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Abstract—Artificial intelligence (AI) integration into environ-
mental analysis has revolutionized various fields. Including the
construction and application of gardens, by enabling precise
classification and decision-making for sustainable practices. This
paper presents a strong AI-driven framework uses convolutional
neural network (CNN) and pretrained models like VGG16 and
InceptionV3 to classify eight distinct environmental classes. The
CNN achieved superior performance Among the tested models
and reaching an impressive 98% accuracy with optimized batch
sizes. This demonstrate its effectiveness for precise environmental
condition classification. This work highlights the crucial role of
AI in advancing the construction and application of gardens.
It offers insights into optimizing garden design through accurate
environmental data analysis. The diverse dataset used ensures the
framework’s adaptability to real-world applications, making it a
valuable resource for sustainable development and eco-friendly
design strategies. This paper not only contributes to the field of
AI-driven environmental analysis but also provides a foundation
for future innovations in garden management and sustainability,
paving the way for intelligent solutions in the evolving landscape
of ecological design.

Keywords—Artificial intelligence; machine learning; construc-
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I. INTRODUCTION

The construction and application of gardens have long
been intertwined with human civilization, serving as timeless
symbols of beauty, solace, and ecological significance. From
the glory of the Babylon Hanging Gardens, celebrated as one
of the Seven Wonders of the Ancient World, to the serene and
meticulously crafted Japanese Zen gardens [1]. These green
spaces have continuously evolved to reflect cultural ideals,
environmental adaptations, and technological advances [2].
More than just a testament to human creativity and harmony
with nature, gardens also embody the intersection of sustain-
ability and aesthetic appeal [3]. In today’s rapidly urbanizing
world, their role has expanded far beyond visual pleasure, as
they now play a crucial part in addressing global challenges
such as climate change, biodiversity loss, urban livability, and
resource scarcity [4]. At the same time, they remain essential in
promoting mental and physical well-being, offering spaces for
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relaxation, social interaction, and ecological balance. The inte-
gration of artificial intelligence has further revolutionized gar-
dening, introducing data-driven solutions for optimizing garden
layouts, automating maintenance, and enhancing biodiversity
management. AI-powered systems now facilitate sustainable
irrigation, real-time plant health monitoring, and predictive
analysis for pest and disease control, making urban and rural
green spaces more resilient and efficient. As technological
advancements continue to shape the way gardens are designed
and maintained, there is a growing need for ethical and
sustainable approaches that balance innovation with ecological
responsibility [5].

In this day and age of technological progress, the arrival
of artificial intelligence (AI) and machine learning (ML)
has opened evolutionary possibilities in the construction and
application of gardens [6]. These cutting-edge technologies
allow for the analysis of vast and complex datasets, en-
abling the optimization of garden design, the enhancement
of sustainability, and the implementation of resource-efficient
maintenance strategies. One good example of the potential of
AI lies in land use scene classification, where ML models
analyze satellite imagery as well as aerial photographs to
classify various land types such as, Forest, River, agricultural
areas etc. This capability is particularly instrumental in iden-
tifying suitable sites. This is useful for garden construction
and to focus the design on specific ecological and climatic
needs [7]. The application of these technologies marks the
departure from traditional garden design practices, which often
rely on manual analysis and experience methods. That can
accidentally overlook crucial environmental and sustainability
factors. The construction and application of gardens come with
unique challenges. That AI is exceptionally well positioned to
address. Traditional garden design methods, while rooted in
artistic expression and intuition. Can be restricted by their
ineffectiveness to integrate environmental and sustainability
considerations widely [8].

By incorporating ML models into this process, designers
can access data driven insights into land usability. And pre-
dict resource requirements and develop garden layouts that
prioritize biodiversity and ecological harmony. For example,
AI models can simulate various garden configurations. Tak-
ing into account variables such as sunlight exposure, water
availability, soil quality, and plant compatibility ensures that
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the resulting designs are functional and sustainable [9]. In
addition, these AI-powered systems extend their utility beyond
design by enabling post-construction monitoring. Providing
real-time data to support versatile maintenance strategies that
reduce resource consumption and environmental impact. These
systems enable garden planners to address not only immediate
design concerns, but also long-term sustainability objectives,
ensuring gardens remain thriving ecosystems over time [10].

This research focuses on using land use scene classifica-
tion, which revolutionizes the construction and application of
gardens. It offers a comprehensive framework that integrates
sustainability, innovative design principles, and cutting-edge
technological advancements. Using the Land-Use Scene Clas-
sification dataset, this study examines specific land categories,
such as Agriculture, Forests, Rivers, and residential zones,
which are directly relevant to the sustainable design of the
garden. ML models trained in these categories aim to provide
actionable insights into site selection, resource allocation, and
design optimization. The proposed approach bridges the gap
between traditional garden design methods and the powerful
capabilities of modern AI technologies, demonstrating the
potential of AI to transform green space planning into a
data-driven, scalable, and ecologically sound endeavor. The
insights generated by these models will not only enhance
the visual and functional aspects of gardens but will also
align them with broader global sustainability goals, such as
carbon sequestration, biodiversity conservation, and efficient
water use. The significance of this work lies in its ability to
reimagine the construction and application of gardens in an
era defined by rapid urbanization and environmental degra-
dation. By introducing a scalable, adaptable and data-driven
approach, this research demonstrates how AI can be used
to create gardens that are aesthetically pleasing, ecologically
sustainable, and socially impactful. Beyond their immediate
applications, such gardens contribute to the broader vision of
fostering greener, more resilient urban and rural landscapes.
In addition, this paper underscores the vital role of AI in the
resolution of global environmental challenges, highlighting the
importance of innovation and technological solutions to foster
a harmonious coexistence between human development and
nature. The key contributions of this work are:

• Introduces an AI-powered framework for garden con-
struction that integrates the classification of the land
use scene, enabling sustainable and efficient garden
design.

• Demonstrate how AI can improve resource efficiency,
biodiversity, and environmental sustainability in gar-
den construction.

• Conducts a detailed evaluation of traditional garden
design methods versus AI-driven approaches to high-
light efficiency, accuracy, and sustainability gains.

II. LITERATURE REVIEW

Artificial intelligence (AI) and machine learning (ML)
in the construction and application of gardens has gained
substantial attention in recent years [11]. Cities continue to
enlarge the importance of sustainable, efficient and ecologi-
cally sound garden designs is becoming increasingly clear. AI
and ML present an opportunity to optimize garden layouts,

improve resource use, and improve sustainability [12]. These
technologies enable designers to analyze and classify land use
more precisely, creating gardens that are not only aesthetic
but also environmentally beneficial. One of the key areas
where AI has shown promise is in land use classification. The
ability to accurately classify different types of land, such as
agricultural zones and urban areas. Forests, and water bodies
can significantly influence the construction and application of
gardens [13]. AI models can provide insight into the bionomics
and environmental characteristics of the area, using satellite
images and aerial imagery for the construction of gardens [14].
These techniques allow for a deeper understanding of soil
quality and water availability. Also, understands climate for
ensuring that gardens are designed with the local environment
in mind.

In addition to land-use classification, AI-driven tools are
being applied to urban planning and landscape architecture
[15]. These tools enable the creation of generative designs
in which multiple garden layouts are explored and tested
for optimal performance. AI algorithms can evaluate differ-
ent configurations, considering factors such as compatibility,
sunlight exposure, and soil health [16]. This process ensures
that gardens are not only functional but also sustainable. The
design iterations produced by AI can adapt to environmental
changes, making gardens more resilient to challenges such
as climate change, loss of biodiversity, and water scarcity.
Such innovations allow for the creation of green spaces that
can thrive in a variety of conditions, from urban rooftops to
expansive rural landscapes [17].

Another critical application of AI is in the field of pre-
cision Agriculture, which shares many principles with the
construction of sustainable gardens [18]. By monitoring soil
moisture levels, weather patterns, and water use, AI systems
help optimize resource allocation in agriculture. These tech-
nologies have proven to be effective in reducing water waste
and maximizing crop yield. Similarly, in the construction and
application of gardens, AI can monitor and manage resources
such as water, fertilizers, and energy, ensuring that gardens
are not only beautiful, but also efficient and sustainable [19].
The application of such technologies allows for adaptive main-
tenance strategies that minimize environmental impact while
keeping gardens thriving.

AI also plays a crucial role in enhancing biodiversity
and supporting the ecological balance within gardens [20].
By simulating various environmental conditions and plant
interactions, AI can suggest garden layouts that support a
diverse range of species and foster healthier ecosystems. This
is particularly important in urban areas, where biodiversity
is often limited. AI models can identify plant species that
are compatible with each other and the local environment,
promoting plant diversity and reducing the need for chemical
interventions [21].

Through this, gardens can become vital ecosystems that
support local wildlife and contribute to the overall health of
the urban environment. Although much of the current research
has focused on individual aspects of garden design or broader
environmental planning, the potential for AI to integrate land
use classification with garden construction remains largely
unexplored. Most of the existing efforts have focused on urban
planning or agricultural optimization, leaving a gap in the
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specific application of AI to the construction and application
of gardens [22].

This presents an opportunity to bridge the gap and develop
AI-driven tools that combine ecological sustainability with
design optimization. By merging these two areas, AI can play
a pivotal role in creating gardens that are not only functional
and beautiful, but also environmentally resilient and resource-
efficient [23].

The Motivation behind this research is to fill the gaps in
existing research by specifically focusing on the intersection
of AI-driven land use classification and the construction and
application of gardens. although numerous researchers have
explored human aspects of AI in urban planning, Agriculture,
or ecological design, the application of these technologies in
optimizing garden design and sustainability remains underex-
plored. This article aims to explain how AI can revolutionize
the construction and application of gardens, ensuring that
they are not only aesthetically pleasing but also ecologically
viable and resource efficient. Using ML to integrate land-use
classification with garden design, this research contributes to
creating smarter, more sustainable green spaces that can adapt
to the challenges posed by climate change, urbanization, and
biodiversity loss. This paper seeks to push the boundaries
of the construction and application of gardens, showing how
AI can be harnessed to optimize both the process and the
outcome of garden construction, thus fostering greener and
more resilient landscapes.

III. METHODOLOGY

A. Dataset Collection

Data collection is the most important aspect of the research.
Dataset utilized in this research is a curated from kaggle.
Which is subset of a land-use scene classification dataset
and is specifically designed to facilitate the construction and
application of gardens.The dataset consists satellite images
which represents eight diverse land-use scenarios such as,
Agriculture, Forest, River, urban areas and more. Each class
is selected for its critical role in sustainable garden design.
This dataset captures a range of ecological and environmental
scenarios which provides valuable insights into land character-
istics. Which is essential for tailored garden planning which
include agricultural suitability urban density as well as water
management. The dataset underwent preprocessing to stan-
dardize image resolution and format to ensure consistency. To
increase diversity and simulate real-world variations advanced
augmentation techniques such as rotation, scaling, and flipping,
were applied. This diverse dataset forms a strong foundation
for integrating AI into the construction and application of
gardens which enhances their sustainability, efficiency, and
resilience.

This dataset was chosen based on its comprehensive cov-
erage of diverse land-use types relevant to garden planning. It
provides high-quality satellite imagery, ensuring reliable data
for AI-driven analysis. Compared to other datasets, this one
offers a well-balanced mix of natural and urban environments,
making it particularly suitable for evaluating ecological and
spatial factors in sustainable garden construction. This directly
align with the objectives of this work, integrating AI into the
construction and application of gardens. The dataset diverse

classes provide a basis for training ML models which is capa-
ble of optimizing garden designs, accounting for ecological and
spatial demands. Furthermore, the dataset detailed depiction
of environmental scenarios makes it ideal for testing new
approaches to sustainable and efficient garden construction.
Enhancing the practicality and adaptability of the methodology.
Detailed description of the dataset is shown in Table I, which
highlights its significance in the advancement of AI-driven
garden design solutions. Despite its strengths, the dataset
has some limitations. The fixed satellite image resolution
may impact fine-grained analysis of smaller garden structures.
Additionally, while the dataset covers multiple land-use types,
real-time environmental variations such as seasonal changes
or soil conditions are not explicitly captured. Addressing
these challenges in future work could involve integrating real-
time remote sensing data or expanding the dataset to include
dynamic environmental parameters.

B. Preprocessing

1) Data resizing: We observed significant variations in the
resolution of images within the dataset during preprocessing.
This variation could negatively impact the consistency and
accuracy of the model. In order to address this issue all images
were uniformly resized to 224 × 224 pixels. By doing this,
we observed that this standardization ensures the consistency
of the input. Facilitating efficient processing by the model
as well as helping with reducing computational complexity.
Furthermore, this resizing helps in maintaining the balance
not only image quality but also performance. Which ensures
optimal feature extraction during the training.

2) Normalization of data: Data normalization is a crucial
step in data preprocessing to enhance the performance of ML
models. Where we standardize or rescales the input to fall
within a specific range between 0 and 1 or sometimes between
-1 and 1. The data normalization process minimizes the impact
of varying not only pixel intensity values, reduces training
time but helps the model focus to learn meaningful patterns
rather than being influenced by scale variance in the dataset.

C. Data Distribution and Quantitative Analysis

A well-structured dataset is the cornerstone of any success-
ful deep learning model. For this study, we carefully curated

TABLE I. DATASET DESCRIPTION FOR THE CONSTRUCTION AND
APPLICATION OF GARDENS

Class Name Description
Agriculture Areas used for farming, including crop fields and

orchards, suitable for plant-rich designs.
Beach Coastal sandy areas, often requiring salt-resistant

plants and erosion control measures.
Denseresidential Urban areas with closely packed houses or apart-

ments, ideal for rooftop or small-space gardens
Forest Large areas covered by trees, offering inspiration

for natural, eco-friendly garden designs.
Golfcourse Open green spaces maintained for recreational

purposes, with efficient irrigation systems.
Mediumresidential Suburban areas with moderately spaced housing,

suitable for private gardens or community spaces.
Parkinglot Large paved areas used for vehicle parking, often

with potential for integrating green spaces.
River Natural flowing water bodies, influencing designs

with water management and riparian vegetation.
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a dataset with eight distinct land-use classes: Agriculture,
Beach, Denseresidential, Forest, Golfcourse, Mediumresiden-
tial, Parkinglot, and River. Each class is represented by 500
images, ensuring an equal distribution that prevents class
imbalance, which is often a major challenge in classification
tasks. The dataset is further divided into training and testing
sets. Resulting in 400 images for training as well as 100 images
for testing. This distribution strategy provides sufficient data
for model training while preserving a fair portion for unbiased
evaluation as shown in Table II. The dataset is balanced with
a total of 4,000 images, distributed as 3,200 training images
and 800 testing images. This balanced lays the foundation for
fair and consistent model learning.

TABLE II. DATASET OVERVIEW SHOWING THE NUMBER OF IMAGES,
TRAINING SET, AND TEST SET DISTRIBUTION ACROSS CLASSES

Class Name No. of Images Training Set Test Set
Agriculture 500 400 100
Beach 500 400 100
Denseresidential 500 400 100
Forest 500 400 100
Golfcourse 500 400 100
Mediumresidential 500 400 100
Parkinglot 500 400 100
River 500 400 100
Total 4000 3200 800

To visualize this distribution, Fig. 1, presents a pie chart
that illustrates the equal percentage of images contributed by
each class. With each class forming exactly 12.5% of the
dataset, the dataset achieves perfect equilibrium, eliminating
any inherent bias toward a specific category. This balance is
critical to ensure the model generalizes well across all land-use
categories and does not overfit to any particular class.

Fig. 1. Class distribution in the dataset, showing balanced contributions from
each class.

To further validate this equal distribution, Fig. 2 shows
a bar chart displaying the total number of images per class.
The uniform height of the bars emphasizes that every class has
exactly 500 images, underscoring the equal composition of the
dataset. This visual confirmation strengthens confidence in the
integrity of the dataset and its suitability for training a robust
classification model.

In addition to the overall distribution, it is crucial to
examine the segregation of the dataset into training and testing

Fig. 2. Total number of images per class.

subsets. Fig. 3 provides a detailed visualization of the training
and testing distribution for each class. Training set consists
of 400 images for each class in the dataset and 100 images
to the testing set which shows the 80% split for training
and 20% split for test set. This distribution ensures that the
model is trained on a substantial portion of the data while
reserving enough samples for an objective evaluation of its
performance. The design of this dataset ensures a harmonious
blend of diversity and balance. The balance representation of
all classes guarantees that the model receives varied inputs,
preventing any single class from dominating the learning
process. Moreover, the structured division into training and
testing subsets aligns with best-practices in machine learning,
facilitating reliable and unbiased performance assessment.

Fig. 3. Total number of images in train and test set.

By combining these quantitative analysis with visual in-
sights, we can conclude that the dataset is well prepared to
support the development of an effective classification model.
This precise approach of distribution of data improves the
reliability of the study and also emplace a solid foundation
for future research on land use classification.

D. Proposed Framework

The proposed classification framework uses advanced ma-
chine learning to provide an effective and efficient solution.
The training and testing workflow is presented in Fig. 4. The
system begins by receiving image inputs from the dataset,
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which are then divided into training, testing, and validation
sets.

Furthermore, the proposed framework for this work is
presented in Fig. 5, designed to optimize the construction
and application of gardens using satellite image classification.
It categorizes images into eight distinct classes Agriculture,
Beach, Denseresidential, Forest, Golfcourse, Mediumresiden-
tial, Parkinglot, and River enabling precise and efficient land-
scape planning.

The process begins with preprocessing, where satellite
images are resized and normalized to ensure consistency.
These preprocessed images are then passed through a cus-
tom Convolutional Neural Network (CNN) that extracts key
spatial features, such as textures, patterns, and vegetation
density. Convolutional and max-pooling layers work together
to identify and retain essential features while reducing data
complexity. The extracted features are then mapped through
fully connected layers, where the softmax activation function
ensures accurate classification by assigning probabilities to
each class. The framework not only enhances the classification
of land instances. But also supports AI driven decisions for
garden construction and sustainability. For instance identifying
agricultural regions or River landscapes allows for informed
garden designs tailored to specific environmental contexts. By
integrating both automation as well as precision the proposed
framework transforms traditional garden planning into more
effective and sustainable process.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

The experiments were conducted using intel(R) Core(TM)
i5-6500 CPU running at 2.60 GHz, along with 16 GB, RAM
on the windows 10 operating system. Anaconda-based python
3.11 environment configured with TensorFlow-and PyTorch.

B. Evaluation Metrics

The performance of the model is evaluated using various
metrics such as, accuracy, precision, recall as well as F1-

Fig. 4. Workflow for training and evaluating model using the dataset. The
dataset is divided into training, validation, and test sets, which are utilized

for model evaluation. The trained model then makes predictions,
demonstrating the pipeline from data preparation to deployment.

score. Which together offers a detailed understanding of the
proposed model classification capabilities. Firstly ,accuracy
calculated using Eq. 1, determines the overall correctness
of the model by measuring the ratio of correctly predicted
instances. True positives (TP) and True negatives (TN) to the
total predicted result. Secondly, precision defined in Eq. 2,
evaluates the proportion of true positive predictions among all
positive predictions.High precision is very important in such
cases where minimizing false positives is crucial. Third metric
is recall computed using Eq. 3, reflects the models ability to
accurately identify all actual positive instances. Lastly, F1-
score as presented in Eq. 4, shows the harmonic mean of
precision and recall which strikes a balance between precision
and recall.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-Score =
2× Precision × Recall

Precision + Recall
(4)

C. Performance Comparison of Pre-trained Models

Performance evaluation of pretrained models is performed
to get insights into their robustness in addressing the classifi-
cation difficulties in the construction as well as application
of gardens. These models include include Artificial Neural
Network (ANN) [24], VGG16 [25], and Inception V3 [26]. The
metrics used for comparison were accuracy, loss, validation
accuracy (Val Accuracy), validation loss (Va Loss), precision,
recall, and F1-score were the metrics used for comparison.
which collectively provide a holistic view of each model’s
performance. Table III, displays the results of the ANN model.
It achieved an accuracy of 0.88 with a validation accuracy of
0.83, indicating reasonable performance for a baseline model.

TABLE III. PERFORMANCE METRICS OF ANN, INCLUDING ACCURACY,
LOSS, PRECISION, RECALL, AND F1-SCORE

Metric Accuracy Loss Val Accuracy Val Loss Precision Recall F1 Score
Values 0.88 0.19 0.83 0.21 0.85 0.82 0.83

However, the higher validation loss (0.21) compared to
its training loss (0.19) suggests some overfitting, limiting its
ability to generalize effectively to unseen data. The precision,
recall, and F1-score of 0.85, 0.82, and 0.83, respectively,
further highlight that while ANN performs decently, it falls
short in addressing the complexities of the dataset. Table IV,
showcases the performance of the VGG16 model, which
marked a significant improvement over ANN.

With an accuracy of 0.93 and a validation accuracy of 0.91,
VGG16 demonstrated strong generalization capabilities. The
low training loss (0.10) and validation loss (0.13) reflect its
ability to learn meaningful features from the data efficiently.
Precision, recall, and F1-score values of 0.92, 0.91, and 0.91,
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Fig. 5. Proposed framework for optimizing the construction and application of gardens through satellite image classification using a custom CNN, featuring
preprocessing, feature extraction, and class-specific predictions for precise landscape planning.

TABLE IV. PERFORMANCE METRICS OF THE VGG16 MODEL,
INCLUDING ACCURACY, LOSS, PRECISION, RECALL, AND F1-SCORE

Metric Accuracy Loss Val Accuracy Val Loss Precision Recall F1 Score
Values 0.93 0.10 0.91 0.13 0.92 0.91 0.91

respectively, indicate that VGG16 reliably classifies the data
with fewer false positives and negatives, making it well-suited
for this task. Table V, presents the results for the Inception V3
model, which outperformed both ANN and VGG16.

TABLE V. PERFORMANCE METRICS OF THE INCEPTIONV3 MODEL,
INCLUDING ACCURACY, LOSS, PRECISION, RECALL, AND F1-SCORE

Metric Accuracy Loss Val Accuracy Val Loss Precision Recall F1 Score
Values 0.96 0.11 0.91 0.17 0.92 0.90 0.91

Inception V3 achieved an accuracy of 0.96 and a valida-
tion accuracy of 0.91, indicating its robustness in identifying
intricate patterns and features within the dataset. While its
validation loss (0.17) was slightly higher than that of VGG16,
its precision (0.92), recall (0.90), and F1-score (0.91) demon-
strate a strong balance between sensitivity and specificity. The
superior performance of Inception V3 can be attributed to
its advanced architecture, which excels in multi-scale feature
extraction. To better illustrate the comparative performance,
Fig. 6, presents a bar chart highlighting the accuracy of all
three models. The progression from ANN to VGG16 and
Inception V3 emphasizes the importance of employing deeper
and more sophisticated architectures for tackling complex

classification tasks. While ANN serves as a useful baseline, the
results of VGG16 and Inception V3 underscore the potential
of pretrained models in achieving higher performance levels.

Fig. 6. Comparison of accuracy across pretrained models.

In summary, the performance evaluation highlights the ef-
fectiveness of VGG16 and Inception V3 as pretrained models,
with Inception V3 emerging as the most accurate. These find-
ings provide a benchmark for understanding the capabilities of
pretrained architectures in similar applications, paving the way
for further exploration and optimization in the Construction
and Application of Gardens through deep learning approaches.
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D. Performance Analysis of Proposed Model

The proposed Custom CNN [27] model was evaluated
across varying batch sizes to analyze its performance com-
prehensively, with the results summarized in Table VI. Key
metrics such as accuracy, loss, validation accuracy (Val-
Accuracy), validation loss (Val-Loss), precision, recall, and F1-
score were employed to assess the model’s efficacy in handling
classification tasks. Fig. 7, depicts the trends in accuracy and
loss, while Fig. 8, presents a bar chart showcasing the model’s
performance across different batch sizes. Starting from the
batch size of 4, the proposed model achieved an accuracy
of 0.96 as well as validation-accuracy of 0.94. Additionally,
minimal loss values of 0.04 for train and 0.03 for validation.
These metrics showcases the model’s best initial learning and
generalization capabilities. Moreover, the model achieved the
values for Precision as 0.95, recall (0.93), and F1-score 0.94.
Respectively which further depicts its ability to give balanced
and reliable results at this structure. At the batch of 8, the
proposed model performance improved more and achieved
Training accuracy of 0.97 and 0.95 of validation. Training loss
and validation loss decreased to 0.03 for training and 0.02 for
validation, which indicates more stable learning. Metrics such
as Precision and recall rise up to 0.96 and 0.94. While F1-
score reached to 0.95 which reflects the models high predictive
capabilities and reduced error rate.

Fig. 7. Accuracy and loss curves of the proposed CNN model at different
batch sizes.

Fig. 8. Comparison of the proposed model across different batch sizes,
highlighting accuracy improvements with increasing batch size.

Best results were achieved when the batch-size reached to
16. This is where the model achieved the highest accuracy of
Training as 0.98 and for validation as 0.96. Training loss and
validation loss were decreased to 0.02 for training and 0.01

for validation. Which depicting the model’s best generalization
and convergence. Metrics Precision reached at 0.97, recall rise
to 0.95, and F1-score maintains its position height at 0.95.
Fig. 10 highlights the comparison of metrics among the model
and highlights that CNN shows superiority among the others.

TABLE VI. PERFORMANCE METRICS OF THE PROPOSED MODEL FOR
DIFFERENT BATCH SIZES

Batch Size Accuracy Loss Val Accuracy Val Loss Precision Recall F1 Score
4 0.96 0.04 0.94 0.03 0.95 0.93 0.94
8 0.97 0.03 0.95 0.02 0.96 0.94 0.95
16 0.98 0.02 0.96 0.01 0.97 0.95 0.95

In conclusion, the results shows the effectiveness of the
proposed model, with a 16 batch size emerging as the best per-
former. The proposed model shows high accuracy, minimum
loss. And a balanced precision, recall, and F1-score, making
it more suitable for applications in the Construction and Ap-
plication of Gardens. This analysis underscores the robustness
of the model and its potential to facilitate sustainable garden
design and management. Fig. 9, shows the accuracy of the
proposed model with all ML models.

In summary, the comparative analysis of ANN, VGG16,
Inception V3, and the proposed Custom CNN demonstrates a
clear progression in performance, emphasizing the influence
of architectural complexity and feature extraction capabilities.
The relatively lower performance of ANN highlights its limita-
tions in capturing complex patterns due to its simpler structure
and limited feature learning capacity. In contrast, the balanced
performance of VGG16 shows the effectiveness of moderate
depth and transfer learning. Inception V3 outperforms both
models by leveraging its advanced architecture for multiscale
feature extraction. The proposed Custom CNN achieves the
highest accuracy, particularly with a batch size of 16, due to
its custom design that optimizes learning and generalization
for this domain-specific application. These results underscore
the importance of selecting appropriate model architectures
and hyperparameters to effectively address classification chal-
lenges, paving the way for optimized solutions in the Con-
struction and Application of Gardens.

Fig. 9. Comparison accuracy of the proposed model with all ML models.
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Fig. 10. Comparison accuracy of the proposed model with different models.

V. CONCLUSION

In conclusion,this research demonstrates the transforma-
tive potential of AI in revolutionizing garden design and
sustainability through precise environmental classification and
analysis. By utilizing advanced machine learning (ML) models,
including both pretrained architectures and a custom CNN, this
paper highlights the effectiveness of ML in accurately catego-
rizing diverse landscape types, such as Agriculture, Beaches,
Forests, and residential areas. The comprehensive evaluation of
models, coupled with the use of a robust and diverse dataset,
ensures the applicability of the findings across different real-
world scenarios, making the work not just theoretical but
practically impactful. The importance of this article lies in
its ability to address pressing challenges in sustainable garden
design by offering a data-driven approach to optimize planning
and resource management. The results, supported by detailed
performance analysis, reveal the strengths of different models
while showcasing the custom CNN’s superior capability in
achieving high accuracy and efficient processing. The use
of graphical analysis further enhances the papers clarity and
accessibility, providing actionable insights for researchers and
practitioners alike. This work not only sets a strong foundation
for integrating AI into environmental and garden applications,
but also opens doors for future advancements. The dataset
can be expanded to include more complex and varied envi-
ronments, and the models can be refined to handle real-time
applications. By bridging the gap between technology and na-
ture, this article paves the way for innovative, sustainable, and
scalable solutions in garden construction and environmental
optimization.

However, despite its promising contributions, this study
is not without limitations. The dataset focuses mainly on
specific landscape types like Agriculture, Beaches, Forests,
and Residential areas, which may limit model generalization
to more complex or mixed environments. Additionally, the
current implementation lacks real-time processing capabilities,
which are crucial for dynamic garden management and en-
vironmental monitoring. The models may also struggle with
classification accuracy under extreme weather, varying light,
or seasonal changes. Moreover, human intervention may still
be required in complex or ambiguous scenarios to ensure
classification accuracy. Addressing these limitations provides
a balanced perspective and opens avenues for future research.

Enhancing dataset diversity and improving model adaptability
to extreme weather, varying light, and seasonal changes can
enhance classification accuracy. Optimizing real-time process-
ing capabilities and reducing computational demands will
improve usability in dynamic garden management and envi-
ronmental monitoring. Expanding the geographical scope and
exploring edge computing solutions can boost scalability and
practical deployment. Additionally, addressing the need for
human validation in complex scenarios can refine automation
accuracy. By transparently addressing these challenges, this
study not only contributes to the academic field but also
drives innovation at the intersection of AI and sustainable
garden construction. It lays a solid foundation for future
research focused on achieving environmental harmony through
intelligent design and resource optimization.
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