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Abstract—Early detection of cardiovascular diseases is vital, 

especially considering the alarming number of deaths worldwide 

caused by heart attacks, as highlighted by the world health 

organization. This emphasizes the urgent need to develop 

automated systems that can ensure timely and accurate 

identification of cardiovascular conditions, potentially saving 

countless lives. This paper presents a novel approach for 

heartbeats classification, aiming to enhance both accuracy and 

prediction speed in classification tasks. The model is based on 

two distinct types of features. First, morphological features that 

obtained by applying wavelet scattering network to each ECG 

heartbeat, and the maximum relevance minimum redundancy 

algorithm was also applied to reduce the computational cost. 

Second, dynamic features, which capture the duration of two pre 

R–R intervals and one post R–R interval within the analyzed 

heartbeat. The feature fusion technique is applied to combine 

both morphological and dynamic features, and employ a 

convolutional neural network for the classification of 15 different 

ECG heartbeat classes. Our proposed method demonstrates an 

overall accuracy of 98.50% when tested on the Massachusetts 

institute of Technology -Boston’s Beth Israel hospital arrhythmia 

database. The results obtained from our approach highlight its 

superior performance compared to existing automated heartbeat 

classification models. 

Keywords—Electrocardiogram (ECG); Convolutional Neural 

Network (CNN); Arrhythmia Rhythm (ARR); Maximum Relevance 

Minimum Redundancy (MRMR); Wavelet Scattering Network 

(WSN) 

I. INTRODUCTION 

The cardiac conduction system ensures an electrical 
impulse from pacemaker cells in the Sinoatrial (SA) node 
travels through atria and ventricles, causing a coordinated and 
timely muscle contraction [1]. Components include SA node, 
Atrioventricular (AV) node, bundle of His, bundle branches, 
and Purkinje network. 

Einthoven pioneered visualizing heart electrical activity 
using vectors in an equilateral triangle [2]. Six standard leads: 
I, II, III, aVR, aVL, and aVF provide a frontal view, while 
combining them gives a biplanar view of the 3D heart. ECG 
records instant heart electrical activity on the surface. 

ECG signals are commonly employed for the diagnosis of 
Cardiovascular Diseases (CVD) [3]. Advances in digital tech 

and cost-effective miniaturized acquisition units have led to the 
digital acquisition and processing of ECG signals. 

Studying Electrocardiogram (ECG) signals could greatly 
improve early detection of CVD, a major cause of mortality 
globally [4]. More than that coronary heart disease contributes 
to premature deaths, disabilities, and a cycle of poverty and ill 
health [5]. Manual CVD analysis is a time-consuming, an 
error-prone, especially with large datasets, and requires 
extensive training due to the signal’s complexity, as referred in 
[6-7-8, 9]. Mistakes in ECG analysis can lead to incorrect 
diagnoses and treatment. hence, the automatic classification of 
arrhythmias in ECG signals can be very useful as it can not 
only offer an impartial diagnosis, but it also has the potential to 
reduce the workload of medical professionals. As a result, the 
identification and categorization of ECG hold substantial 
importance in this field [10], facilitating advancements in CVD 
research. 

Cardiac ARR, termed abnormal cardiac rhythms, arise from 
irregular initiation or propagation of cardiac excitation waves 
[11]. They are categorized into ventricular such as Ventricular 
Premature Complex (VPC), couplets, and triplets, and into 
supraventricular such as Supraventricular Tachycardia (SVT) 
and Atrial Fibrillation (AF) types [12]. Ventricular Arrhythmia 
Rhythm (ARR) stemming from heart's lower chambers, 
heighten the risk of sudden cardiac death, causing around 
450,000 annual US fatalities. Most deaths result from 
ventricular tachycardia progressing to fatal ventricular 
fibrillation [13], necessitating prompt defibrillation. 

The rest of the paper begins with the related work in 
Section II, where automated arrhythmia detection methods are 
discussed in-depth. This is followed by the ECG heartbeat 
classification in Section III, which starts with a detailed 
description of the dataset. Next, the feature extraction section 
provides an in-depth explanation of feature extraction using 
WSN. The MRMR section then presents a comprehensive 
overview of dimensionality reduction and the optimization of 
scattering paths within the scattering network. The subsequent 
section describes the proposed CNN model for the 
classification task. Finally, the results in Section IV presents 
the various outcomes achieved in terms of evaluation metrics 
and optimization results, while the discussion in Section V 
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compares the findings of this research with state-of-the-art 
models. Finally, the paper is concluded in Section VI. 

II. RELATED WORKS 

In the last ten years, significant advancements have 
occurred in automatic ECG classification algorithms that 
employs classical machine learning models such as decision 
trees [18], linear discriminants [19], and logistic regression 
[20] for diagnosing cardiac arrhythmias [14-15-16, 17]. 
Techniques like Naïve Bayes, Support Vector Machine (SVM), 
and K-Nearest Neighbors (KNN) have also been utilized in this 
context [21-22, 23]. Artificial Neural Networks (ANN) have 
emerged also as a powerful tool [24-25, 26], capable of real-
time arrhythmia detection through the recognition of intricate 
patterns and correlations in ECG signals. Other approaches 
combine feature extraction with machine learning, including 
time domain features [26], frequency domain features [27], and 
combinations of both [28]. Wavelet analysis has also proven 
effective [29-30]. 

Recently, deep learning has become a promising approach 
for analyzing ECG signals, outperforming traditional machine 
learning methods. Models like Convolutional Neural Networks 
(CNN) [31-32], Recurrent Neural Networks (RNN) [33], and 
Long-Short Term Memory (LSTM) neural networks [34] excel 
due to their automatic feature extraction from raw ECG data. 
GPU and TPU, integral to high-performance computing, have 
significantly bolstered deep learning in ECG analysis by 
efficiently processing extensive data. 

Noteworthy datasets like PhysioNet [35] and PTB 
Diagnostic ECG database have further advanced deep learning 
in this field. These datasets encompass diverse ECG signals 
with varying abnormalities, facilitating improved learning and 
generalization of deep learning models. Moreover, deep 
learning has proven effective in vital tasks such as denoising 
[36], segmentation, and reconstruction of ECG signals. Recent 
advancements in ECG have enhanced the diagnosis and 
treatment of CVD, a leading global cause of mortality [37-38]. 

Past research has concentrated on categorizing ECG signals 
into broader groups like Normal Sinus Rhythm (NSR), ARR, 
and Congestive Heart Failure (CHF) [39-40]. Some researchers 
have also suggested interpreting ECG heartbeats based on the 
Association for the Advancement of Medical Instrumentation 
(AAMI) classes: non-ectopic beats (N), supraventricular 
ectopic beats (S), ventricular ectopic beats (V), fusion beats 
(F), and unknown beats (Q) [41-42]. Some other works used 
the annotations from the American Heart Association (AHA) 
that has proposed a set of 15 classes for arrhythmia 
classification based on the MIT–BIH arrhythmia Database. 

Osowski et al. [43] proposed a method to classify ECG 
heartbeats from the MIT–BIH arrhythmia database with 13 
classes. They combined features extracted using Higher-Order 
Statistics (HOS) and Hermite characterization of the QRS 
complex, feeding them into an SVM classifier. 

Rodriguez et al. [44] describe their approach to creating a 
classification algorithm for a variety of 14 ECG heartbeat 
classes using the MIT–BIH arrhythmia database. Their 
reported outcomes demonstrate significant accuracy. 

Furthermore, they highlight the algorithm's integration 
potential with Personal Digital Assistants (PDA). 

Chen et al. [45] proposed an innovative method for 
categorizing ECG beats. Their approach combines projected 
and dynamic features. The projected features involve a random 
projection matrix, normalized columns, and row-wise Discrete 
Cosine Transform (DCT). The dynamic features include 3 
weighted R–R intervals. The SVM classifier is employed for 
the categorization of heartbeats into either 15 or 5 distinct 
classes. 

Ihasanto et al. [46] present the Ensemble Multilayer 
Perceptron (MLP) method, streamlining ECG beat 
classification by integrating feature extraction and 
classification into one step. This eliminates the need for a 
separate preprocessing stage, potentially reducing 
computational requirements. The technique achieves over 97% 
accuracy, even with 10 ECG heartbeat classes. 

Melgani et al. [47] demonstrated SVM effective 
generalization in classifying sets of 10 ECG beats. They 
introduced an innovative approach, combining Particle Swarm 
Optimization (PSO) with SVM, to enhance the performance. 

Alqudah et al. [48] introduced an innovative deep learning 
technique aimed at arrhythmia classification through ECG 
analysis, utilizing iris spectrograms. Their method 
demonstrated remarkable recognition performance accuracy 
rates of 99.13%, 98.223%, and 97.494% for 13, 15, and 17 
distinct categories, respectively. These results were obtained 
using a dataset comprising 744 ECG from 45 individuals. 

Alqudah et al. [49] compared spectrogram representations 
in various CNN architectures using a dataset of 10,502 
heartbeats from MIT–BIH arrhythmia database, covering 6 
classes. They explored Log/Mel-Scale spectrograms, Bi-
Spectrum, and third-order cumulant in models like AOCT-
NET, Mobile-Net, Squeeze-Net, and Shuffle-Net. 

Rajkumar et al. [50] devised an intelligent approach 
employing CNN for the automated classification of ECG 
signals. Their methodology obviates the need for manual 
feature extraction, potentially enhancing the efficiency of 
cardiac patient screening for cardiologists. Demonstrating its 
effectiveness, the CNN adeptly categorized seven distinct ARR 
classes sourced from the MIT–BIH database. 

Shaker et al. [51] improved deep learning on the MIT–BIH 
arrhythmia dataset with GAN-based data augmentation. They 
used two CNN based approaches to avoid manual feature 
engineering. 

Ramkumar et al. [52] used ECG data from MIT–BIH 
arrhythmia database to classify normal, atrial premature, and 
ventricular escape heartbeats. They employed wavelet 
transform for preprocessing, independent component analysis 
for feature extraction, and MLP for classification. 

Arslan et al. [53] simultaneously trained an autoencoder 
and classifier, allowing the network to reduce overall error 
while accurately reconstructing the input and extracting key 
features useful for classification. Their work focused on 
classifying six types of ECG heartbeats, including normal 
beats, left and right bundle branch block beats, premature 
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ventricular contractions, atrial premature beats, and paced 
beats, using data from the MIT–BIH dataset. They achieved a 
classification accuracy of 99.99% by employing a 
convolutional autoencoder with an integrated classifier. 

Vavekanand et al. [54] used deep CNN to classify ECG 
beats as either normal or abnormal. They applied transfer 
learning, first training a generic model on ECG data from the 
MIT–BIH, then fine-tuning the model for specific patients. 
They compared the performance of these fine-tuned models of 
individual models trained only on a single patient's data. Both 
approaches performed well, with individual classifiers 
achieving an average balanced accuracy of 94.6% on the test 
set, while the fine-tuned models had a slightly lower accuracy 
of 93.5%. 

Zhou et al. [55] transformed ECG signals into different 
types of images using techniques like Recurrence Plot (RP), 
Gramian Angular Field (GAF), and Markov Transition Field 
(MTF), which they then fed into their classification model. To 
better retain important details, they developed a CNN based 
model with FCA for handling multiple types of ECG tasks. 
Their model achieved an accuracy of 99.6% when classifying 
five types of heartbeats using data from the MIT–BIH 
arrhythmia database. 

Although the previous proposed approaches successfully 
classify ECG heartbeats, most state-of-the-art methods tend to 
focus on specific types of heartbeats rather than addressing all 
15 types. When attempting to classify all heartbeat types, the 
proposed methods show lower performances compared to 
those works that limit their scope to just a few types. 
Additionally, many existing studies on heartbeat classification 
fail to analyze the computational complexity of their models, 
which makes them impractical for real-world applications. The 
importance of this new research lies in addressing the 
challenge of low classification performance in ECG heartbeat 
analysis, especially when dealing with a large number of 
classes. To overcome this issue, it proposes a novel approach 
to optimize the WSN and CNN, both of which have 
demonstrated effectiveness in classification tasks, particularly 
in arrhythmia detection. The main objective of this research 
paper is to develop an advanced heartbeat classification model 
that achieves high accuracy. Additionally, the proposed model 
is optimized to ensure its applicability in clinical settings. 

Based on these observations, the contributions of this study 
can be summarized as follows: 

 Develop a new method for detecting arrhythmias from 
ECG heartbeats with high accuracy. 

 Optimize the Wavelet Scattering Network (WSN) for 
feature extraction to make the proposed approach 
suitable for clinical use. 

III. ECG HEARTBEAT CLASSIFICATION 

A. Data Acquisition 

The research utilizes publicly available data from 
PhysioNet in .mat format [56], sourced from MIT–BIH 
arrhythmia database [57] a collection of ECG recordings. 

Our research used data from the MIT–BIH arrhythmia 
database, including 48 labeled ECG signals taken over 30 
minutes from 47 individuals. Lead II ECG signals are used in 
this study due to their sensitivity to heart rhythm, crucial for 
ARR detection. Sampling frequency was 360 Hz to capture 
detailed heart activity. 

Our study aims to categorize ECG heartbeats into 15 
distinct types as outlined in Table I. The sequential procedure 
outlined in Fig. 1 shows different steps of our proposed 
approach. Initially, to detect QRS complexes in each ECG 
signal, the Pan-Tompkins algorithm [58] is employed, which is 
a well-known method commonly used for QRS detection in 
ECG signals. This algorithm is tailored for accurate 
identification of QRS complexes in ECG signals. 

By applying the Pan-Tompkins algorithm, the majority of 
R peaks in ECG signals were successfully detected, ensuring 
comprehensive coverage of the QRS complex. A window of 
300 samples before and 500 samples after the R peak was used, 
resulting in 801 sample ECG heartbeats at 360 Hz sampling 
frequency. This approach captured P waves, QRS complexes, 
and T waves, enabling accurate arrhythmias identification. Fig. 
2 presents normal ECG heartbeat detected by pan-Tompkins 
algorithm. Dynamic features like post R–R interval, pre R–R 
interval, pre-pre R–R interval, and the (post R–R)-(pre R–R) 
interval difference were computed, aiding arrhythmia diagnosis 
based on heart rate variability. 

B. Data Preprocessing 

In this research, the data was utilized in its original raw, 
unprocessed state without applying any data cleaning 
techniques. Afterwards, the dataset was split into two 
segments, one for training and the other for testing. The hold-
out validation technique was employed, incorporating 
stratification to ensure an equal representation from each class. 
Specifically, 80% of samples from each class were allocated 
for training, while the remaining samples were designated for 
testing. The distribution of the training and testing data are 
illustrated in Table II. 

TABLE I.  ECG HEARTBEATS DISTRIBUTION 

Symbols Types of ECG Heartbeats No. of Heartbeats 

N Normal beat 11000 

L Left bundle branch block beat 8059 

R Right bundle branch block beat 7235 

A Atrial premature beat 1769 

E Ventricular escape beat 106 

V Premature ventricular contraction 6178 

/ (P) Paced beat 7017 

F Fusion of ventricular and normal beat 801 

Q Unknown beat 33 

! Ventricular flutter wave 472 

a Aberrated atrial premature beat 150 

e Atrial escape beat 16 

f Fusion of paced and normal beat 982 

j Nodal (junctional)escape beat 229 

x Non-conducted P wave (Blocked APB) 193 
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Fig. 1. Different steps of ECG heartbeat classification. 

 
Fig. 2. Normal ECG heartbeat. 

TABLE II.  HEARTBEAT DISTRIBUTION FOR TRAINING AND TESTING 

Symbols Training Instances Testing Instances 

N 8800 2200 

L 6448 1611 

R 5788 1447 

A 1416 353 

E 85 21 

V 4943 1235 

/ (P) 5614 1403 

F 641 160 

Q 27 6 

! 378 94 

a 120 30 

e 13 3 

f 786 196 

j 184 45 

x 155 38 

The dataset used for training shows an imbalance in class 
distribution, which lead to biased predictions and reduced 
model performance. To address this, the Synthetic Minority 
Oversampling Technique (SMOTE) [59] is employed. 

C. Feature Extraction 

Our research aimed to classify ECG heartbeats into 15 
classes to detect ARR. Accurate predictions relied on 
extracting key features, split into time domain for capturing 
signal variations, and frequency domain for understanding 
spectral characteristics. Time domain features reflect changes, 
while frequency domain features reveal signal frequencies. The 
WSN was utilized as a powerful technique, for efficient feature 
extraction from ECG signals. This method capitalizes on 
wavelet transforms unique properties to capture local and 
global ECG waveform variations. 

The WST is a mathematical method rooted in wavelets, 
allowing efficient signal analysis. Its strengths include 
translation and rotation invariances, suitable for image and 
audio analysis, stable features for denoising, and 
dimensionality reduction for enhanced accuracy [60]. This 
versatile technique finds use various domains such as audio, 
image, biomedical signals, speech, computer vision, and 
finance, excelling in classification and signal processing [61]. 

Fig. 3 illustrates the WSN with multiple layers, each 
applying a WST consisting of 3 stages. In the first stage, 
convolution uses a scale-specific wavelet ѱ, to gauge similarity 
between the wavelet and the signal. The second stage 
introduces nonlinearity via modulus operations to retain signal 
magnitude and diminish redundant details like noise. The final 
stage involves low-pass filter convolution Փ , for 
dimensionality reduction enhancing signal representation. 

The Gabor complex wavelet offers valuable traits beyond 
its time-frequency focus, including selective transmission of 
low-frequency components through its modulus acting as a low 
pass filter. By representing signal envelopes, it's adept at tasks 
like denoising and feature extraction [62]. 

 
Fig. 3. Wavelet scattering network. 

A Gabor wavelet in Eq. (1) is defined as the product of a 
Gaussian function and a complex exponential function. 

ѱ(𝑡) =  
1

√2𝜋𝜎2
𝑒

−𝑡2

2𝜎2𝑒𝑖𝜔𝑡                            (1) 

Where 𝑡 is the time, and 𝜎 is the standard deviation of the 
Gaussian function. In 𝜔 = 2𝜋𝑓, 𝑓 is the center frequency of ѱ, 
and 𝑖 is the imaginary unit. The envelope of the Gabor complex 
wavelet represents the low-pass filter, denoted as Փ. 

Փ(𝑡) =  |ѱ(𝑡)|                                (2) 
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The scale parameter 𝜎 in Gabor wavelet analysis is denoted 
as the standard deviation of the Gaussian envelope. It shapes 
the wavelet window. Larger 𝜎  means a wider Gaussian 
envelope for a broader wavelet, while smaller 𝜎  leads to a 
more localized wavelet. In ECG analysis, Gabor wavelets suit 
the QRS complex detection due to its resemblance to the QRS 
waveform, making it suitable for arrhythmia detections. 

Fig. 4 outlines the Gabor complex wavelet with its real and 
imaginary parts, with 0.5 second invariance scale. Fig. 5 
displays frequency bands for different scaling functions used. 

𝑆1𝑥(𝑡) = |𝑥 ∗ 𝜓σ1
| ∗ Φ                         (3) 

In the initial stage, the signal undergoes convolution with a 
low pass filter Փ in Eq. (4), offering high time resolution but 
limited frequency accuracy. Progressing to the first order in Eq. 
(3), 29 paths using various Gabor wavelets capture fast 
variations, yet some high-frequency details are lost due to a 
final convolution with this filter Փ. The second order in Eq. (5) 
employs 10 paths with different wavelets, enhancing frequency 
resolution. The resulting coefficients of all stages are 
summarized in matrix 𝑆  presented in Eq. (6), providing a 
comprehensive multi-scale description of signal variations. 

𝑆0𝑥(𝑡) = 𝑥(𝑡) ∗ 𝛷                              (4) 

𝑆2𝑥(𝑡) = ||𝑥 ∗ 𝜓𝜎1
| ∗ 𝜓𝜎2

| ∗ 𝛷                    (5) 

𝑆𝑥(𝑡) = {𝑆0, 𝑆1, … , 𝑆𝑛}                          (6) 

The study used a second order WSN to maintain 99% of 
signal energy. This choice prevented data loss and excessive 
computation. Two filter banks were employed, 𝑄1 = 8  and 
𝑄2 = 1, ensuring accurate and efficient signal analysis. 

One ECG heartbeat represented as a feature matrix of 
40x26. The training dataset grows to 145,250 instances using 
the SMOTE technique. To handle this, the matrix becomes 
40x26x145,250. Down-sampling with low pass filter reduces 
scattering coefficients, creating 26–time windows for 40 paths. 
Each tensor entry represents a path and time window. 

Fig. 6(a) outlines the scattering coefficients of the first filter 
bank. The scattergram depicts time on the x–axis and 
frequency on the y–axis, and their amplitudes on the z–axis. 

 
Fig. 4. Real part, imaginary part and low pass filter of Gabor wavelet. 

 
Fig. 5. Bandwidths of the first and the second filter banks. 

 
(a)   (b) 

Fig. 6. Scattergram of the first filter bank. (a) Scattering coefficients, (b) 

Scalogram coefficients. 

Fig. 6(b) displays the scalogram of the first filter bank, 
which effectively captures distinct high frequency details of the 
ECG signals. The dynamic features are oversampled 40 times, 
resulting in 40x4 tensor. After fusion, the tensor size becomes 
40x30 for one ECG heartbeat. 

D. Maximum Relevance Minimum Redundancy (MRMR) 

To tackle high computational costs and enhance testing 
accuracy while avoiding overfitting, the MRMR feature 
selection technique is employed to reduce the dimensionality. 
The MRMR algorithm incorporates various parameters, among 
which are entropy, joint entropy, and mutual information. 

Entropy is a measure of uncertainty in a random variable. It 
helps gauge information within it. To find entropy, the 
probabilities of outcomes was used in a sequence 
{𝑋1, 𝑋2, … , 𝑋𝑛}, denoted as 𝑋. This indicates the information 
required for prediction. 

𝐻(𝑋) =  − ∑ 𝑝(𝑥𝑖). 𝑙𝑜𝑔 𝑝(𝑥𝑖)
𝑛
𝑖=1                     (7) 

Joint entropy gauges the uncertainty within a group of 
random variables, reflecting their unpredictability when 
interconnected. It evaluates the information content between 
two variables 𝑋 and 𝑌, expressing their correlation. 

𝐻(𝑋: 𝑌) = − ∑ 𝑝(𝑥, 𝑦). log (𝑝(𝑥, 𝑦)𝑥,𝑦 )            (8) 

Where 𝑝(𝑥, 𝑦) represents the joint probability. 
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Mutual information serves as a metric to uncover the 
degree of knowledge sharing between two or more random 
variables. It gauges their similarity and correlation, shedding 
light on their interdependencies [64]. During mutual 
information calculation, the focus lies on shared information 
and the robustness of their relationship. 

A mutual information of zero implies independence 
between variables, while a higher value indicates a strong 
relationship and valuable information exchange. 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋: 𝑌) = ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔𝑥,𝑦
𝑝(𝑥,𝑦)

𝑝(𝑥).𝑝(𝑦)
 (9) 

Where 𝐻(𝑋: 𝑌)  is the uncertainty left about 𝑋  after 
knowing 𝑌. 

Common dimensionality reduction methods like Principal 
Component Analysis (PCA) and Linear Discriminate Analysis 
(LDA) often focus solely on feature category relationships, 
overlooking mutual information between features and targets. 
In contrast, the MRMR algorithm considers both, resulting in 
enhanced feature selection, predictive accuracy, and 
interpretability, offering a superior approach to dimensionality 
reduction. The MRMR algorithm measures the mutual 
information between features and the class label. A higher 
value indicates strong correlation, making a feature significant 
for classification. So, high mutual information between a 
feature 𝑋  and class label 𝐶  implies its importance in 
classification. 

𝑉𝑠 =
1

|𝑆|
∑ 𝐼(𝑥; 𝐶)𝑥  ԑ 𝑆                            (10) 

The concept of maximal relevance 𝑉𝑠 involves identifying 
features that have the highest mutual information, represented 
by max 𝑉𝑠, with the target class label 𝐶. And |𝑆| which is the 
number of subset features in 𝑆. 

Minimal redundancy evaluates the shared information 
between two features. High shared information implies 
redundancy. If two features convey the same data, one can be 
chosen for selection, reducing dimensions. Lower redundancy 
means better feature selection. So, the aim is to find features 
with low shared data. Let’s set S as subset features, and 𝑋 and 
𝑌 are the features. The redundancy computes as follows: 

𝑊𝑠 =
1

|𝑆|2
∑ 𝐼𝑥,𝑦 ԑ 𝑆 (𝑥; 𝑦)                       (11) 

The objective is to identify features with minimum 
redundancies by minimizing the function 𝑊𝑠 , where |𝑆| 
represents the number of subset features in S, and 𝐼(𝑋; 𝑌) 
denotes the mutual information between features X and Y. 

The MRMR algorithm aims to discover a subset of features 
that display high relevance and low redundancy. It considers 
both the interdependencies among features and their 
connections to the target variable. It aims to maximize a 
specific function to find features with the highest relevance 𝑉𝑠 
to the target variable, while minimizing redundancy 𝑊𝑠 among 
themselves [63]. The main goal is to achieve a balance between 
feature importance and mutual information, resulting in the 
selection of an optimal set of features. 

max(𝛽) , 𝛽 =
𝑉𝑆

𝑊𝑆
                              (12) 

Our study focuses on scoring features in subset features 𝑆. 
These scores stem from computing the mutual information 
between the target and the feature in question. This value is 
then divided by the mean mutual information between the 
previously chosen feature and the current one. 

𝑆𝑐𝑜𝑟𝑒𝑖(𝑥) =  
𝐼(𝑥;𝐶)

∑
𝐼(𝑥;𝑆)

𝑚𝑆ԑ 𝑖−1 𝑠𝑒𝑙𝑒𝑐𝑙𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

                 (13)  

Where 𝑚 is the number of features in the subset 𝑆. 

The MRMR algorithm evaluates scores of the 40 scattering 
paths in the scattering network as illustrated in Fig. 7. These 
scores indicate feature significance in classifying 15 ECG 
heartbeats. Higher scores highlight critical roles while lower 
scores mean less important features that can be replaced 
without accuracy loss. 

 
Fig. 7. Scores of different paths in wavelet scattering network. 

E. Heartbeat Classification Using CNN 

CNN is a specialized model designed specifically for 
processing 1-dimensional sequential data. Its key component is 
the convolutional layer, which employs filters to detect local 
patterns and dependencies within the input sequence. CNN 
chosen as a classifier to detect 15 heartbeat classes for 
efficiency. This minimizes computational costs compared to a 
2D CNN. Our decision considers available resources and the 
need to process large data quickly. 

In this research, a CNN with 14 hidden layers was used for 
classification as depicted in Table III. These layers include 
convolution, ReLU, normalization, global average pooling, 
fully connected, and SoftMax. They collectively differentiate 
the 15 ECG heartbeat classes. The convolutional layer involves 
sliding filters for computation as in Eq. (14). 

𝑦𝑡 = 𝑏 + ∑ ωi. 𝑥𝑡−𝑖+1
𝑘
𝑖=1                        (14) 

To ensure causality in the feature map, the output 𝑦𝑡  is 
determined by the current input and the past samples at each 
time step 𝑡. This means that for a given feature vector 𝑥 and a 
filter kernel ω, the mathematical formula for convolution can 
be expressed by taking into account both the current feature 
and previous inputs, meaning that a model only has access to 
past inputs to keep the causal nature of the process. 

The ReLU function sets negatives to zero, leaving positives 
unaffected as presented in Eq. (15). 
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𝑦𝑖 = max (0, 𝑥𝑖)                            (15) 

TABLE III.  CNN LAYERS 

Layer Types Activations Learnables 
Total 

Learnables 

Sequence Input 40 –– 0 

Convolution 1D 

Padding: [7,0] 
Stride: 1 

No. of Filters: 16 

Filter Size: 8 

16 
Weights: 8x40x16 

Bias: 1x16 
5136 

ReLU 16 –– 0 

Layer Normalization 16 
Offset: 16x1 
Scale: 16x1 

32 

Convolution 1D 

Padding: [7,0] 

Stride: 1 
No. of Filters: 32 

Filter Size: 8 

32 
Weights: 8x16x32 

Bias: 1x32 
4128 

ReLU 32 –– 0 

Layer Normalization 32 
Offset: 32x1 
Scale: 32x1 

64 

Convolution 1D 

Padding: [7,0] 

Stride: 1 
No. of Filters: 64 

Filter Size: 8 

64 
Weights: 8x32x64 

Bias: 1x64 
16448 

ReLU 64 –– 0 

Layer Normalization 64 
Offset: 64x1 
Scale: 64x1 

128 

1D Global Average 

Pooling 
64 –– 0 

Fully Connected 
Layers 

15 
Weights: 15x64 
Bias: 15x1 

975 

SoftMax 15 –– 0 

Classification Output 

Loss Function: 

Cross-entropy 

15 –– 0 

Normalization layers like batch normalization enhance 
neural network stability and convergence by standardizing 
prior layer outputs, ensuring suitable input ranges for 
downstream layers and promoting effective learning. 

�̂�𝑖 =
𝑥𝑖−µ

√𝛿2+ԑ
                                  (16) 

Where µ  is the mean value of the features from one 
example, 𝛿 is the standard deviation, and the term ԑ=10-5 used 
to prevent division by zero, ensures numerical stability. 
Finally, the output 𝑦𝑡  is scaled and shifted as follows: 

𝑦𝑖 = 𝛾. �̂�𝑖 + 𝛽                              (17) 

Where 𝛾 and 𝛽 represent the scaling and shifting learnable 
parameters. 

Global Average Pooling layers condense the spatial 
dimensions of the feature maps into a single value, which 
reduces the computational complexity of the model. This 
operation calculates the average of each feature map, resulting 
in a fixed-length vector. 

𝑌 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(∑𝑊𝑋 + 𝑏)                  (18) 

The SoftMax layer is applied to produce the probability 
distribution over the 15 ECG heartbeat classes. 

𝑦𝑖 =
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝑛
𝑗=1

                             (19) 

The configuration, architecture and settings for each layer 
of the proposed CNN model, analyzing an ECG heartbeat with 
the WSN, are outlined in Table III. 

In our study, CNN is used for analysis. Training employed 
the Adam optimizer with a 0.01 initial learning rate. 
Hyperparameters were manually tuned, like shuffling data 
using a mini-batch size of 64, enhancing performance, ensuring 
diverse pattern exposure, and preventing overfitting. 

F. Performance Metrics 

The effectiveness of our proposed model was evaluated 
using multiple assessment metrics like accuracy, sensitivity, 
specificity, precision, F1 score, negative predictive value, false 
positive rate, false discovery rate, false negative rate, and the 
Matthew Correlation Coefficient (MCC). 

Accuracy (ACC) =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                     (20) 

Sensitivity (SEN) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (21) 

Specificity (SPE) =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                           (22) 

Precision (PRE)  =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (23) 

F1 score (F1) =  
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
                  (24) 

Negative Predictive Value (NPV) =  
𝑇𝑁

𝑇𝑁+𝐹𝑁
              (25) 

False Positive Rate (FPR) =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
                    (26) 

False Discovery Rate (FDR) =  
𝐹𝑃

𝐹𝑃+𝑇𝑃
                   (27) 

False Negative Rate (FNR) =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
                    (28) 

MCC =
(𝑇𝑃.𝑇𝑁)−(𝐹𝑃.𝐹𝑁)

√(𝑇𝑃+𝐹𝑃).(𝑇𝑃+𝐹𝑁).(𝑇𝑁+𝐹𝑃).(𝑇𝑁+𝐹𝑁)
                 (29) 

The MATLAB Version R–2021b programming language 
was utilized to implement all algorithms on windows server. 
The system used for execution had an Intel(R) Core (TM), i5, 
CPU 6300U processor with a clock speed of 2.40 GHz. The 
RAM capacity was 12 GB, operated on a 64–bit architecture. 

IV. RESULTS  

The purpose of our research is to distinguish 15 types of 
ECG heartbeats. By integrating the MRMR algorithm, the 
computational challenges are reduced. Moreover, a CNN is 
used as a classifier to successfully identify and classify ECG 
heartbeats. The WSN generated a 40x26 feature matrix, and 
MRMR evaluated path importance by calculating scores. 

The study employed dimensionality reduction through 
score sorting to discover optimal paths for classification as 
illustrated in Fig. 8. It started with the top 5 paths, used a CNN 
model for testing data accuracy, and gradually added 5 more 
paths at each step until all 40 were included. Following the 
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approach presented in Fig. 9, the testing phase is assessed 
accuracy at each step. Increasing scattering paths boosted the 
testing accuracy as outlined in Fig. 10. 

The test results indicate a remarkable accuracy of 98.50% 
when utilizing 𝐾 = 20  scattering paths for ECG heartbeat 
classification. Adding more paths beyond the first 20 does not 
lead to any noticeable improvement in the overall testing 
accuracy. By selecting the top 20 paths based on their scores, 
the matrix size is reduced by half, maintaining accuracy while 
reducing feature dimensions by 50%. These changes include 
modifying the sequence input layer to 20 activations and 
adjusting the first convolution layer, resulting a reduction of 
9.51% in parameter count. The confusion matrix of 15 ECG 
heartbeats presented in Fig. 11 shows a 98.50% overall 
accuracy, although classes "Q" and "e" had lower accuracy due 
to limited training data, affecting the overall score. 

 

Fig. 8. Sorted scores of scattering paths in descending order. 

 
Fig. 9. Scattering paths selection algorithm. 

 

Fig. 10. Impact of adding scattering paths on testing accuracy.  

 
Fig. 11. Testing confusion matrix. 
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TABLE IV.  EVALUATION METRICS OF TESTING DATA 

Heartbeat Classes PRE (%) SEN (%) SPE (%) F1 (%) NPV (%) FPR (%) FDR (%) FNR (%) MCC (%) 

! 100 100 100 100 100 0 0 0 100 

A 98.01 97.54 99.92 97.73 99.89 0.08 1.99 2.55 97.63 

E 100 100 100 100 100 0 0 0 100 

F 94.29 82.50 99.91 88.00 99.68 0.09 5.71 17.50 88.00 

L 99.25 99.19 99.83 99.22 99.82 0.17 0.75 0.81 99.05 

N 98.01 98.64 99.34 98.32 99.55 0.66 1.99 1.36 97.77 

/ 99.29 99.93 99.87 99.61 99.99 0.13 0.71 0.07 99.54 

Q 100 16.67 100 28.57 99.94 0 0 83.33 40.81 

R 99.72 99.10 99.95 99.41 99.82 0.05 0.28 0.90 99.30 

V 97.60 98.95 99.61 98.27 99.83 0.39 2.40 1.05 98.00 

A 86.67 86.67 99.95 86.67 99.95 0.05 13.33 13.33 86.62 

e 100 33.33 100 50.00 99.98 0 0 66.57 57.73 

F 93.50 95.41 99.85 99.44 99.90 0.15 6.50 4.59 94.32 

J 97.50 86.67 99.99 91.76 99.93 0.01 2.50 13.33 91.89 

x 100 100 100 100 100 0 0 0 100 

Average 97.60 86.30 99.88 88.80 99.90 0.12 2.41 13.70 90.01 

TABLE V.  COMPLEXITY ANALYSIS OF THE PROPOSED MODEL 

Execution time for feature extraction from one ECG heartbeat using WSN 14.8 ms 

Prediction speed of the CNN ~3254 obs/s 

Total number of learnable parameters of the CNN 24351 

Memory usage after feature extraction for one ECG heartbeat 4160 bytes 

Morphological feature dimensionality for one ECG heartbeat 20x26 
 

Our innovative approach combines WSN with CNN for the 
classification of 15 ECG heartbeat classes. The results outlined 
in Table IV contain a remarkable performance metrics such as, 
a precision of 97.60% demonstrates precise positive 
predictions, a sensitivity of 86.30% signifies accurate 
identification of actual positives, a specificity of 99.88% 
reflects the model's prowess in correctly identifying negatives, 
a negative predictive value of 99.90% showcases minimal false 
negatives, a false positive rate of 0.12% indicates an extremely 
low occurrence of false positives, a false discovery rate of 
2.41% demonstrates limited false positive predictions, a false 
negative rate of 13.70% portrays proficiency in classifying 
positive heartbeats, and a Matthew correlation coefficient of 
90.01% signifies strong overall performance. 

As outlined in Table V, our analysis confirms the efficiency 
and speed of our WSN based model using CNN for ECG 
heartbeat classification. The feature extraction process takes 
just 14.8 milliseconds per heartbeat, with a prediction speed of 
3254 heartbeats per second. 

The model's parameters reduced to 24351, and memory 
usage per heartbeat is 4160 bytes. Our model delivers swift 
performance, low parameter count, and minimal computational 
cost. 

V. DISCUSSION 

A comprehensive analysis was conducted to evaluate the 
overall accuracy of the proposed model in this research paper, 
and compared it with the results from previous studies. This 
comparison is summarized in Table VI. To ensure a fair 
comparison, we specifically focused on studies that also 
addressed the classification of 15 ECG heartbeats from the 
MIT–BIH arrhythmia database. These studies are referenced as 
[44-45-48, 51]. The obtained results clearly demonstrate that 
our proposed model, based on WSN combined with a CNN, 
outperforms the previous studies cited previously. Our model 
not only achieves higher accuracy in classifying heartbeats, but 
it also demonstrates robust performance across various types of 
heartbeats. It provides more accurate results and shows great 
potential for accurately detecting different types of heartbeats. 

Our proposed method outperforms previous approaches by 
achieving high classification accuracy across the majority of 
ECG heartbeat types. Unlike existing models, our optimized 
technique enhances the model’s performance to a level that 
enables clinical application. By addressing the limitations of 
prior methods such as suboptimal feature extraction and 
insufficient classification accuracy our approach ensures more 
reliable heartbeat classification. As a result, the proposed 
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model surpasses state-of-the-art methods, achieving an overall 
accuracy of 98.50%. 

In this study, the proposed approach for ECG heartbeat 
classification is illustrated in Fig. 12. It begins with QRS 
detection, using Pan-Tompkins algorithm, which identifies the 
dynamic features of heartbeats. These heartbeats are then fed 

into the WSN, where morphological characteristics are 
extracted. Following that, the most relevant morphological 
features are selected using the MRMR method combined with 
the proposed algorithm. After fusing the dynamic and 
morphological features, a feature matrix of size 20x30 is 
obtained. This matrix is then input into a specially designed 
CNN to classify the heartbeats into 15 distinct categories. 

TABLE VI.  COMPARISON WITH OTHER PREVIOUS WORKS 

Studies No. of Classes Methodology Overall Accuracy (%) 

Rodriguez et al. [44] 15 PDA + Decision trees 96.12 

Chen et al. [45] 15 Projection + WRR + SVM 98.46 

Ihasanto et al. [46] 10 MLP 97 

Melgani et al. [47] 10 PSO + SVM 89.72 

Alqudah et al. [48] 

13 

15 

17 

Iris spectrum + CNN 

99.13 

98.23 

97.49 

Alqudah et al. [49] 6 STFT + CNN 93.8 

Rajkumar et al. [50] 7 End to end CNN 93.6 

Shaker et al. [51] 15 GAN + end to end CNN 98.0 

Ramkumar et al. [52] 3 DWT + ICA + MLP 96.50 

Arslan et al. [53] 6 Autoencoder + Classifier 99.99 

Vavekanand et al. [54] 2 Deep CNN 94.6 

Zhou et al. [55] 5 CNN model with FCA 99.4 

Proposed Method 15 WSN + MRMR + CNN 98.50 

 

Fig. 12. Proposed framework for ECG heartbeats classification. 

VI. CONCLUSION AND PROSPECTS 

This study introduces an efficient approach for classifying 
ECG heartbeats. Our proposed model begins by detecting 
heartbeats in ECG signals, followed by utilizing the WSN for 
feature extraction. WSN is a robust technique that captures 
both temporal and spectral characteristics. Feature fusion is 
performed, and CNN employed for the classification of ECG 
heartbeats. Our model outperforms existing systems in terms of 
prediction accuracy and precision, achieving 98.50% and 

97.60%, respectively, and also demonstrating low 
computational requirements due to the application of an 
innovative selection path techniques. 

Although the WSN has proven effective in extracting 
important time and frequency domain features, it still suffers 
from high computational cost due to the convolution with 
multiple wavelets. Our approach addresses this issue by 
employing the MRMR technique in order to optimize the 
model and reduce computational costs, by selecting the most 
suitable wavelet for the convolution process. 
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The results of our proposed approach further demonstrate 
its effectiveness in detecting 15 types of ECG heartbeats from 
the MIT–BIH arrhythmia database, making it highly applicable 
for clinical use. This method has the potential to aid in early 
diagnosis and save numerous lives worldwide. Moving 
forward, our future work aims to enhance accuracy on testing 
data and further reduce computational costs to enable 
implementation on devices such as smartphones. 
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