 
dynamic graph with a static graph and replacing the fully 
connected layers in a conventional GRU with a dynamic graph 
convolution operation. Additionally, a masked GRU is 
employed to independently analyze the masking matrix and 
identify patterns in the missing data. The information is then 
combined by a fusion layer using a temporal decay mechanism, 
and data inference is performed by a fully connected layer. 
This iterative process helps the model achieve high accuracy in 
classifying skin lesions. Thus, network layers are part of the 
recurrent imputation network model calculated as given in Eq. 
(11), 
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Fig. 3. (a) Architecture diagram of DGCRIN and (b) Unfolding of the forward process. 

where, indicates the observation of each features, represents 
the significance of observation, indicates the hidden state, 
indicates the exponential function,  indicates the sigmoid 
multiplication, indicates the constantly updated value, and 
represents the squared random initialization value. To classify 
the actinic keratosis, Basal cell carcinoma can be expressed as 
given in Eq. (12). 
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Here
t  represents the efficient reconstruction value,

t

represents the learnable variable, 
V  represents the forward 

along backward feature matrices, 
y  represents the activation 

functions and maxf depicts at each time step. To classify the 

benign keratosis, dermatofibroma, and melanocytic nevusis, 
the calculation is performed as given in Eq. (13). 

AtAT yGVA 
ˆ

1  

In Eq. (13), the term 1TB represent the estimated value, AV

denotes the scoring vector, tĜ  is the dynamic adjacency matrix 

is regularized by the activation function and Ay  indicates the 
learnable parameter. To classify the Melanoma, Squamous cell 
carcinoma, vascular lesion is calculated as given in Eq. (14), 

 11111 1
~

  TTTTT NANAA


where, 
1TA represents the prediction value, 

1

~
TA represents 

the image consumption, indicates the sigmoid multiplication 

operator, and 
1TN  denotes the SCC. Finally, the DGCRIN 

classified the skin lesion likes SCC, AK, BCC, 
Dermatofibroma, Melanoma, vascular lesion, Melanocytic 
nevus, benign keratosis. The RBBMOA is utilized to optimize 
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DGCRIN optimal parameter 
ay and

t . The RBBMOA is used 

for tuning DGCRIN weight, bias parameter. 

E. Optimization using Red Billed Blue Magpie Optimization 

Algorithm 

The weights parameter ay and
t of proposed DGCRIN is 

optimized utilizing the proposed Red Billed Blue Magpie 
Optimization Algorithm (RBBMOA) [33].This optimizer 
works efficiently and quickly, converging to the optimal 
weight parameters in a shorter time than other optimization 
techniques. It optimizes network parameters, leading to 
improved model performance and higher classification 
accuracy for skin lesion detection. The RBBMOA refines the 
standard algorithm by introducing a more effective, reducing 
the risk of getting trapped in local minima. It also quicker 
convergence and improved solution accuracy. Furthermore, 
RBBMOA adjusts dynamically to complex problem 
environments, enhancing its efficiency across various 
optimization tasks. As foraging, it uses mix of ground-walking, 
jumping, searching along branches to find food. It also stores 
food for later consumption. To protect its cached items from 
theft by other an also there wise birds; it hides food in secure 
locations such as tree hollows, forks, and rock crevices. 
Overall, it is versatile predator, employing various strategies to 
acquire and store food. It also displays social behavior and 

cooperation when hunting. The flowchart illustrating the 

proposed RBBMOA approach is presented in Fig. 4. 

1) Stepwise procedures for RBBMOA: The step by step 

technique is defined to obtain optimal value of DGCRIN 

dependent on RBBMOA. At first, RBBMOA makes evenly 

allocating populace to enhance parameter of DGCRIN. 

Step 1: Initialization 

The initialization phase of RBBMOA applicant solutions is 
created smoothly within the constraints of a given problem, 
requiring updates after iteration. It is given in Eq. (15), 
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where, Y signifies location of search agent, dim denotes 

dimension of solving problem, m  represents population size. 

Step 2: Random Generation  

Input parameters are generated randomly. Optimal fitness 
values are preferred depending upon explicit hyper parameter 
situation.  

Step 3: Fitness function 

A random solution is generated utilizing initialized 
assessments using factor optimization value; it is evaluated for 

optimizing weight parameter
ay and 

t of skin lesion. It is given 

in Eq. (16), 

)&( tayoptimizeFunctionFitness 


where, 
ay is utilized to increasing accuracy, 

t is utilized to 

decreasing error rate. 

Step 4: Search for food 

To enhance efficiency, red-billed blue magpies typically 
hunt in small groups. It uses various techniques, including 
walking, jumping on ground, scouring trees for food resources. 
Billed blue magpies use adaptable hunting strategies that 
depend on environmental conditions, resources at hand, ensure 
adequate food supply as shown in Eq. (17). 
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Fig. 4. Flowchart of RBBMOA for optimizing DGCRIN parameter. 
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where,  1lY j
 represents the prey attackers, 

jY

represents the normal distribution, l represents the hunting 

behaviour, q  indicates red-billed blue magpies typically hunt 

within small groups, 
nY represents the tactics,  lY sa

denotes 

randomly selected search agents for current iteration,
2Randn

denotes random number 2. 

Step 5: Attacking prey for optimizing 
ay  

When pursuing prey, red-billed blue magpie demonstrates 
higher degree of hunting skill, teamwork. It uses fast picking, 
jumping, and flying to grab insects, among other strategies. 
Typically, small prey or plants are the main focus of small 
group operations. Red-billed blue magpies can work together 
to pursue larger prey, such as tiny animals or large insects, 
when they are in groups. It is expressed as Eq. (18). 
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where, 
foodY  represents the position of the food, DG  

represents the diverse strategies, and 
1Randn denotes random 

number 1 and ay
 
is used to increase the accuracy. 

Step 6: Food storage for optimizing t  

Red-billed blue magpies not only hunt and fight prey, but it 
also stockpile extra food in tree holes and other hidden places 
so they may eat it later, providing a consistent source of food 
even in times of famine. This procedure saves information 
about the solutions, making it easier for people to find the 
value that is globally optimal. It is given in Eq. (19). 
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where, j

oldfitness
 
and j

newfitness
 
denotes fitness values 

earlier than, following position modernize of thj  
red-billed blue 

magpie, 
t  

is used for decreasing the error rate. 

Step 7: Termination 

The weight parameter value of creator ay
 and t  from 

DGCRIN is improved by RBBMOA; it repeat step 3 until it 
acquires its halting criteria 1 YY . Then, the SLCDI-DGCRIN-

RBBMOA methods effectively classify the skin lesion by 
higher accuracy and low error rate. 

2) Complexity analysis: The RBBMOA algorithm is based 

on two key components: solution initialization with the 

primary approach functions, which include computing the 

fitness values and update the solutions. Let n represent the 

cout of search agents, T denote the maximal count of 

iterations, and dim refer to the problem's dimension. Finding 

the optimal location and updating the location of every 

solutions are included in the solution updating process, which 

has a computational difficulty of    dim2  nTOnTO , 

while the solution initialization process has a computational 

complexity of  nO . As a result, the overall computational 

complexity of the proposed RBBMOA algorithm is

  1dim2 TnO . 

IV. RESULT AND DISCUSSION 

 The experimental results of the proposed SLCDI-
DGCRIN-RBBMOA approach is implemented in Python 
utilizing PC along Intel Core i5, 16GB RAM, 3.2 GHz CPU, 
Windows7, examined utilizing various performance measures 
likes accuracy, specificity, recall, precision, F1-score, 
computation time, error rate. The SLCDI-DGCRIN-RBBMOA 
model is tested against several performance metrics. Attained 
result of SLCDI-DGCRIN-RBBMOA approach is compared 
with existing methods likes DNN-EAI-SLC, MSLC-CNN-OIF, 
CSC-DI-DCNN respectively.  Fig. 5 depicts the skin lesion 

classification workflow across different dermoscopic images, 
from segmented images, raw input images and pre-processed. 
Every modality captures exclusive anatomical details, which 
give to exact skin lesion detection. 

A. Performance Measures 

Performance metric accuracy, recall, specificity, F1-score, 
precision, computational time and error rate are examined for 
performance matrices. To measure performance metrics, 
performance matrix is required. Next matrixes are necessary to 
measure performance metrics. 
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Fig. 5. Output of the proposed SLCDI-DGCRIN-RBBMOA method. 

 True Positives: The number of actual positive cases that 
are accurately categorized as positive. 

 True Negatives: The number of actual negative cases 
that are accurately categorized as negative. 

 False Positives: The number of actual negative cases 
that are inaccurately classified as positive. 

 False Negatives: The number of actual negative cases 
that are inaccurately classified as negative. 

1) Accuracy: It is known as percentage of correctly 

identified cases among total instances and it is evaluated by 

Eq. (20), 

FNFPTNTP

TNTP
Accuracy








2) Precision: It assess the capacity of model for recognize 

positive instances accurately out of all predicted instances 

cases, which is estimated by Eq. (21), 
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3) Recall: It is measured through separating total count of 

elements in positive class with count of real positives and 

determined by Eq. (22), 

 FNTP

TP
call


Re



4) Specificity: The percentage of true negatives that 

approach exactly recognizes is known as specificity, it is 

exhibits in Eq. (23), 

FPTN

TN
ySpecificit




         

(23) 

5) F1-score: It represents ensemble mean of precision, 

recall. It is calculated using Eq. (24), 

recallprecision

recallprecision
scoreF




 21

           

(24) 
6) Error rate: It is a statistic used to express the prediction 

inaccuracy of the methodology depending on the actual 

approach. This is scaled in Eq. (25), 

100Error Rate Accuracy               (25) 

B. Performance Measures 

Fig. 6-14 shows simulation result of SLCDI-DGCRIN-
RBBMOA method. The performance measures are analyzed 
with existing DNN-EAI-SLC, MSLC-CNN-OIF, and CSC-DI-
DCNN methods. The analysis of accuracy performance is 
portrayed in Fig. 6. The graph-based design's superior ability to 
capture local interactions between features enhances prediction 
accuracy and minimizes misclassifications. Furthermore, 
modern optimization techniques refine the models tuning, 
resulting in improved accuracy in identifying actual cases of 
skin lesion. Here, SLCDI-DGCRIN-RBBMOA method attains 
21.51%, 12.38%, and 24.61% higher accuracy for actinic 
keratosis; 16.26%, 14.05%, 19.51% greater accuracy for Basal 
cell carcinoma; 26.21%, 20.65%, 22.31% greater accuracy for 
benign keratosis; 41.79%, 20.25%, 15.85% greater accuracy 
for Dermatofibroma; 25.21%, 30.65%, 20.45% greater 
accuracy for Melanocytic nevus; 10.56%, 27.56%, 19.67% 
higher accuracy for Melanoma; 18.78%, 30.45%, and 29.67% 
higher accuracy for Squamous cell carcinoma; 28.78% higher 
accuracy for vascular lesion; analyzed with existing techniques 
such as DNN-EAI-SLC, MSLC-CNN-OIF, and CSC-DI-
DCNN respectively. 

 
Fig. 6. Analysis of accuracy performance. 

 
Fig. 7. Analysis of precision performance. 

When compared to existing methods, the graph in Fig. 7 
shows that SLCDI-DGCRIN-RBBMOA achieves higher 
precision across most skin lesion types due to model parameter 
optimization using the RBBMOA. This improvement in 
precision results from methods ability to better distinguish 
among different types of skin lesion. The enhanced accuracy is 
reflected in the methods overall performance, demonstrating its 
efficiency in managing and mitigating skin lesion. Here, 
SLCDI-DGCRIN-RBBMOA method attains 28%, 50%, and 
21.51% higher Precision for actinic keratosis; 41.79%, 20.25%, 
15.85% higher Precision for Basal cell carcinoma; 20.21%, 
30.65%, and 28.31% higher precision for benign keratosis; 
30.78%, 28.45%, and 29.56% higher precision for 
Dermatofibroma; 10.56%, 18.2%, and 16.46% higher precision 
for Melanocytic nevus; 29.59%, 30.89%, and 38.56% higher 
precision for Melanoma; 30.89%, 29.35%, and 29.89% higher 
precision for Squamous cell carcinoma; 29.50%, 26.40%, 
30.67% greater precision for vascular lesion; analyzed with 
existing techniques likes DNN-EAI-SLC, MSLC-CNN-OIF, 
and CSC-DI-DCNN correspondingly. 

 
Fig. 8. Analysis of recall performance. 

The model's high recall in SLCDI-DGCRIN-RBBMOA is 
attributed to its ability to effectively identify positive cases 
which is shown in fig. 8. By capturing intricate relationships 
between features, DGCRIN ensures that cases indicators are 
not overlooked. Additionally, RBBMOA optimizes the model's 
parameters to enhance sensitivity and increase the number of 
true positives identified. This combination strengthens the 
model's robustness against false negatives, reducing the 
number of missed examples and thereby improving recall. The 
SLCDI-DGCRIN-RBBMOA method attains 23.07%, 41.17%, 
and 24.67% higher recall for actinic keratosis; 43.47%, 
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25.31%, 16.47% higher recall for Basal cell carcinoma; 
26.21%, 20.65%, and 22.31% higher recall for benign 
keratosis; 20.78%, 30.78%, and 12.56% higher recall for 
Dermatofibroma; 20.56%, 30.2%, and 28.46% higher recall for 
Melanocytic nevus; 30.29%, 35.89%, and 20.56% higher recall 
for Melanoma; 15.89%, 17.35%, and 29.46% higher recall for 
Squamous cell carcinoma; 30.26%, 20.46%, and 39.67% 
higher recall for vascular lesion; analyzed with existing 
techniques likes DNN-EAI-SLC, MSLC-CNN-OIF, and CSC-
DI-DCNN. 

 
Fig. 9. Analysis of specificity performance. 

Fig. 9 portrays the analysis of specificity performance. The 
specificity curve of a well-performing model will be lower at 
first and progressively higher as training goes on. The SLCDI-
DGCRIN-RBBMOA method attains 17.75%, 24.55% and 
12.66% high specificity for actinic keratosis; 21.01%, 14.08% 
and 17.33% high specificity for Basal cell carcinoma; 16.41%, 
29.65%, and 24.31% higher specificity for Benign keratosis; 
20.41%, 30.25%, and 14.83% higher specificity for 
Dermatofibroma; 29.41%, 30.48%, and 20.40% higher 
specificity for Melanocytic nevus; 17.01%, 29.08% and 
30.67% higher specificity for Melanoma; 10.40%, 28.30% and 
20.33% higher specificity for Squamous cell carcinoma; 
29.59%, 20.9%, 25.31% greater specificity for Vascular lesion, 
analyzed with existing DNN-EAI-SLC, MSLC-CNN-OIF, and 
CSC-DI-DCNN models. 

A model is considered to be comprehensive in recognizing 
all relevant cases and precise in forecasting positive cases if it’s 
F1-score is higher. A high F1-score for the meningioma would 
propose that the system successfully detects critical 
circumstances without generating an excessive count of false 
alarms in context of skin lesion classification. Fig. 10 displays 
the analysis of F1-score performance. The SLCDI- DGCRIN-
RBBMOA method attains 10.30%, 17.10% and 30.26% higher 
F1-score for the actinic keratosis; 28.02%, 11.56% and 
13.67%. 

F1-score for Basal cell carcinoma; 20.15%, 19.55%, and 
12.21% high F1-score for Benign keratosis; 28.67%, 30.67%, 
and 23.67% high F1-score Dermatofibroma; 30.19%, 20.78%, 
and 20.56% higher F1-score for Melanocytic nevus; 29.68%, 
10.56%, 26.67% greater F1-score for Melanoma; 29.78%, 
10.56%, 30.56% greater F1-score for Squamous cell 
carcinoma; 20.67%, 17.49%, and 30.92% larger F1-score for 
Vascular lesion; compared with existing DNN-EAI-SLC, 
MSLC-CNN-OIF, and CSC-DI-DCNN models. 

 
Fig. 10. Analysis of F1-score 

Fig. 11 shows the analysis of computational time 
performance. It is faster due to optimized training methods, 
which include advanced optimization algorithms and effective 
hyperparameter tuning, reducing the number of training 
iterations required. Additionally, the spatio-temporal nature of 
DGCRIN allows for the parallel handling of spatial and 
temporal features, further enhancing computational efficiency. 
The proposed SLCDI-DGCRIN-RBBMOA method attains 
15.01%, 13.44%, 14.27% lower computational time; analyzed 
with existing DNN-EAI-SLC, MSLC-CNN-OIF, and CSC-DI-
DCNN methods. 

A decreased error rate suggests improved model 
performance. Fig. 12 shows performance of error rate analysis. 

 
Fig. 11. Analysis of computational time performance. 

 
Fig. 12. Error rate analysis. 
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SLCDI-DGCRIN-RBBMOA has a significantly lower error 
rate than these existing methods, it indicates that the 
optimization techniques and advanced model architecture used 
in DGCRIN effectively reduce misclassifications, improving 
overall accuracy in identifying various skin lesion types. This 
reduction in error rates illustrates the new model's capacity to 
improve skin lesion classification reliability. Here, SLCDI-
DGCRIN-RBBMOA method attains15.85%, 23.37%, and 
22.04% lower Error rate for actinic keratosis; 25.97%, 20.57%, 
19.23% lower Error rate for Basal cell carcinoma;24.78%, 
22.67%, and 30.46% lower Error rate for benign keratosis; 
30.79%, 10.29%, 25.59% lower error rate for Dermatofibroma; 
20.45%, 25.89%, and 30.57% lower error rate for Melanocytic 
nevus; 19.67%, 30.16%, and 20.45% lower error rate for 
Melanoma; 20.67%, 30.15%, and 30.10% lower error rate for 
Squamous cell carcinoma; 15.79%, 20.56%, and 12.18% low 
error rate for vascular lesion; analyzed with existing 
approaches such as DNN-EAI-SLC, MSLC-CNN-OIF, and 
CSC-DI-DCNN correspondingly. 

The Computational Complexity of the proposed SLCDI-
DGCRIN-RBBMOA approach increases with increasing input 
size, indicating its scalability and appropriateness for bigger 
datasets. This graph in Fig. 13 highlights how much faster the 
SLCDI-DGCRIN-RBBMOA to the existing techniques likes 
DNN-EAI-SLC, MSLC-CNN- OIF and CSC-DI-DCNN 
respectively. Here, when the input size increases then the CPU 
operation decreases gradually. Fig. 14 depicts the confusion 
matrix. 

C. Comparative Analysis of Proposed Approach 

Table II presents a segmentation comparison with other 
methods depending upon accuracy, precision, recall, and F1-
score. ResNet 50 shows an accuracy of 70.7%, with a strong 
recall of 86.6%, but a lower precision of 76.8%. DarkNet19 
has higher accuracy but struggles with lower precision and 
recall. EfficientNet offers a well-balanced performance, 
achieving 79.5% accuracy, high precision, and moderate recall. 
Both the Dual Swin Transformer and Dual Vision Transformer 
perform well in recall; but both models have lower precision. 
The Dual Attention-guided Efficient Transformer shows good 
precision but lower recall. UNet3+ delivers strong results 

across all metrics, with an accuracy of 84.6%. The proposed 
Hybrid Dual Attention-guided Efficient Transformer and UNet 
3+ model stands out with exceptional results, achieving 99.4% 
accuracy, 92.9% precision, 94.5% recall, and 95.4% F1-score, 
making it the most effective model in segmentation. 

 
Fig. 13. Computational complexity performance analysis. 

 
Fig. 14. Confusion matrix analysis. 

TABLE II.  SEGMENTATION COMPARISON WITH OTHER MODELS 

Models Accuracy Precision Recall F1-score 

ResNet 18 [21] 70.7% 76.8% 86.6% 80.3% 

DarkNet19 [22] 75.4% 70.1% 67.3% 82.4% 

EfficientNet [23] 79.5% 87.9% 72.6% 80.7% 

Dual Swin Transformer [34] 76.4% 70.3% 74.9% 79.4% 

Dual Vision Transformer [35] 80.2% 76.9% 85.2% 71.5% 

Dual Attention-guided Efficient Transformer [30] 79.7% 80.1% 72.9% 67.8% 

UNet3+ [31] 84.6% 79.9% 83.2% 80.6% 

Hybrid Dual Attention-guided Efficient Transformer and UNet 3+ (Proposed) [30, 31] 99.4% 92.9% 94.5% 95.4% 
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TABLE III.  COMPARATIVE ANALYSIS OF PROPOSED APPROACH 

Methods 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

F1-score 

(%) 

Computational 

time (sec) 

Error rate 

(%) 

DNN-EAI-SLC [21] 77.47 75.69 87.80 76.22 80.37 250 22.52 

MSLC-CNN-OIF [22] 82.70 82.20 88.26 82.30 84.82 190 17.29 

CSC-DI-DCNN [23] 75.35 79.85 75.75 81.55 76.45 260 24.64 

RDCNN-SLC-MFCC [24] 83.59 86.15 77.48 78.22 84.64 240 16.40 

DCNN-SLMC-GAPI [25] 86.32 77.32 88.46 80.94 82.15 150 12.72 

CNN-SLC-SH [26] 86.76 87.32 75.75 76.40 82.58 180 13.23 

GAN-HMC [27] 84.08 85.20 88.45 80.75 80.01 230 15.91 

SLCDI-DGCRIN-RBBMOA (proposed) 99.16 98.16 98.11 97.20 98.27 99 0.592 
 

Table III provides a comparative analysis of SLCDI-
DGCRIN-RBBMOA method alongside several other existing 
methods based on key performance metrics, comprising 
specificity, accuracy, precision, recall, F1-score, computational 
time, and error rate. Among the methods evaluated, the 
proposed SLCDI-DGCRIN-RBBMOA approach outperforms 
the others, achieving the highest accuracy and strong results 
across each metrics, like specificity, precision, recall, and F1-
score. Additionally, it boasts the lowest error rate and 
computational time compared to the other methods. In contrast, 
approaches such as DNN-EAI-SLC, CSC-DI-DCNN, and 
RDCNN-SLC-MFCC exhibit lower accuracy and higher error 
rates, emphasizing the superior efficiency and effectiveness of 
the proposed model. This comparison emphasizes the 
exceptional performance with effectiveness of the SLCDI-
DGCRIN-RBBMOA approach. 

D. Discussion 

The proposed model for Skin Lesions Classification in 
Dermoscopic Images employs an Optimized Dynamic Graph 
Convolutional Recurrent Imputation Network (DGCRIN) to 
enhance classification performance. The methodology begins 
with preprocessing, utilizing Confidence Partitioning Sampling 
Filtering (CPSF) to remove noise, resize images, and enhance 
quality. This aligns with [29], who demonstrated that CPSF 
significantly improves feature extraction in medical imaging by 
preserving essential details while eliminating distortions. 
Following preprocessing, the Hybrid Dual Attention-guided 
Efficient Transformer and UNet3+ (HDAETUNet3+) is 
applied for segmentation. The efficiency of hybrid transformer-
based segmentation models in medical imaging has been well-
documented. The study in [30] proposed Dae-former, a dual 
attention-guided efficient transformer, demonstrating superior 
segmentation accuracy for medical images, which supports the 
effectiveness of HDAETUNet3+ in identifying precise lesion 
boundaries. Additionally, the integration of UNet3+ [31], 
which employs full-scale connectivity, further enhances 
segmentation performance, ensuring robust ROI extraction 
from dermoscopic images. For classification, Dynamic Graph 
Convolutional Recurrent Imputation Network (DGCRIN) is 
utilized. Research on graph convolutional networks in handling 
complex spatial dependencies supports the use of DGCRIN. 
The research in [32] demonstrated the effectiveness of dynamic 
graph convolutional networks in managing spatiotemporal 
dependencies, which is crucial for accurately classifying skin 
lesions with varying patterns and structures. Despite its 

advantages, the proposed model presents some limitations. One 
challenge is the computational demand of deep learning and 
optimization algorithms. As noted by study [33], optimization 
algorithms like the Red-Billed Blue Magpie Optimizer 
(RBBMOA) enhance accuracy but may require extensive 
computational resources, which could be a concern for real-
time medical applications. Additionally, the model’s 
complexity and fine-tuning requirements may pose challenges 
for clinical integration, a concern also raised in prior studies on 
deep learning-based skin lesion classification [2]. 

V. CONCLUSION 

The SLCDI-DGCRIN-RBBMOA model achieves 
significant advancements in skin lesion detection and 
classification. Utilizing dermoscopic images from the ISIC-
2019 dataset, the model incorporates CPSF for noise reduction, 
resizing, and image enhancement. The HDAETUNet3+ 
effectively segments the ROI, while DGCRIN classifies 
lesions, and RBBMOA optimizes DGCRIN, enhancing 
classification accuracy. This approach demonstrates superior 
performance, achieving 21.51%, 12.38%, and 21.51% higher 
accuracy, along with 15.85%, 23.37%, and 22.04% lower error 
rates compared to DNN-EAI-SLC, MSLC-CNN-OIF, and 
CSC-DI-DCNN, respectively. However, challenges such as 
image quality variability and overlapping lesion features 
remain areas for further exploration.  Future research could 
explore applying skin lesion classification techniques, with a 
focus on addressing disputes like data variability, noise in 
medical imaging, and the need for real-time diagnosis. 
Incorporating advanced feature extraction techniques could 
enhance lesion detection accuracy and improve classification 
performance. Additionally, optimizing deep learning models 
for domain-specific tasks could lead to more reliable skin 
cancer detection and prognosis. Moreover, incorporating multi-
modal data, such as clinical metadata (e.g., patient history and 
genetic factors), alongside dermoscopic images could improve 
diagnostic precision. Lastly, future research could focus on 
edge and mobile deployment, adapting the model for 
lightweight, resource-efficient implementations, making it 
accessible in remote and resource-limited areas. 
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