
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

Multi-Objective Osprey Optimization
Algorithm-Based Resource Allocation in Fog-IoT

Nagarjun E, Dharamendra Chouhan, Dilip Kumar S M
Department of Computer Science and Engineering-University of Visvesvaraya College of Engineering,

Bangalore University, Bengaluru, India

Abstract—Fog Computing (FC) paradigm offers significant
potential for hosting diverse delay-sensitive Internet of Things
(IoT) applications. However, the limited resources of fog devices
pose significant challenges for deploying multiple applications,
particularly in heterogeneous and dynamic IoT scenarios, due to
the absence of effective mechanisms for resource estimation and
discovery. An efficient resource allocation strategy is crucial for
meeting the Quality of Service (QoS) requirements of IoT applica-
tions while enhancing overall system performance. Identifying the
optimal allocation strategy for IoT applications with multiple QoS
parameters is a complex and computationally intensive challenge,
classified as an NP-complete problem. This paper proposes a
Multi-Objective Optimization Algorithm (MOOA) for optimal
resource allocation using the Osprey Optimization Algorithm
(OOA) to efficiently allocate available resources. The proposed
algorithm was evaluated against existing approaches, including
the Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO), under varying task loads ranging from 100 to 500
tasks. The simulation results demonstrate significant performance
improvements, including an average reduction in execution time
by 12.45% compared to PSO and 22.97% compared to GA,
response time by 32.57% compared to GA and 24.45% compared
to PSO, and completion time by 44.39% compared to GA and
33.23% compared to PSO. These findings highlight the proposed
algorithm’s ability to efficiently handle task allocation in dynamic
FC environments and its potential to address complex QoS
requirements in real-world IoT applications.

Keywords—Fog computing; IoT; resource allocation and real-
location; task allocation

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized data gener-
ation, driving advancements in healthcare monitoring, virtual
reality, industrial automation, and many other applications that
demand reliable, low-latency communication and computa-
tional services [1]. These applications often impose stringent
QoS requirements, such as minimizing delay and energy
consumption, which pose significant challenges for IoT devices
[2], [3].

Fog computing (FC) is a computing paradigm placed in
the middle of a three tiered architecture that encompasses
the cloud, fog nodes (FNs), and IoT devices at the edge.
Cisco introduced this layer in 2012 to bring the features
and capabilities of cloud computing nearer to data sources
and user devices that communicate over the internet [4], [5],
[6]. FC is recognized as a key solution to the limitations of
cloud computing, particularly for delay-sensitive applications.
However, while FC provides a decentralized architecture, the
challenge of selecting suitable FNs for application modules
with diverse deadline constraints remains a critical issue [7].

Resource allocation in FC entails the distribution of stor-
age, computational, and communication resources among FNs,
users, and service providers. These entities often have con-
flicting objectives and requirements, necessitating mechanisms
that balance their interests while optimizing overall system
performance [8]. Furthermore, the dynamic nature of FC
characterized by fluctuations in resource availability and user
demand highlights the need for adaptive allocation strategies.
Effective resource allocation and reallocation in FC are par-
ticularly crucial for IoT tasks, where metrics such as resource
utilization, execution time, response time, and completion time
are key considerations [9].

To address these challenges, this study proposes a Multi-
Objective Osprey Optimization Algorithm (MOOA) to allocate
the appropriate number of fog resources corresponding to
fluctuations in IoT task demands.

• Proposed a meta-heuristic MOOA for resource allo-
cation and reallocation in FC for IoT tasks to handle
the dynamic and heterogeneous requirements of IoT
tasks.

• Implement the proposed algorithm and evaluate its
performance against GA and PSO by varying the num-
ber of IoT tasks and exploring different parameters.

• The results demonstrate a significant reduction in
average response time, execution time and completion,
showcasing the efficiency of our approach.

The rest of this paper is organized as follows: Section II
provides a detailed background on the problem of resource
allocation improvement in FC environments, highlighting the
drawbacks of existing methods. Section III presents the system
model, problem statement, and objectives. Section IV describes
the proposed algorithm and its key features. In Section V,
we present our simulation and experimental results, comparing
the performance of our algorithm with existing approaches.
Finally, Section VI concludes the paper and discusses future
research directions in this area.

II. RELATED WORKS

Hussain et al. [10] developed the Resource Aware Prior-
itized Task Scheduling (RAPTS) approach for heterogeneous
FC environments. The primary objective of RAPTS is to ensure
the execution of tasks with strict deadlines while optimizing
response time, cost, and makespan, and enhancing resource uti-
lization within the fog layer. This approach was implemented
in iFogSim and evaluated based on various performance met-
rics, including response time, resource utilization, task dead-
line compliance, cost, and makespan. Comparative analysis

www.ijacsa.thesai.org 1240 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

with advanced fog schedulers like RACE (CFP) and RACE
(FOP) demonstrated that RAPTS achieved improvements of
up to 29%, 53%, 15%, 11%, and 43% in resource utilization,
response time, makespan, cost, and task deadline adherence,
respectively. However, completion time and execution time are
not addressed.

Arshed et al. [11] introduced the Resource Aware Cost-
Efficient Scheduler (RACE) to allocate incoming application
modules to fog devices. The scheduler manages to optimize
resource utilization at the fog layer by minimizing the mone-
tary cost of using cloud resources, and reduces the application
execution time and bandwidth usage. It incorporates two key
algorithms: the ModuleScheduler, which classifies applica-
tion modules based on their computational and bandwidth
requirements, and the CompareModule, which determines their
placement. Simulation results indicate that RACE outperforms
traditional cloud placement strategies and baseline algorithms
in most scenarios. However, the approach does not specifically
address response time, completion time, and execution time.

Khan et al. [12] introduced an improved Ripple-Induced
Whale Optimization Algorithm (RWOA) for scheduling inde-
pendent tasks in fog-cloud environments. The method lever-
ages ripple effects to refine suboptimal solutions, aiming to
minimize makespan and energy consumption while enhancing
throughput. Despite its effectiveness, the approach does not
explicitly consider metrics such as response time, completion
time, and execution time. Chafi et al. [13] proposed a novel
algorithm based on Particle Swarm Optimization (PSO) to
optimize energy consumption and workflow time in heteroge-
neous FC environments. By utilizing the collective behavior of
particles, the algorithm effectively explores the solution space
and adapts to the dynamic and unpredictable nature of FC re-
sources. Simulation results demonstrate notable enhancements
in workflow completion time, energy efficiency, and resource
utilization. However, the approach does not explicitly consider
metrics such as response time, and execution time.

Bandopadhyay et al. [8] proposed a Game-Theoretic
Resource Allocation and Dynamic Pricing Mechanism in
FC (GTRADPMFC). The model incorporates non-cooperative
competition among FNs for resource allocation and employs
dynamic pricing mechanisms to promote efficient resource
usage. Through theoretical evaluation and simulation exper-
iments, the study demonstrated that GTRADPMFC enhances
both resource efficiency and the overall performance of FC
systems. Furthermore, the paper outlines methods to manage
scenarios with insufficient data samples and provides flexi-
bility for users who cannot meet specific completion time
requirements. GTRADPMFC optimizes resource allocation by
establishing pricing strategies while accounting for potential
delays in task completion. The research also includes sim-
ulations, convergence analyses, complexity assessments, and
guarantees for optimization. However, the model does not
explicitly address performance metrics such as response time
and execution time.

Mokni et al. [14] proposed decision-making phase that
analyzes data generated by IoT devices to identify the optimal
offloading strategy. To accomplish this, the TOF-NSGAII
approach was introduced, aiming to reduce both energy con-
sumption and latency during the offloading of IoT tasks in a
fog-cloud environment. Each IoT device transmits tasks with

distinct attributes, such as input data size, and the algorithm
assigns these tasks to specific virtual machines to optimize
resource utilization. By utilizing the combined resources of
fog and CC, the TOF-NSGAII approach effectively meets its
goals of minimizing energy usage and latency, as validated by
experimental results. However, the model does not explicitly
address performance metrics such as response time and exe-
cution time.

Raissouli et al. [15] developed an improved version of
NSGA II, namely, reinforcement weighted probabilistic NSGA
II, which uses weighted probabilistic mutation. This algo-
rithm replaces random mutation with probabilistic mutation
to enhance exploration of the solution space. This method
uses domain-specific knowledge to improve convergence and
solution quality, resulting in improved energy efficiency and
reduced delay compared to traditional NSGA II and other evo-
lutionary algorithms. However, the model does not explicitly
address performance metrics such as response time, completion
time and execution time.

The studies described above show that various efforts have
been made to solve resource allocation and task scheduling
problems in FC environments. However, the efficiency of
algorithms in handling complex and dynamic FC scenarios
across varying conditions has yet to be thoroughly investigated.
Additionally, existing algorithms do not explicitly consider
key performance metrics such as response time, completion
time, and execution time. In contrast, our proposed approach
addresses these limitations by incorporating these critical met-
rics to enhance the effectiveness of resource allocation and
reallocation in FC.

III. SYSTEM MODEL

An IoT network consisting of IoT devices and FNs is
considered, where the FNs vary in energy and processing
power capabilities, making task scheduling a challenging prob-
lem. In this setup, we have I IoT devices and F hetero-
geneous FNs, represented by sets I = {1, 2, 3, . . . , I} and
F = {1, 2, 3, . . . , F}, respectively. The IoT devices collect
data from a range of sensors and transmit it to the fog layer.
It is assumed that the IoT devices offload tasks directly to
the FNs without any local processing. Each FN is equipped
with an agent tasked with receiving and processing data from
the IoT devices. Task scheduling is assumed to occur in a
distributed manner, with each FN acting as a scheduler upon
receiving data from IoT devices. A task is represented as
Tt(St, Ct), where St is the task size in KB and Ct is the task
complexity in Million Instructions (MI). Since the end devices
often lack sufficient computational resources to process the
tasks, the tasks are offloaded to nearby FNs for processing.
The commonly-used symbols are delineated in Table I.

A. Problem Statement and Objectives

The problem is defined as finding optimal resource alloca-
tion for IoT tasks in a FC environment. Each fog node serves
as a resource for processing tasks, and the goal is to allocate
these tasks efficiently with the following objectives:

1) Objectives: The objectives of the proposed work are as
follows:

www.ijacsa.thesai.org 1241 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

• Minimize completion time for processing IoT tasks.

• Minimize response time for IoT tasks.

• Minimize execution time for IoT tasks.

• Maximize the resource utilization.

TABLE I. NOTATION TABLE FOR THE MULTI-OBJECTIVE OSPREY
OPTIMIZATION ALGORITHM (MOOA)

Notation Description
T Set of IoT tasks, where T = {t1, t2, . . . , tN}.

FN Set of Fog Nodes (FNs), where FN = {fn1, fn2, . . . , fnM}.
N Population size (number of osprey solutions in the search space).

Tmax Total number of iterations for the optimization process.
R Population matrix representing resource allocation solutions, where

X = {R1, R2, . . . , RN}.
RPi A single solution in the population, representing task-to-node allo-

cations.
ri,j Position of the jth dimension of solution Ri, indicating resource

allocation for task j.
rP1
i,j Updated position of the jth dimension for osprey i during opti-

mization.
rP2
i,j Updated position of the jth dimension for osprey i during opti-

mization.
lbj , ubj Lower and upper bounds for the jth dimension of the solution space.
ri,j A random number generated for the jth dimension of osprey i.

F (Xi) Fitness value of solution Xi, considering multiple objectives.
f Objective function
X∗ Best solution obtained after optimization.
tnew Newly arriving IoT task that requires resource reallocation.

fnfluct Fog node with fluctuating resource availability due to dynamic
conditions.

IV. PROPOSED WORK

In this section, the details of the proposed Multi-Objective
Optimization Algorithm (MOOA) are presented. The diagram
illustrating the proposed architecture is presented in Fig. 1.

Fig. 1. Proposed MOOA architecture.

A. OOA Overview

The Osprey Optimization Algorithm (OOA) is inspired by
the hunting and behavior patterns of the osprey, a bird of prey
that primarily feeds on fish. Known for its sharp vision and
specialized hunting strategy, the osprey locates fish underwater
from a height of 10 to 40 meters before diving to capture them.
After catching its prey, the osprey takes it to a safe location
to consume it. This natural behavior, marked by precision and
efficiency, forms the basis of the OOA, which applies these
characteristics to create an effective optimization technique
[16], [17]. In the context of FC, the OOA is adapted to
allocate and reallocate resources efficiently among tasks and
FNs. The OOA is designed to optimize multiple objectives
simultaneously, such as minimizing response time, execution
time, completion time, and balancing the load among FNs. The
algorithm operates in three key phases: initialization, iterative
optimization, and updating.

B. Initialization Phase

In the initialization phase, a population of N ospreys is
randomly generated. Each osprey in the population represents
a candidate solution, where its position encodes a potential
allocation of resources. The matrix representation of the pop-
ulation can be modeled as shown in Eq. 1. The position of the
i-th osprey in the j-th dimension is represented by ri,j , where
ri,j corresponds to a problem variable related to resource allo-
cation (e.g. CPU, RAM and Bandwidth). The initial positions
are within the predefined bounds of the problem variables.

R =


R1

...
Ri

...
RN


N×m

=


r1,1 · · · r1,j · · · r1,m

...
. . .

...
. . .

...
ri,1 · · · ri,j · · · ri,m

...
. . .

...
. . .

...
rN,1 · · · rN,j · · · rN,m


N×m

,

(1)

Where N is the number of candidate solutions (ospreys),
m is the number of tasks to be allocated, ri,j represents the
allocation of resources from a FN to the j-th task in the i-th
candidate solution. At the beginning of the algorithm, the ini-
tial allocation matrix is generated randomly to ensure diversity.
The positions of the ospreys in the resource allocation search
space are initialized using Eq. 2:

ri,j = lbj + rij · (ubj − lbj) , i = 1, 2, . . . , N, j = 1, 2, . . . ,m,
(2)

Where lbj and ubj are the lower and upper bounds of
resource availability for the j-th task, ri,j is a random number
uniformly distributed in the range [0, 1], ensuring a diverse
initial allocation.

C. Objective Function

The main goal of task allocation in a FC environment is to
minimize the time needed for task completion, response, and
execution. The values obtained from evaluating the objective
function for the given problem from Eq. (4) to (10) can be
expressed as a vector, as outlined in Eq. (3).

www.ijacsa.thesai.org 1242 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

F =


F1

...
Fi

...
FN


N×1

=


F (R1)

...
F (Ri)

...
F (RN )


N×1

, (3)

1) Execution Time: The execution time Ei,j of taski on
FNj can be expressed as:

Ei,j =
Ti,j

Ci,j
(4)

Where Ti,j is task length for taski on FNj (number
of instructions). CCi,j is computational capacity of
FNj , calculated as:

CCi,j = Pi,j ×Mi,j (5)

Where Pi,j is number of processing elements (PEs)
in FNj . Mi,j is MIPS rate of FNj .

2) Response Time: The response time RTi,j for taski
on FNj is calculated as:

RTi,j = Fi,j − Si,j (6)

Where Fi,j is finish time of taski on FNj . Si,j is
start time of taski on FNj .
The finish time Fi,j is given by:

Fi,j = Ri,j + Ei,j (7)

3) Completion Time: The completion time CTi,j for
taski on FNj is calculated as:

CTi,j = Fi,j + CTi,j
(8)

Where CTi,j
is communication time for taski on

FNj . Thus, the completion time CTi,j is:

CTi,j = (RTi,j + Ei,j) + CTi,j
(9)

The objective function value is evaluated at each position
of the osprey:

Fi = [F1(E), F2(RT ), F3(CT )]
T (10)

D. Phase 1: Position Identification and Resource Allocation

In fog resource allocation, resource updates can mimic
osprey hunting behavior. Just as ospreys identify and target fish
underwater, the algorithm identifies better resource positions
in the search space to enhance exploration and escape local
optima. For each resource, the positions of other resources in
the search space that have better objective function values are
considered optimal targets. These targets are analogous to the
“fish” in the search space. The set of optimal resources for
each resource is defined in Eq. (11).

RPi = {Rk | k ∈ {1, 2, . . . , N} ∧Rk < Fi} ∪ {Rbest} (11)

Here, Rk represents the resources with better objective
values, and Rbest is the best resource found so far. This

approach helps guide the allocation process towards more
efficient solutions in FC.

rP1
ij = rij + rij · (SFij − Iij · rij) , (12a)

rP1
ij =


rP1
ij , lbj ≤ rP1

ij ≤ ubj ;

lbj , r
P1
ij < lbj ;

ubj , r
P1
ij > ubj .

(12b)

The updated resources Ri are refined based on their fitness
values:

Ri =

{
RP1

i , FP1
i < Fi;

Ri, else ,
(13)

This approach ensures efficient resource allocation and
optimizes performance in FC systems.

E. Phase 2: Identifying the Suitable Resources

After identifying a suitable resource node, the FC system
allocates tasks to the selected node for processing in an
efficient and resource-aware manner. This phase models the
process of refining resource allocation decisions to ensure
that the tasks are processed in a way that minimizes costs
and optimizes system performance. The refinement of allo-
cation decisions involves making small adjustments to the
assigned resources, enhancing the exploitation capabilities of
the resource allocation algorithm, and converging toward better
solutions near the currently identified optimal nodes.

In the design of the FC allocation algorithm, this behavior
is simulated by calculating a new potential resource allocation
for each task based on predefined criteria using Eq. (14a),
(14b). If the new allocation improves the value of the objective
function (e.g. response time, completion time, execution time,
or improving resource utilization), the algorithm updates the
allocation to this new configuration according to Eq. (15).
This iterative refinement ensures more efficient exploitation
of available resources and promotes convergence toward the
most optimal allocation.

rp2

i,j = ri,j +
lbj + r · (ubj − lbj)

t
, i = 1, 2, . . . , N,

j = 1, 2, . . . ,m, t = 1, 2, . . . , T
(14a)

After updating the position, the new position is constrained
within the bounds:

rP2
i,j =


rP2
i,j , lbj ≤ rP2

i,j ≤ ubj ;
lbj , r

P2
i,j < lbj ;

ubj , r
P2
i,j > ubj ,

(14b)

Ri =

{
RP2

i , FP2
i < Fi;

Ri, else ,
(15)

else, the osprey remains at its current position.

www.ijacsa.thesai.org 1243 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

Algorithm 1: MOOA for Resource Allocation and Reallocation in FC for IoT Tasks
Input: Task set T = {t1, t2, ..., tN}, Fog Node set FN = {fn1, fn2, ..., fnM}, Tmax, N , Resource constraints (e.g.,

CPU, MIPS, memory, energy per unit), f .
Output: Optimized resource allocation and reallocation solutions for IoT tasks in the fog network.
/* Phase 1: Initial Resource Allocation */

1 Step 1: Initialize the Population;
2 Generate initial population matrix with random resource allocation positions for each task to FNs using using (1) and

(2).
3 Step 2: Evaluate Initial Fitness;
4 foreach Xi ∈ X do
5 Compute fitness for each solution using objective function f by (3)
6 for t← 1 to Tmax do
7 foreach osprey i ∈ {1, 2, ..., N} do
8 foreach task-to-node mapping dimension j ∈ {1, 2, ...,m} do

/* Phase 1: Position identification and Resource Allocation */
/* Calculate New Position for Resource Allocation */

9 Generate random number ri,j ;
10 Update position for osprey i using (11).
11 Calculate new position xP1i,j using (12a).
12 Check boundary conditions for xP1i,j using (12b).
13 Update Ri using (13).

/* Phase 2: Identifying the suitable resources */
/* Evaluate New Fitness for the Updated Allocation */

14 Compute new fitness by using (3).
15 Calculate new position xP2i,j using (14a).
16 Check boundary conditions for xP2i,j using (14b).

/* Replace if New Solution is Better */
17 Update Ri using (15).

18 Output: Initial resource allocation solution X∗;
/* Phase 2: Resource Reallocation */

19 Step 3: Monitor Task and Resource Fluctuations;
20 Collect real-time information about task arrivals, resource availability, and execution progress in FNs;
21 Step 4: Reallocate Resources Dynamically;
22 foreach new task tnew or fluctuating resource fnfluct do
23 foreach solution Xi ∈ X do
24 foreach task-to-node mapping dimension j do

/* Phase 1: Position identification and Resource Allocation */
/* Recompute Positions for Reallocation */

25 Update resource mapping based on osprey behavior and fluctuating resource constraints by using (11).
26 Calculate new position xP1i,j using (12a).
27 Check boundary conditions for xP1i,j using (12b).
28 Update Ri using (13).

/* Phase 2: Identifying the suitable resources */
/* Reevaluate Fitness for Reallocation */

29 Compute by using (3).
30 Calculate new position xP2i,j using (14a).
31 Check boundary conditions for xP2i,j using (14b).

/* Replace Solution if Reallocation is Better */
32 Update Ri using (15).

33 Output: Final optimized solution X∗ for resource allocation and reallocation;

F. Termination Criterion

The optimization continues until a termination criterion
is met, such as a maximum number of iterations Tmax or a
satisfactory solution is found.

G. Iterative Process, Flowchart, and Algorithm of MOOA

The MOOA for resource allocation and reallocation in FC
for IoT tasks is designed to handle the dynamic and heteroge-
neous requirements of IoT tasks. The steps for implementing
the MOOA are illustrated as the flowchart in Fig. 2, and their

www.ijacsa.thesai.org 1244 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

Fig. 2. Flowchart of MOOA.

procedural details are outlined in Algorithm I as pseudocode.

Phase 1: Initial Resource Allocation: The algorithm begins
by generating an initial population matrix X , where each
solution represents a potential mapping of tasks to fog nodes.
The positions in the matrix are initialized randomly within
the defined bounds for resource constraints (e.g., CPU, MIPS,
memory). Each solution is evaluated using multi-objective
fitness functions mentioned in the Eq. (10). For each iteration t
of the optimization process, every osprey (solution) adjusts its
position by considering random factors (ri,j) and the bounds
of resource constraints (lbj , ubj). The new position is calcu-
lated for each dimension (task-to-node mapping), ensuring the
solution stays within the defined bounds. The fitness of the
updated position is evaluated for all objective functions. If the
updated position improves the fitness of the solution, it replaces
the existing solution. This iterative process continues until the
maximum number of iterations (Tmax) is reached, producing
the initial resource allocation solution X∗.

Phase 2: Dynamic Resource Reallocation: In the second

phase, the algorithm monitors the fog network in real-time
to account for fluctuations in task arrivals and resource avail-
ability. Information about new tasks, resource constraints, and
ongoing execution is collected. For every new task or fluc-
tuating resource, the algorithm adjusts the resource mapping
dynamically. Each solution in the population is reevaluated
by recalculating the task-to-node mappings based on osprey
behavior, incorporating updated resource constraints. The po-
sitions are updated using random factors (ri,j) while ensuring
they remain within the bounds of resource availability. The
fitness of each updated solution is computed, and if the
reallocation improves the solution, it replaces the current one.
The algorithm outputs the optimized resource allocation and
reallocation solution X∗, balancing the objectives of equation
(10). This ensures efficient and adaptive resource management
in FC environments for IoT tasks.

V. SIMULATION RESULTS AND DISCUSSION

This section presents the evaluations conducted to demon-
strate the effectiveness of the proposed approach. The exper-
iments were performed using the iFogSim2 [18] simulation
platform, and performance of the proposed MOOA algorithm
was compared with existing algorithms, including GA [19] and
PSO [20]. The simulations were run on a Windows 11 system
equipped with an Intel(R) Core(TM) i5-9300H CPU operating
at 2.40 GHz. The experimental parameters are related to
various IoT tasks, the fog and cloud computing environment,
and the configuration of the MOOA algorithm. Details of the
experimental settings are provided in Table II.

TABLE II. SIMULATION PARAMETERS

Parameters Values
Simulation tool iFogSim2
System Architecture x86
OS Linux
VMM Xen
No. of FNs 50
RAM 4,000 (MB)
Storage 1000000
BW 10000

GA Parameters
Simulation parameters Value
Number of iterations 60
Population size 10
Mutation probability 0.2s

PSO Parameters

Number of particles 30
Iterations 100
Inertia constant 0.85
Cognitive constant 1
Social constant 2

MOOA Parameters

Number of ospreys 30
Iterations 100

Experiment 1

Purpose Heterogenous task
Data input parameters 100, 200, 300, 400, 500
FN parameters 50

Experiment 2

Purpose Heterogenous nodes
Data input parameters 200
FN parameters 100, 200, 300, 400, 500

A. Experiment 1

Fig. 3 compares the execution time for varying task loads
(100 to 500 tasks) among the proposed algorithm, GA, and

www.ijacsa.thesai.org 1245 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

Fig. 3. Execution time of tasks with 50 FNs.

PSO. As expected, execution time increases with the number
of tasks. The proposed algorithm achieved a significant reduc-
tion in execution time, showing an average improvement of
12.45% over PSO and 22.97% over GA. This underscores the
proposed algorithm’s ability to handle tasks efficiently in FC
environments.

Fig. 4. Response time of tasks with 50 FNs.

Fig. 4 illustrates the response time for different task loads.
The proposed algorithm consistently outperformed GA and
PSO, achieving an average response time improvement of
32.57% compared to GA and 24.45% compared to PSO.
This highlights the robustness of the proposed algorithm in
minimizing delay and enhancing performance.

Fig. 5 depicts the completion time comparison across
task loads. The proposed algorithm demonstrated superior
performance, with an average reduction of 44.39% compared
to GA and 33.23% compared to PSO. This confirms the pro-
posed algorithm’s scalability and effectiveness in optimizing
computational processes in FC environments.

B. Experiment 2

Fig. 6 compares the execution time for varying FNs (10
to 50 nodes) among the proposed algorithm, PSO and GA.

Fig. 5. Completion time of tasks with 50 FNs.

Fig. 6. Execution time of 200 tasks with different FNs.

As expected, execution time decreases with the number of
FNs. The proposed algorithm achieved a significant reduc-
tion in execution time, showing an average improvement of
17.16% over PSO and 18.02% over GA. This underscores the
proposed algorithm’s ability to handle tasks efficiently in FC
environments.

Fig. 7 illustrates the response time comparison across
for varying FNs (10 to 50 nodes). The proposed algorithm
consistently outperformed GA and PSO, achieving an average
response time improvement of 39.65% compared to GA and
17.57% compared to PSO. This highlights the robustness of
the proposed algorithm in minimizing delay and enhancing
performance. Fig. 8 depicts the completion time comparison
across for varying FNs (10 to 50 nodes). The proposed
algorithm demonstrated superior performance, with an average
reduction of 36.44% compared to GA and 16.58% compared
to PSO. This confirms the proposed algorithm’s scalability
and effectiveness in optimizing computational processes in FC
environments.

VI. CONCLUSION

In this paper, we proposed a MOOA aimed at optimizing
resource allocation and reallocation in FC environments for

www.ijacsa.thesai.org 1246 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

Fig. 7. Response time of 200 tasks with different FNs.

Fig. 8. Completion time of 200 tasks with different FNs.

IoT tasks. By optimizing multiple objectives such as comple-
tion time, response time, and execution time, MOOA provides
an efficient solution for managing fog resources in dynamic
and resource constrained environments. The simulation results
demonstrated the effectiveness of the proposed algorithm in
handling tasks efficiently in FC environments. The algorithm
achieved a notable reduction in execution time, with an average
improvement of 12.45% over PSO and 22.97% over GA.
Moreover, MOOA consistently outperformed GA and PSO in
terms of response time, achieving average improvements of
32.57% and 24.45%, respectively. Analysis of completion time
further demonstrated the algorithm’s superior performance,
with an average reduction of 44.39% compared to GA and
33.23% compared to PSO. These results underline the robust-
ness and scalability of MOOA, highlighting its effectiveness
in optimizing task allocation and computational processes in
FC environments. Future work will focus on extending this
approach to incorporate energy efficiency, fault tolerance, and
multi-objective optimization to address diverse QoS require-
ments in dynamic FC environments.

REFERENCES

[1] T. Arpitha, D. Chouhan, and J. Shreyas, “An efficient aco-inspired multi-
path routing for source location privacy with dynamic phantom node

selection scheme in iot environments,” Soft Computing, pp. 1–18, 2024.
[2] N. Srinidhi, E. Nagarjun, and S. Dilip Kumar, “Hybrid algorithm

for efficient node and path in opportunistic iot network,” Journal of
Information Technology Management, vol. 13, pp. 68–91, 2021.

[3] N. Srinidhi, E. Nagarjun, J. Shreyas, S. Dilip Kumar, and D. Chouhan,
“Ensuring fault tolerant connectivity in iot networks,” in Computer
Communication, Networking and IoT: Proceedings of ICICC 2020.
Springer, 2021, pp. 391–400.

[4] H. K. Apat, B. Sahoo, V. Goswami, and R. K. Barik, “A hybrid
meta-heuristic algorithm for multi-objective iot service placement in
fog computing environments,” Decision Analytics Journal, vol. 10, p.
100379, 2024.

[5] M. Zolghadri, P. Asghari, S. E. Dashti, and A. Hedayati, “Resource
allocation in fog–cloud environments: State of the art,” Journal of
Network and Computer Applications, vol. 227, p. 103891, 2024.

[6] F. U. Khan, I. A. Shah, S. Jan, S. Ahmad, and T. Whangbo, “Machine
learning-based resource management in fog computing: A systematic
literature review,” Sensors, vol. 25, no. 3, 2025. [Online]. Available:
https://www.mdpi.com/1424-8220/25/3/687

[7] E. Nagarjun, D. Chouhan, I. Zabiulla, and S. D. Kumar, “Efficient
resource provisioning in fog computing using agent-based contract net
protocol: A smart healthcare case study,” in 2024 First International
Conference on Software, Systems and Information Technology (SSIT-
CON). IEEE, 2024, pp. 1–6.

[8] A. Bandopadhyay, S. Swain, R. Singh, P. Sarkar, S. Bhattacharyya,
and L. Mrsic, “Game-theoretic resource allocation and dynamic pricing
mechanism in fog computing,” IEEE access, 2024.

[9] D. Zhao, Q. Zou, and M. Boshkani Zadeh, “A qos-aware iot service
placement mechanism in fog computing based on open-source devel-
opment model,” Journal of Grid Computing, vol. 20, no. 2, p. 12, 2022.

[10] M. Hussain, S. Nabi, and M. Hussain, “Rapts: resource aware prioritized
task scheduling technique in heterogeneous fog computing environ-
ment,” Cluster Computing, pp. 1–25, 2024.

[11] J. U. Arshed and M. Ahmed, “Race: resource aware cost-efficient
scheduler for cloud fog environment,” IEEE Access, vol. 9, pp. 65 688–
65 701, 2021.

[12] Z. A. Khan and I. A. Aziz, “Ripple-induced whale optimization
algorithm for independent tasks scheduling on fog computing,” IEEE
Access, 2024.

[13] S.-E. Chafi, Y. Balboul, M. Fattah, S. Mazer, and M. El Bekkali, “Novel
pso-based algorithm for workflow time and energy optimization in a
heterogeneous fog computing environment,” IEEE Access, 2024.

[14] I. Mokni and S. Yassa, “A multi-objective approach for optimizing iot
applications offloading in fog–cloud environments with nsga-ii,” The
Journal of Supercomputing, pp. 1–39, 2024.

[15] H. Raissouli, S. B. Belhaouari, and A. A. B. Ariffin, “Rwp-nsga ii:
Reinforcement weighted probabilistic nsga ii for workload allocation
in fog and internet of things environment,” International Journal of
Distributed Sensor Networks, vol. 2024, no. 1, p. 7645953, 2024.

[16] M. Dehghani and P. Trojovskỳ, “Osprey optimization algorithm: A
new bio-inspired metaheuristic algorithm for solving engineering op-
timization problems,” Frontiers in Mechanical Engineering, vol. 8, p.
1126450, 2023.

[17] F. Wei, X. Shi, and Y. Feng, “Improved osprey optimization algorithm
based on two-color complementary mechanism for global optimization
and engineering problems,” Biomimetics, vol. 9, no. 8, p. 486, 2024.

[18] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “Ifogsim2: An
extended ifogsim simulator for mobility, clustering, and microservice
management in edge and fog computing environments,” Journal of
Systems and Software, vol. 190, p. 111351, 2022.

[19] K. H. K. Reddy, A. K. Luhach, B. Pradhan, J. K. Dash, and D. S. Roy,
“A genetic algorithm for energy efficient fog layer resource management
in context-aware smart cities,” Sustainable Cities and Society, vol. 63,
p. 102428, 2020.

[20] I. M. Jabour and H. Al-Libawy, “An optimized approach for efficient-
power and low-latency fog environment based on the pso algorithm,”
in 2021 2nd Information Technology To Enhance e-learning and Other
Application (IT-ELA). IEEE, 2021, pp. 52–57.

www.ijacsa.thesai.org 1247 | P a g e


