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Abstract—The Adaptive Decision Support System Learning 

Framework (A-DSS-LF) was developed to address diverse learner 

needs in blended learning environments by integrating learning 

styles, cognitive levels, practical skills, and value practices. This 

study validates the framework using the Fuzzy Delphi Method 

(FDM), a consensus-building tool that synthesizes expert opinions 

and addresses uncertainties in subjective judgments. A panel of 15 

experts evaluated the framework’s constructs: Learning Process, 

Learning Assessment, Decision Support System, and Adaptive 

Learning Profile. All constructs met the FDM’s consensus 

criterion, achieving threshold values between 0.087 and 0.118 

(≤0.2), indicating high consistency and low variability. The 

defuzzification process confirmed values exceeding 0.5, with 

scores ranging from 0.873 to 0.922 and expert agreement 

surpassing 75 percent for all elements. These findings confirm the 

robustness and applicability of the A-DSS-LF, validating its role 

in enhancing personalized learning outcomes and supporting 

teachers in tailoring adaptive learning resources. The framework 

is scalable and can be implemented in secondary school computer 

science education and online learning platforms to create 

personalized learning paths, improve engagement, and bridge the 

gap between online and offline learning. This study reinforces the 

significance of expert validation in adaptive learning frameworks, 

ensuring their scalability and adaptability for future applications 

in diverse educational settings. 
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I. INTRODUCTION 

In modern education, learners exhibit diverse needs, 
preferences, and abilities, requiring tailored educational 
approaches to enhance engagement and improve learning 
outcomes. According to study [1] and study [2], adaptive 
learning frameworks have emerged as a promising solution by 
leveraging computerized algorithms and data-driven 
methodologies to personalize learning experiences based on 
individual learner characteristics. Unlike traditional one-size-
fits-all teaching methods, these frameworks dynamically adjust 
content and instructional strategies, allowing learners to receive 
materials tailored to their cognitive and behavioral profiles [3] 
[4]. This adaptability enhances student engagement and 
optimizes learning outcomes by ensuring that instructional 
content aligns with individual learning needs. 

Particularly in blended learning environments, adaptive 
learning plays a crucial role in bridging online and offline 
learning components. As highlighted by study [5] and study [6], 
these frameworks create a more flexible and structured learning 

approach, allowing seamless integration between traditional and 
technology-enhanced learning experiences. This integration 
ensures that adaptive learning is not only personalized but also 
scalable and adaptable to different educational settings. 

Several adaptive learning frameworks have been developed 
to facilitate personalized learning experiences, with many 
operating within Learning Management Systems (LMS). For 
instance, the study in [7] proposed a three-stage implementation 
model designed to scale adaptive learning in fully online 
education, focusing on faculty training and infrastructure 
development. Similarly, the study in [8] introduced a 
knowledge-based adaptive model that aligns instructional 
content with students' proficiency levels, while [9] developed an 
Adaptive Virtual Learning Environment (AVLE) structured 
around content, student, and adaptation models to provide 
personalized learning paths. The Adaptive Learning System-
Knowledge Level (ALS-KL) by study [10] utilized pre-test and 
post-test assessments to classify learners and deliver content 
suited to their knowledge levels. 

Despite their potential, existing adaptive learning 
frameworks face significant limitations that hinder their 
effectiveness in diverse educational settings. The studies in[5] 
and [9] highlight that many models rely heavily on Learning 
Management Systems (LMS), making them less adaptable for 
classroom-based learning environments that require seamless 
integration between online and offline instruction. Additionally, 
the studies in [11] and [12] emphasize that most frameworks 
primarily focus on cognitive aspects while neglecting other 
critical learner attributes, such as practical skills and value-based 
learning, which are essential for holistic education. The absence 
of these elements limits the ability of adaptive learning to fully 
support diverse learner needs. 

Furthermore, the studies in [13] and [1] argue that many 
adaptive learning frameworks lack rigorous validation 
mechanisms, raising concerns about their effectiveness, 
scalability, and generalizability in different educational settings. 
Without systematic validation, these frameworks may fail to 
achieve consistent learning improvements across varied 
instructional contexts. Addressing these challenges requires a 
comprehensive and validated framework that integrates multiple 
learner characteristics while ensuring practical implementation 
in blended learning environments. 

To bridge these gaps, this study introduces the Adaptive 
Decision Support System Learning Framework (A-DSS-LF), 
designed to provide a more holistic and data-driven adaptive 

This research was supported by Universiti Malaysia Terengganu 
(TAPERG/2023/UMT/2564). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

1211 | P a g e  

www.ijacsa.thesai.org 

learning experience. A-DSS-LF differs from existing 
frameworks in several ways. Unlike traditional models that 
focus solely on cognitive skills, A-DSS-LF integrates learning 
styles, cognitive levels, practical skills, and value practices to 
offer a well-rounded personalized learning experience. 
Additionally, while many adaptive learning models are designed 
primarily for LMS-based environments, A-DSS-LF is structured 
to seamlessly integrate both online and offline learning 
environments, making it more suitable for blended learning. 
Another key feature of A-DSS-LF is its inclusion of a Decision 
Support System (DSS), which enables educators to make data-
driven instructional decisions and adapt learning interventions 
based on students' needs, a capability often missing in many 
existing adaptive learning frameworks. To ensure its 
effectiveness, adaptability, and scalability, A-DSS-LF is 
rigorously validated using the Fuzzy Delphi Method (FDM), 
allowing expert consensus to confirm its applicability in real-
world educational settings. These features position A-DSS-LF 
as a scalable and personalized approach to adaptive learning, 
supporting both student-centered learning and teacher-driven 
instructional strategies in blended learning environments. 

The objective of this study is to present the validation 
process and findings of the A-DSS-LF using the Fuzzy Delphi 
Method (FDM). This study aims to establish expert consensus 
on the framework’s constructs and components, ensuring its 
robustness, scalability, and applicability in blended learning 
environments. By detailing the validation process, this study 
examines how expert feedback informs the refinement and 
validation of A-DSS-LF to align with modern educational needs. 
Additionally, it evaluates the findings of the analysis, 
confirming the framework’s effectiveness in supporting 
personalized learning pathways and educator-driven decision-
making. Through this validation, the study contributes to the 
development of rigorously tested adaptive learning frameworks, 
ensuring their practical implementation in real-world 
educational settings to enhance adaptive learning experiences 
and improve instructional decision-making. 

The remainder of this article is structured as follows. Section 
II reviews related work on the FDM, highlighting its 
significance in expert-based validation. Section III details the 
FDM validation methodology, including expert selection and 
analysis procedures. Section IV presents the key findings, 
followed by a discussion in Section V. Finally, Section VI 
concludes with implications and future research directions. 

II. RELATED WORK 

To ensure the robustness and applicability of A-DSS-LF, a 
rigorous validation method is required. Traditional validation 
approaches may lack precision in expert-driven refinements, 
making them less suitable for validating adaptive learning 
frameworks. To address this challenge, this study employs the 
Fuzzy Delphi Method (FDM), a structured approach that 
systematically refines framework components through expert 
consensus. The following section explores FDM, its significance 
in validation research, and its applications in education. 

A. Fuzzy Delphi Method (FDM) 

Given the complexity of adaptive learning frameworks, 

robust validation measures are essential to ensure their 
effectiveness. The Fuzzy Delphi Method (FDM) was selected in 
this study for its ability to address uncertainty and systematically 
establish expert consensus. Originally introduced by [14] and 
later refined by study [15], FDM enhances the traditional Delphi 
Method by integrating fuzzy logic principles, allowing for 
quantitative evaluation of expert judgments. The study in [16] 
demonstrated FDM’s extensive applications in education, 
technology, and policy-making, where iterative refinement of 
theoretical models is necessary. 

Unlike conventional validation approaches, FDM refines 
framework components iteratively, ensuring expert consensus is 
achieved through multiple evaluation rounds. This process 
systematically reduces ambiguity and enhances precision in 
decision-making [17]. By incorporating expert-driven 
refinements, FDM ensures A-DSS-LF aligns with best practices 
in adaptive learning, strengthening its adaptability to blended 
learning environments. 

Several validation methods exist for refining adaptive 
learning frameworks, yet each has notable limitations. 
Traditional expert review methods, as described by study [18], 
rely heavily on qualitative assessments and descriptive 
feedback, often introducing bias and inconsistencies. FDM, by 
contrast, provides a structured and quantifiable approach, 
ensuring expert evaluations are numerically analyzed rather than 
solely based on subjective agreement. Structural Equation 
Modeling (SEM), commonly used for model validation [19], 
requires large datasets and strong statistical assumptions, 
making it unsuitable for early-stage validation where expert 
input is prioritized. Similarly, Design-Based Research (DBR) 
emphasizes real-world implementation through iterative testing 
[20], but its time-intensive nature makes it less practical for 
preliminary validation stages. 

In contrast, Analytic Hierarchy Process (AHP), as proposed 
by study [21], is widely used for ranking framework components 
based on weighted criteria. However, it lacks iterative expert 
feedback loops, making it less effective for dynamically 
evolving frameworks such as A-DSS-LF. Pilot testing with end-
users, though essential for usability validation, is more 
beneficial in later stages once a framework has been 
theoretically refined [22]. Given these comparisons, FDM 
emerges as the most suitable validation method for A-DSS-LF, 
as it ensures a balance between theoretical validation and expert-
driven iterative refinement. 

The effectiveness of FDM has been widely demonstrated in 
prior research. The studies in [17] and [23] applied FDM to 
validate STEM teaching modules and immersive learning 
innovations, ensuring that expert recommendations were 
systematically incorporated into framework refinements. 
Similarly, the study in [24] demonstrated FDM’s utility in 
validating hybrid learning strategies, synthesizing diverse expert 
opinions while maintaining theoretical and practical relevance. 
[25] and [16] confirm that FDM’s consensus thresholds—such 
as a defuzzification coefficient (d ≤ 0.2) and expert agreement 
exceeding 75%—enhance reliability and consistency in 
validation outcomes. These findings reinforce FDM’s reliability 
as a consensus-driven method, confirming its adaptability to 
various educational settings. 
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While FDM serves as the primary validation method, 
complementary approaches such as DBR, AHP, and Pilot 
Testing contribute to specific aspects of framework validation. 
DBR enables iterative real-world refinement [20], AHP 
prioritizes framework components systematically [21], and pilot 
testing gathers usability insights for final-stage improvements 
[22]. Together, these methods contribute to a robust validation 
process, ensuring both theoretical soundness and practical 
applicability. 

FDM’s ability to quantify expert judgments, structure 
consensus, and support iterative refinements makes it an 
indispensable validation tool for educational research. Prior 
studies [17], [23], and [24] confirm its effectiveness in aligning 
theoretical models with real-world applications. Furthermore, 
FDM’s alignment with contemporary challenges, including 
hybrid learning environments and emerging educational 
technologies, reinforces its continued relevance as a critical 
validation method for adaptive learning frameworks. 

III. METHODOLOGY 

As previously discussed, this study applies the FDM, 
introduced by study [15] to validate the proposed A-DSS-LF. 
The validation process follows a three-phase approach to ensure 
a systematic and structured evaluation of the framework. The 
following section provides a detailed explanation of each phase. 

A. Expert Selection 

To achieve consensus on the developed framework, 
purposive sampling was employed, a method particularly suited 
to the FDM, as noted by study [18]. The sample for this study 
comprised experts in the field of education. According to [26], 
an expert is an individual with extensive knowledge and skills 
in a specific domain, which in this context refers to subject 
matter experts. A panel of 23 experts was selected based on their 
roles, years of experience, and areas of expertise within the field 
of education. The number of experts selected aligns with study 
[18] recommendation that 10 to 50 participants are sufficient 
when the group is relatively uniform or homogenous. The 
selection criteria included educators with a minimum of 10 years 
of relevant experience, familiarity with teaching and learning 
practices, and holding various roles such as Head of Subject 
Panel, Chief Subject Assessor, School Improvement Specialist 
Coaches (SISC+), professors, Assistant Education Officers, and 
Senior Subject Teacher. This diverse panel ensured a 
comprehensive and well-rounded evaluation of the framework. 

B. A-DSS-LF Expert Validation 

The process was implemented in four key stages. The first 
stage involved the presentation of the A-DSS-LF to the expert 
panel through an online session. This presentation provided an 
overview of the framework, detailing its components, 
objectives, and application within blended learning 
environments. The session aimed to ensure that experts 
thoroughly understood the framework, enabling them to offer 
informed and constructive feedback. Following the presentation, 
a structured questionnaire was distributed to the experts. The 
questionnaire gathered insights on the framework’s relevance, 
feasibility, and practicality. It incorporated closed-ended 
questions, evaluated using a fuzzy Likert scale, and used open-

ended items to capture qualitative feedback. This combination 
ensured a comprehensive assessment of the framework. 

The 7-point Likert scale was used in this research to identify 
the constructs and elements of the A-DSS-LF, similar to the 
approach taken by study [23] and study [27]. The study in [23] 
utilized the 7-point Likert scale to develop constructs and 
elements for a framework, emphasizing its accuracy and ability 
to reduce ambiguity compared to a 5-point scale. Similarly, the 
study in [27] employed a 7-point Likert scale in their study to 
evaluate expert agreement on mobile learning implementation in 
competency-based education, analysing responses using fuzzy 
logic techniques. These precedents highlight the scale's 
suitability for capturing nuanced expert feedback in framework 
development. The linguistic variables were aligned with fuzzy 
scales to facilitate expert responses, as shown in Table I. The 
table illustrates the mapping of linguistic variables (e.g., 
"Strongly disagree," "Moderately agree") to their corresponding 
Likert scale values and fuzzy scale representations. This 
approach ensures that the fuzzy logic analysis is grounded in 
systematically quantified expert input, enhancing the precision 
of consensus measurement. 

TABLE I.  LINGUISTIC VARIABLE SCALE 

Linguistic Variables Likert Scale Fuzzy Scale 

Strongly disagree 1 (0.0,0.0,0.1) 

Moderately disagree 2 (0.0,0.1,0.1) 

Slightly disagree 3 (0.1,0.3,0.5) 

Neutral 4 (0.3,0.5,0.7) 

Slightly agree 5 (0.5,0.7,0.9) 

Moderately agree 6 (0.7,0.9,1.0) 

Strongly agree 7 (0.9,1.0,1.0) 

Source: [28]  

In the third stage, feedback collection was conducted. 
Experts submitted responses that included both quantitative and 
qualitative data. Quantitative feedback measured levels of 
agreement on various aspects of the framework, while 
qualitative feedback provided additional insights and actionable 
suggestions for refinement. Finally, the application of fuzzy 
logic for analysis was carried out. The collected data was 
analysed using fuzzy logic principles to measure the degree of 
expert consensus systematically. This structured approach 
ensured that the validation of the A-DSS-LF was grounded in 
expert consensus, enhancing its robustness and practical 
applicability in addressing diverse learner needs in blended 
learning environments. 

C. Validation of Constructs and Elements Through Fuzzy 

Delphi Analysis for the A-DSS-LF 

The analysis of questionnaire data using the FDM involved 
three main steps: applying Triangular Fuzzy Numbers, 
calculating the Expert Consensus Percentage, and performing 
the Defuzzification Process. These steps systematically assessed 
the expert responses to validate the constructs and elements of 
the A-DSS-LF. The linguistic variable data obtained from 
experts in this study, as shown in Table I, must be converted into 
Triangular Fuzzy Numbers. The Triangular Fuzzy Number has 
three values, m1, m2, and m3, indicating the minimum, 
reasonable, and maximum values, as shown in Fig. 1. 
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Fig. 1. The Triangular fuzzy number. 

Next, the threshold value (d) is calculated to measure the 
dispersion of expert opinions. An element is considered to have 
achieved expert consensus if d≤0.2, meaning that every element 
with a threshold value (d) equal to or less than 0.2 is accepted. 
As shown in Fig. 1, the threshold value (d) is calculated using 
Formula  (1). 

 (𝑚̃ 𝑛̃) = √
1

3
[(𝑚1 − 𝑛1)2 + (𝑚2 − 𝑛2)2 + (𝑚3 − 𝑛3)2] 

The second step involves calculating the percentage of 
expert agreement. According to the traditional Delphi technique, 
an item is accepted if the percentage of agreement among the 
expert group exceeds 75% [23], [29], [30]. Another requirement 
in the FDM is the defuzzification process. This step involves 
analysing the data by averaging fuzzy numbers to calculate the 
Fuzzy score (A). The Fuzzy score (A) must be greater than or 
equal to the median value (α-cut value) of 0.5 [19], [31], 
indicating that the element has achieved expert consensus. The 
Fuzzy score (A) determines the ranking and identifies 
acceptable elements based on expert agreement. An item is 
accepted if the Fuzzy score (A) is equal to or greater than 0.5; 
otherwise, it is rejected. The fuzzy score (A) is calculated using 
the formula shown in Formula (2). 

  

The summary of conditions for the acceptable elements for 
the A-DSS-LF is shown in Table II. 

TABLE II.  KEY METRICS FOR FUZZY LOGIC ANALYSIS 

Metric Description Conditions 

Threshold Value 

(d) 

Measures the dispersion of expert 

opinions. Consensus is achieved if 

d≤0.2. 
d≤0.2 

Percentage 

Agreement 

The proportion of experts agreeing 

on an element. 
> 75% 

Defuzzification 
Converts fuzzy values into crisp 

numbers for interpretation. 

≥ α-cut value = 

0.5 

Following the criteria outlined in Table II, the analysis 
confirmed that elements meeting both the threshold value 
(d≤0.2) and achieving a Fuzzy score (A≥0.5) were accepted. 
Additionally, elements that achieved an expert consensus 
percentage of more than 75% were validated. These combined 
criteria include only elements with strong expert agreement and 
alignment. The ranked elements provide valuable insights into 
the framework’s relevance and feasibility, reinforcing its 
robustness in addressing diverse learner needs. 

IV. RESULT 

This section presents the findings of the FDM analysis 
conducted to validate the constructs and elements of the A-DSS-
LF. The findings include an overview of the expert demographic 
information and the outcomes of the FDM validation process. 

A. Expert Demographic Information 

Due to scheduling challenges and time constraints, only 15 
experts were available for the final discussion session. This 
number still falls within the range of 10 to 15 experts suggested 
by study [32] for achieving a reliable consensus when the expert 
group is not homogeneous. The expert panel in this study 
reflects a diverse range of qualifications, expertise, and 
professional experience, ensuring robust and informed feedback 
during the validation process. Table III summarises their 
demographics, categorised into three key areas: Level of 
Education, Work Experience, and Field of Expertise. 

TABLE III.  SUMMARY OF EXPERT PANEL 

Level of Education Frequency 

PhD 2 

Master Degree 4 

Bachelor Degree 9 

Total 15 

Work Experience (Years) Frequency 

11 to 15 years 1 

16 to 20 years 5 

More than 20 years 9 

Total 15 

Field of Experts Frequency 

Information Technology 1 

Business Management 2 

Education Technology 1 

Coaching 1 

Science and Mathematics 2 

Accounting 1 

Multimedia 1 

History 1 

Computer Science 1 

Languages 2 

Physical Education 1 

Decision Support Systems 1 

Total 15 

This diversity of backgrounds, spanning fields such as 
educational technology, decision support systems, computer 
science, and language studies, adds significant value to the 
consensus-building process. It ensures a comprehensive 
evaluation of the A-DSS-LF and its applicability in blended 
learning environments. 

B. Expert Consensus Findings Using the FDM 

Data analysis from the closed-ended questionnaire was 
conducted systematically using a Microsoft Excel data sheet 
developed by study [33]. This framework has four constructs: 
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the Learning Process, the Learning Assessment, the Decision 
Support System, and the Adaptive Learning Profile. Each 
construct comprises three elements, except for the Learning 
Assessment, which includes seven 

Refer to Table V, which shows th. The elements given to the 
experts are stated in Table IV.at the threshold value (d) for each 
construct is below the acceptable limit (d≤0.2), indicating that 
all constructs meet the FDM qualification criteria. Specifically, 
the overall threshold value (d) for the Learning Process construct 
is d=0.114, the Learning Assessment construct is d=0.094, the 
Decision Support System construct is d=0.092, and the Adaptive 
Learning Profile construct is d=0.097. These values confirm that 
all constructs are acceptable based on the Fuzzy Delphi process. 

In addition, individual elements within the constructs also 
meet the Fuzzy qualification requirement, with d≤0.2 for each 
element. The details are below: 

 Learning Process elements: E1 (d=0.111), E2 (d=0.112), 
and E3 (d=0.118) are all acceptable. 

 Learning Assessment elements: E4 (d=0.094), E5 
(d=0.087), E6 (d=0.094), E7 (d=0.112), E8  

 (d=0.089), E9 (d=0.094), and E10 (d=0.094) meet the 
requirement. 

 Decision Support System elements: E11 (d=0.087), E12 
(d=0.087), and E13 (d=0.102) are within the threshold. 

 Adaptive Learning Profile elements: E14 (d=0.108), E15 
(d=0.092), and E16 (d=0.092) are also acceptable. 

TABLE IV.  ELEMENTS FOR THE A-DSS-LF ACCORDING TO THE 

CONSTRUCTS 

Learning Process 

E1 Apply adaptive learning in the blended learning environment. 

E2 Apply student-centred approach 

E3 Apply self-regulated learning 

Learning Assessment 

E4 Identify students' learning styles. 

E5 
Apply a learning style model to determine students' learning 

styles. 

E6 Use systematic instruments to assess students' learning styles. 

E7 Use systematic instruments to evaluate student's learning status. 

E8 
Use systematic instruments capable of measuring specific 
learning objectives. 

E9 
Use systematic instruments to assess various learning domains, 

including cognitive skills, practical skills, and value practices. 

E10 
Use systematic instruments with clear criteria to determine 
students' mastery levels for various learning domains. 

Decision Support System 

E11 
Utilise identified student characteristics (student model) to make 
adaptive decisions. 

E12 
Use a collection of information (learning object model) to support 

adaptive decision-making. 

E13 
Apply criteria to align student characteristics with available 
information for making adaptive decisions. 

Adaptive Learning Profile 

E14 
Recommend personalized learning paths based on students' 

characteristics. 

E15 Provide tailored feedback aligned with students' characteristics. 

E16 Suggest learning resources that match students' characteristics. 

TABLE V.  SUMMARY OF THRESHOLD VALUE FOR CONSTRUCTS AND ELEMENTS IN A-DSS-LF 

Experts 
Learning Process Learning Assessment 

Decision Support 

System 

Adaptive Learning 

Profile 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 

1 0.102 0.092 0.138 0.132 0.107 0.086 0.092 0.096 0.066 0.086 0.107 0.107 0.122 0.112 0.096 0.096 

2 0.055 0.065 0.031 0.027 0.047 0.067 0.065 0.057 0.066 0.067 0.047 0.047 0.036 0.045 0.057 0.057 

3 0.102 0.092 0.138 0.132 0.107 0.086 0.092 0.096 0.066 0.086 0.107 0.107 0.122 0.112 0.096 0.096 

4 0.102 0.092 0.138 0.132 0.107 0.086 0.092 0.096 0.066 0.086 0.047 0.047 0.036 0.045 0.096 0.096 

5 0.055 0.092 0.031 0.027 0.047 0.067 0.301 0.057 0.088 0.067 0.047 0.047 0.273 0.282 0.057 0.057 

6 0.102 0.301 0.256 0.027 0.047 0.067 0.092 0.096 0.066 0.086 0.047 0.047 0.036 0.112 0.096 0.096 

7 0.102 0.092 0.138 0.132 0.107 0.086 0.092 0.096 0.066 0.086 0.107 0.107 0.122 0.112 0.096 0.096 

8 0.102 0.092 0.138 0.263 0.047 0.086 0.092 0.096 0.066 0.086 0.107 0.107 0.122 0.112 0.096 0.096 

9 0.102 0.092 0.031 0.027 0.047 0.086 0.092 0.057 0.066 0.086 0.047 0.107 0.036 0.112 0.057 0.057 

10 0.292 0.065 0.256 0.027 0.289 0.308 0.065 0.057 0.327 0.067 0.047 0.047 0.273 0.045 0.057 0.057 

11 0.055 0.065 0.256 0.027 0.047 0.067 0.301 0.299 0.088 0.308 0.047 0.289 0.036 0.282 0.299 0.299 

12 0.292 0.301 0.031 0.263 0.047 0.067 0.092 0.057 0.088 0.067 0.047 0.047 0.036 0.045 0.057 0.057 

13 0.055 0.092 0.031 0.027 0.107 0.086 0.065 0.057 0.088 0.067 0.107 0.047 0.122 0.045 0.057 0.057 

14 0.055 0.065 0.031 0.027 0.047 0.067 0.065 0.057 0.066 0.067 0.289 0.047 0.036 0.045 0.057 0.057 

15 0.102 0.092 0.138 0.132 0.107 0.086 0.092 0.096 0.066 0.086 0.107 0.107 0.122 0.112 0.096 0.096 

Threshold 

Value (d) 
for each 

0.111 0.112 0.118 0.094 0.087 0.094 0.112 0.092 0.089 0.094 0.087 0.087 0.102 0.108 0.092 0.092 

Value (d) 

Construct 
0.114 0.094 0.092 0.097 
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Furthermore, the Fuzzy qualification requirement includes 
the percentage of expert consensus, which must exceed more 
than 75% for each element. The results demonstrate that all 
items meet this additional criterion, ensuring strong expert 
agreement for all elements and constructs. The threshold value 
(d), expert consensus percentage, defuzzification, and item 
position for the above elements are shown in Table VI. 

Table V summarises the defuzzification process for the four 
constructs: Learning Process, Learning Assessment, Decision 
Support System, and Adaptive Learning Profile. The findings 
provide insight into the priority and significance of each 
element, as detailed below: 

1) Learning process: The Learning Process construct 

comprises three elements, with Fuzzy scores (A) ranging from 

0.873 to 0.904. All elements exceeded the FDM’s α-cut value 

of A≥0.5 and met the expert consensus benchmark of more than 

75%, confirming their acceptability and inclusion in the 

framework. The highest-ranked element, E2 (A=0.904, Rank1), 

demonstrates the most substantial expert agreement. E1 

(A=0.898, Rank2) follows closely, reflecting its prioritization 

within the construct. Although ranked lowest, E3 (A=0.873, 

Rank3) still satisfies the Fuzzy Delphi criteria, validating its 

inclusion. 

2) Learning assessment: The Learning Assessment 

construct comprises seven elements, with Fuzzy scores (A) 

ranging from 0.878 to 0.922. All elements exceeded the FDM’s 

α-cut value of A≥0. and met the expert consensus benchmark 

of more than 75%, confirming their acceptability and inclusion 

in the framework. The highest-ranked element, E9 (A=0.922, 

Rank1), reflects the most substantial expert agreement, likely 

due to its alignment with the primary objectives of the 

construct. E6 (A=0.909, Rank2) and E10 (A=0.909, Rank2) 

share the second rank, highlighting their equal importance. E7 

(A=0.904, Rank4) and E8 (A=0.902, Rank5) follow closely, 

demonstrating high levels of expert agreement. Although 

ranked lower, E5 (A=0.896, Rank6) and E4 (A=0.878, Rank7) 

remain valid, contributing to the construct’s 

comprehensiveness. 

3) Decision support system: The Decision Support System 

construct consists of three elements, with Fuzzy scores (A) 

ranging from 0.884 to 0.896. All elements exceeded the FDM’s 

α-cut value of A≥0.5 and met the expert consensus benchmark 

of more than 75%, validating their inclusion in the framework. 

The highest-ranked element, E11 (A=0.896, Rank1), reflects 

strong expert prioritization. E12 (A=0.884, Rank2) and E13 

(A=0.884, Rank2) share the second rank, indicating equal 

agreement and relevance within the construct. 

4) Adaptive learning profile: The Adaptive Learning 

Profile construct comprises three elements, with Fuzzy scores 

(A) ranging from 0.891 to 0.902. All elements exceeded the 

FDM’s α-cut value of A≥0.5 and met the expert consensus 

benchmark of more than 75%, confirming their acceptability. 

E15 (A=0.902, Rank1) and E16 (A=0.902, Rank1) share the top 

rank, reflecting the most substantial expert agreement and 

prioritization. Although ranked lower, E14 (A=0.891, Rank3) 

remains valid and aligned with the Fuzzy Delphi criteria, 

validating its inclusion in the construct. 

TABLE VI.  SUMMARY OF THE DEFUZZIFICATION PROCESS FOR CONSTRUCTS AND ELEMENTS IN A-DSS-LF  

Elements 
Triangular Fuzzy Numbers Defuzzification Process 

Expert 

Consensus 

Acceptable 

Element 
Ranking Threshold, 

d, value 

% Expert 

Consensus 
m1 m2 m3 

Fuzzy 

Score (A) 

Learning Process 

1 0.111 87% 0.780 0.927 0.987 0.898 Accepted 0.898 2 

2 0.112 87% 0.793 0.933 0.987 0.904 Accepted 0.904 1 

3 0.118 80% 0.740 0.900 0.980 0.873 Accepted 0.873 3 

Learning Assessment 

4 0.094 87% 0.740 0.907 0.987 0.878 Accepted 0.878 7 

5 0.087 93% 0.767 0.927 0.993 0.896 Accepted 0.896 6 

6 0.094 93% 0.793 0.940 0.993 0.909 Accepted 0.909 2 

7 0.112 87% 0.793 0.933 0.987 0.904 Accepted 0.904 4 

8 0.092 93% 0.780 0.933 0.993 0.902 Accepted 0.902 5 

9 0.089 93% 0.820 0.953 0.993 0.922 Accepted 0.922 1 

10 0.094 93% 0.793 0.940 0.993 0.909 Accepted 0.909 2 

Decision Support System 

11 0.087 93% 0.767 0.927 0.993 0.896 Accepted 0.896 2 

12 0.087 93% 0.767 0.927 0.993 0.896 Accepted 0.896 1 

13 0.102 87% 0.753 0.913 0.987 0.884 Accepted 0.884 3 

Adaptive Learning Profile 

14 0.108 87% 0.767 0.920 0.987 0.891 Accepted 0.891 3 

15 0.092 93% 0.780 0.933 0.993 0.902 Accepted 0.902 1 

16 0.092 93% 0.780 0.933 0.993 0.902 Accepted 0.902 1 
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All elements' Fuzzy scores (A) range from 0.873 to 0.922, 
exceeding the FDM’s α-cut value of A≥0.5 and the more than 
75% expert consensus benchmark, confirming their validity. 
The findings highlight the prioritization of significant elements, 
such as E2 in the Learning Process, E9 in the Learning 
Assessment, E11 in the Decision Support System, and E15/E16 
in the Adaptive Learning Profile. These results provide a robust 
foundation for the A-DSS-LF, ensuring its alignment with 
expert consensus and relevance in addressing diverse learner 
needs. 

Table VII presents the summary ranking of all elements. 
According to Table VII, experts reached the highest agreement 
on E9 (A=0.922), emphasizing the importance of using 
systematic instruments to assess various learning domains. This 
element is the most essential component in the proposed A-DSS-
LF framework. 

TABLE VII.  SUMMARY RANKING OF ALL A-DSS-LF ELEMENTS 

Ranking Acceptable Element Elements 

1 0.922 E9 

2 0.909 E6 

2 0.909 E10 

4 0.904 E2 

4 0.904 E7 

6 0.902 E8 

6 0.902 E15 

6 0.902 E16 

9 0.898 E1 

10 0.896 E12 

11 0.896 E5 

11 0.896 E11 

13 0.891 E14 

14 0.884 E13 

15 0.878 E4 

16 0.873 E3 

V. DISCUSSION 

This section discusses the implications of the findings from 
the FDM analysis in validating the A-DSS-LF. It interprets the 
results, highlighting how the validated constructs and elements 
align with the study’s objectives and contribute to a robust 
framework. Furthermore, the discussion explores the relevance 
of these findings in supporting personalized learning pathways 
within blended learning environments. Lastly, it identifies 
limitations and suggests directions for future research to 
enhance the framework’s applicability and impact. 

A. Expert Panel and Its Role in FDM Validation 

In this study, the number of experts on the panel, 15, for the 
FDM process was deemed acceptable, although it did not fully 
meet the desired target. Prior research supports this approach, as 
studies such as [27], [23], [29], and [17] have employed expert 
panels ranging from 11 to 17 participants to achieve consensus 
on educational frameworks. Selecting an appropriate number of 

experts is critical to ensuring diverse perspectives, reliable 
consensus, and statistical robustness. This study’s selection of 
15 experts aligns with established FDM practices, thereby 
enhancing the credibility of the findings. 

B. FDM Validation of A-DSS-LF 

This section discusses the findings from the FDM validation, 
confirming the relevance of the A-DSS-LF. The results 
demonstrate that all elements across the four key constructs—
Learning Process, Learning Assessment, Decision Support 
System, and Adaptive Learning Profile—achieved strong expert 
consensus. Each element successfully fulfilled the three 
essential criteria for FDM analysis: 

 Meeting the required threshold value (d ≤ 0.2). 

 Achieving an expert agreement of >75%. 

 Exceeding the α-cut defuzzification score (A ≥ 0.5). 

These findings validate the A-DSS-LF framework's ability 
to support adaptive learning in blended environments, 
reinforcing its role in enhancing engagement, personalization, 
and data-driven decision-making. The interactions between the 
four constructs—Learning Process, Learning Assessment, 
Decision Support System, and Adaptive Learning Profile—are 
illustrated in Fig. 2, showing how these components collectively 
enable adaptive learning experiences. 

 

Fig. 2. Adaptive-decision support system-learning framework. 

The following subsections provide a detailed discussion of 
the research findings, focusing on expert validation for each 
construct and the significance of the validated elements in 
supporting adaptive learning within the A-DSS-LF framework. 

1) Learning process: The effectiveness of a structured 

learning process within a blended learning environment 

depends on its ability to adapt to individual learner needs, 

promote student-centered learning, and encourage self-

regulation. Expert validation conducted in this study confirms 

the importance of these three key elements—blended learning 

environment, student-centered approaches, and self-regulated 

learning—as fundamental components in the learning process 

within the A-DSS-LF. All elements surpassed the α-cut 

threshold (A ≥ 0.5) and the 75% consensus benchmark, 

confirming their necessity in the A-DSS-LF framework. 

Experts agreed that integrating these elements enhances learner 
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engagement and autonomy while aligning with best practices in 

adaptive learning and blended education models. 

Among these, applying a student-centered approach (A = 
0.904, Rank 1) received the highest expert consensus, 
emphasizing its role in fostering learner autonomy, engagement, 
and decision-making. The findings indicate that placing students 
at the center of the learning process improves motivation and 
enhances participation, reinforcing the importance of active 
learning strategies. This aligns with prior research, which 
highlights that student-centered learning fosters self-directed 
learning and critical thinking [34][35][36]. Applying adaptive 
learning in the blended learning environment (A = 0.898, Rank 
2) was also strongly supported, as experts acknowledged that 
personalized learning paths, tailored feedback, and flexible 
progression help accommodate diverse learning needs. Previous 
studies similarly emphasize that adaptive learning improves 
instructional effectiveness by allowing students to advance at 
their own pace while receiving personalized support [7][37]. 

Although applying self-regulated learning (A = 0.873, Rank 
3) ranked lowest, experts agreed on its significance in fostering 
learner independence, metacognitive skills, and academic 
performance. The findings suggest that students who engage in 
self-regulated learning demonstrate greater persistence and 
improved learning outcomes, particularly when they receive 
structured feedback and tracking tools. This is consistent with 
[38], who found that students with strong self-regulation skills 
achieve higher engagement and academic success in digital 
learning environments. Additionally, [39] emphasize that goal 
setting, adaptive scaffolding, and self-monitoring mechanisms 
are crucial in supporting self-regulation, reinforcing the 
importance of incorporating these strategies into the A-DSS-LF 
framework. 

2) Learning assessment: A practical learning assessment is 

crucial for understanding student progress, identifying learning 

gaps, and personalizing instructional strategies. In Malaysian 

secondary education, the National Philosophy of Education 

emphasizes balancing cognitive, practical, and value-based 

domains. The FDM validation in this study confirms the 

importance of systematic learning assessments, with all 

elements surpassing the α-cut threshold (A ≥ 0.5) and the 75% 

consensus benchmark, validating their inclusion in the A-DSS-

LF. 

Among these elements, systematic instruments with clear 
criteria to determine students' mastery levels (A = 0.922, Rank 
1) received the most substantial expert consensus, highlighting 
the need for structured assessment frameworks. This aligns with 
[40], who demonstrated the effectiveness of  DSS in behavioral 
modeling for personalized learning assessments. Similarly, [41] 
emphasizes that clear mastery criteria in formative assessments 
enhance student motivation and outcomes. 

Assessing various learning domains (A = 0.909, Rank 2) also 
gained strong support, reinforcing the need for comprehensive, 
multidimensional assessments beyond cognitive evaluation to 
practical skills and value-based learning. The study in [1] 
validated this approach, showing that adaptive learning paths 
based on learner profiles improve engagement and achievement, 

a perspective supported by study [42], who highlight that digital 
assessment tools enhance data-driven instructional adjustments. 

Identifying students' learning styles (A = 0.904, Rank 4) and 
applying a learning style model (A = 0.902, Rank 5) were also 
validated, reinforcing the importance of personalized education. 
The Felder-Silverman Learning Style Model (FSLSM) is a core 
component of the A-DSS-LF framework, aligning with studies 
that emphasize tailored instructional strategies [37] [43]. [44] 
further supports these findings, demonstrating that systematic 
learning style classification enhances adaptive learning 
effectiveness, ensuring that students receive personalized 
support, leading to better engagement and learning outcomes. 

3) Decision support system: The DSS is a pivotal 

component of the A-DSS-LF, enabling adaptive learning 

decisions based on structured data analysis. The FDM 

validation confirms the DSS's importance, with all elements 

surpassing the α-cut threshold (A ≥ 0.5) and the 75% consensus 

benchmark, validating its critical role in the framework. 

Among these elements, utilizing identified student 
characteristics (A = 0.896, Rank 1) received the most substantial 
expert consensus, emphasizing the need for tailoring learning 
experiences based on student profiles. This aligns with [45], who 
highlighted the potential of ontology-based DSS for predictive 
learning and [46], who demonstrated that tailored educational 
technologies enhance engagement and satisfaction. 

Experts also validated using a collection of information (A = 
0.884, Rank 2) and applying criteria to align student 
characteristics with learning resources (A = 0.884, Rank 2), 
receiving equal expert consensus. These findings reinforce the 
importance of structured decision-making in adaptive learning, 
ensuring that DSS-driven systems effectively match learner 
needs with relevant instructional content. [47] emphasized that 
DSS enhances personalized learning by leveraging student 
models and learning resources and optimizing adaptive learning 
pathways. Similarly, the study in [9] highlighted that student 
models, content adaptation, and structured decision-making 
criteria are crucial in delivering tailored learning experiences, 
ensuring student profiles align with instructional content in 
adaptive systems. 

Additionally, the study in [48] demonstrated that fuzzy 
weight-based rule systems dynamically adjust content 
complexity and volume based on cognitive-level analysis, 
reinforcing the importance of structured alignment between 
learner characteristics and learning resources. By integrating 
decision-making criteria with student profiles and learning 
objects, DSS ensures that personalized learning paths evolve 
dynamically, improving instructional effectiveness and learner 
engagement. 

4) Adaptive learning profile: The Adaptive Learning 

Profile received unanimous expert agreement, reinforcing its 

critical role in enhancing personalized learning for both 

students and teachers. This construct focuses on three key 

elements: personalized learning paths, tailored feedback, and 

adaptive learning resources, ensuring data-driven, 

individualized learning experiences. The FDM validation 

confirms the importance of these elements, with all components 
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exceeding the α-cut threshold (A ≥ 0.5) and the 75% expert 

consensus benchmark, validating their essential role in the A-

DSS-LF framework. 

Among these elements, providing tailored feedback aligned 
with students’ characteristics (A = 0.902, Rank 1) and 
suggesting learning resources that match students’ 
characteristics (A = 0.902, Rank 1) received the highest expert 
consensus, reflecting their strong prioritization in adaptive 
learning environments. The findings emphasize that actionable 
feedback improves engagement and instructional strategies, 
ensuring that students receive personalized insights into their 
learning progress [9] [48]. Additionally, adaptive learning 
resources enhance accessibility and relevance by offering 
content aligned with students’ cognitive levels and learning 
styles, reinforcing the importance of adaptive content curation 
[43]. 

Although recommending personalized learning paths based 
on students' characteristics (A = 0.891, Rank 3) was ranked 
slightly lower, it remains a fundamental component of adaptive 
learning. Personalized learning paths allow students to progress 
at their own pace, addressing knowledge gaps and supporting 
competency-based progression [2] [49]. The expert validation 
results confirm that while learning path recommendations are 
essential, they are most effective when paired with tailored 
feedback and adaptive learning resources, ensuring holistic and 
personalized educational outcomes. 

VI. CONCLUSION 

This study aimed to validate the A-DSS-LF using the FDM. 
Through the involvement of expert consensus, the findings 
confirmed the credibility and applicability of the proposed 
framework in supporting personalized adaptive learning within 
the blended learning environment. The FDM approach ensured 
robust validation of the constructs and elements, as evidenced in 
similar educational contexts where it effectively built consensus 
and established framework reliability. 

The FDM results demonstrated a high level of agreement 
among experts, particularly regarding the essential components 
of the framework: the learner model, adaptation model, and 
learning object model. These findings align with studies 
emphasizing the significance of adaptive learning frameworks 
tailored to individual learner profiles. The validated A-DSS-LF 
provides a structured approach to integrating adaptive learning 
in blended settings, emphasizing personalized learning paths 
tailored to individual learner characteristics. Furthermore, this 
framework contributes to the ongoing dialogue on adaptive 
educational systems by incorporating unique elements such as 
value practices and practical skills, extending beyond traditional 
cognitive assessments. 

The results of this study contribute significantly to the field 
by offering a validated framework tailored to the Malaysian 
education context, addressing theoretical and practical gaps. It 
sets a foundation for implementing the A-DSS-LF prototype and 
testing its impact in real-world education. Future work should 
refine the framework based on further qualitative feedback and 
usability testing. Additionally, implementing and evaluating the 
A-DSS-LF prototype in secondary school settings will provide 
valuable insights into its practical effectiveness and scalability. 

This study aims to enhance personalized education and optimize 
learning outcomes in blended learning environments by 
advancing adaptive learning frameworks. 
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