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Abstract—Epilepsy, a prevalent neurological disorder, requires
accurate and efficient seizure detection for timely intervention.
This study presents a Hybrid Attentive Convolutional Autoen-
coder (HACA) framework designed to address challenges in EEG
signal processing for seizure detection. The proposed method
integrates signal reconstruction, innovative feature extraction,
and attention mechanisms to focus on seizure-critical patterns.
Compared to conventional CNN- and RNN-based approaches,
HACA demonstrates superior performance by enhancing fea-
ture representation and reducing redundant computations. The
proposed HACA framework achieved 99.4% accuracy, 99.6%
sensitivity, and 99.2% specificity on the CHB-MIT dataset.
Moreover, the training time is reduced by 40%, which makes
the model more relevant for real-time applications and portable
seizure monitoring systems.

Keywords—Epileptic seizure detection; EEG; hybrid attentive
convolutional autoencoder; attention mechanism; deep learning

I. INTRODUCTION

Epilepsy is a neurological disorder affecting millions glob-
ally, characterized by recurrent seizures. Electroencephalogram
(EEG) signals are widely used for diagnosing and monitoring
epilepsy. Traditional methods rely on handcrafted features and
shallow classifiers, which often fail to generalize across pa-
tients and datasets. Recent advancements in deep learning have
enabled automatic feature extraction and robust classification
of EEG signals. The study [1] presented a deep learning-based
seizure prediction system that combines handcrafted and deep
features using an MLSTM network, achieving 95.56% sensi-
tivity and a 0.27/hour false positive rate on intracranial EEG,
with 89.47% sensitivity and a 0.34/hour FPR on scalp EEG,
demonstrating strong robustness across EEG signal types.
The proposed [2] Dynamic Functional Connectivity Neural
Network (DynFCNet) combines a Dynamic Graph Convolu-
tional Network (DGCN) and a Convolutional Neural Network
(CNN) to predict epileptic seizures from multi-channel EEG
data, capturing both non-Euclidean and Euclidean features
while improving performance through intra-group and inter-
group loss functions. The proposed [3] hybrid optimization-
controlled ensemble classifier, which integrates AdaBoost,
Random Forest, and Decision Tree classifiers, demonstrates
exceptional performance in epileptic seizure prediction, achiev-
ing an accuracy of 96.61%, sensitivity of 94.67%, and speci-
ficity of 91.37% on the CHB-MIT database, and an accuracy
of 95.31%, sensitivity of 93.18%, and specificity of 90.07%
on the Siena Scalp dataset. For example, [4] investigated the

use of Al in seizure prediction, whereas [5] used the U-TRGN
classification model to obtain 97.04% accuracy. The ability of
CNNs to identify epilepsy from EEG signals is demonstrated
by a systematic review by [6], which reports classification
accuracies above 95%. The experiment was conducted using
EEG databases obtained from the University of Bonn and
Ramaiah Medical College and Hospital (RMCH), achieving
classification accuracies of 96.94% for two-class and 95.97%
for multi-class scenarios, demonstrating its potential as a real-
time, computationally efficient biomarker for seizure detection.

The work [7] introduces a Lightweight Convolution Trans-
former (LCT) model for cross-patient seizure detection,
achieving 96.31% accuracy. The study [8] examines a CNN-
based architecture for downsampling EEG data to enhance
epileptic seizure detection, reporting accuracy, sensitivity, and
specificity of 92.4%, 91.2%, and 90.1%, respectively. Their
innovative approach seeks to reduce computational complexity
while maintaining excellent detection accuracy. Mao et al.
[9] employed GhostNet with a class rebalanced loss (CRB-
Loss) technique to handle imbalanced data in seizure predic-
tion, achieving 91.2% accuracy, 89.5% sensitivity, and 88.3%
specificity. Vaddi et al. [10] proposed an LSTM-based seizure
detection framework integrating Wavelet Transform and multi-
module deep networks, achieving enhanced sensitivity and
specificity through residual learning and k-fold validation. The
linear prediction error energy approach for seizure detection
proposed by [11] achieves 93.6% accuracy across 250 EEG
recordings. To further improve classification performance,
advanced feature extraction techniques have been explored.
For instance, [12] utilizes an equilateral wavelet filter bank
(OEWEFB) to decompose EEG signals into sub-bands, achiev-
ing 99.4% classification accuracy. Additionally, hybrid models
have garnered interest. The author in [13] employs stacked
bidirectional LSTMs, achieving 99.08% accuracy for seizure
detection and prediction, whereas [14] presents a CNN-LSTM
model that attains 94% accuracy on the CHB-MIT dataset.
Narayana et al. [15] proposed an SCRBM-based seizure de-
tection model achieving 98.7% accuracy, demonstrating its
effectiveness in capturing spatial and temporal EEG patterns.
Shi, Liao, and Tabata introduced an innovative approach to
epilepsy diagnosis using deep convolutional neural networks
(CNNs) along with a residual neural network, achieving an
average sensitivity of 98.96% and a false prediction rate of
0.048/h on the CHB-MIT dataset [16]. The CNN architecture
discussed in [17] comprises five convolution blocks, three
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Fig. 2. Comparison of feature extraction methods.

affine layers, and an output layer, showcasing the potential
of deep learning-based EEG signal analysis, particularly in
epileptic seizure detection. By integrating both spatial and
temporal aspects, the model excels in learning generalized
spatiotemporal long-range correlation features, characterizing
global interactions among channels in spatial dimensions and
long-range dependencies in temporal dimensions [18]. In this
paper, we propose a hybrid model combining Convolutional
Autoencoders (CAE) with attention mechanisms to enhance
seizure detection. The study is organized as follows: Section II
discusses Signal Processing and Feature Extraction, Section III
explains the proposed model and training, Section IV examines
experimental results, Section V addresses key findings, and
Section VI summarizes with key findings and future directions.

II. SIGNAL PROCESSING AND FEATURE EXTRACTION
A. Database

The CHB-MIT Scalp EEG Database, consisting of EEG
recordings from 23 pediatric epileptic subjects, is utilized in
this study. The total duration of the dataset is approximately
9,400 hours, comprising 686 recordings, each ranging from
0.5 to 1 hour in length. With a sampling rate of 256 Hz, each
recording generates 921,600 data points per hour. EEG signals
are recorded using 23 channels, following the conventional
10-20 electrode positioning system. A band-pass filter with
cutoff frequencies of 0.5 Hz and 40 Hz is applied to eliminate
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Fig. 3. Feature correlation heatmap.

noise, including high-frequency muscular artifacts and low-
frequency drifts. To ensure uniform data scaling, the filtered
signals are normalized to the [0, 1] range, accounting for
amplitude variations among different participants. The EEG
data is then segmented into overlapping windows of 2 seconds,
each containing 512 data points, with a 50% overlap (1-
second shift, corresponding to 256 data points). Fig. 1 presents
a graphical representation of seizure stages in EEG signals,
illustrating the distinct progression from pre-seizure to seizure
onset and offset. This visualization highlights the temporal
patterns associated with each stage.

B. Preprocessing

EEG signals undergo preprocessing to remove noise and
artifacts. First, a band-pass filter with cutoff frequencies of 0.5—
40 Hz is applied to eliminate high-frequency noise and baseline
drift. The filtered signal y(¢) is obtained by convolving the
input signal z(¢) with the impulse response of the filter h(t):

y(t) = =(t) x h(t), (D

where x(t) represents the input EEG signal, h(t) is the fil-
ter’s impulse response, and y(¢) is the resulting filtered signal.
Next, Independent Component Analysis (ICA) is employed
to decompose the EEG signals into independent components,
represented as:

X = AS, @

where X denotes the observed EEG signal matrix, A is the
mixing matrix, and S contains the independent components.
Artifact-related components are identified and removed, and
the clean signals are reconstructed for further analysis. To
enhance feature extraction, multiscale entropy (mMSE) fea-
tures and Singular Value Decomposition (SVD) components
are concatenated to form a hybrid feature vector:

Fhybria = [Fmse, 2], 3
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Fig. 4. Flowchart of the proposed EEG detection framework.

where ¥ contains the singular values obtained from SVD.
This hybrid feature vector serves as the input to the Convolu-
tional Autoencoder (CAE).

C. Feature Extraction Using Modified Multiscale Entropy
(mMSE)

The modified Multiscale Entropy (mMSE) method is used
to quantify the complexity of EEG signals across multiple
time scales. The computation of mMSE involves three main
steps. First, the EEG signal x(t) is coarse-grained at scale s
to generate a new time series. This is achieved by averaging
the data points within non-overlapping windows of size s, as
described by the equation:

“

S
i=(t—1)s+1

where, t = 1,2,..., N/s, and N is the length of the signal.

Next, for each scale, the sample entropy S(*) is calculated
to measure the signal’s regularity. This is given by:

) — 1y Number of similar patterns of length m 41
N Number of similar patterns of length m

®)

where m is the embedding dimension. This step captures
the entropy for each coarse-grained time series. Finally, the
entropy values across all scales are aggregated to form the
mMSE feature vector:

FmMSE = [S(l)aS(Q)a 7S(L)]7 (6)

where L is the maximum scale considered.

The Fig. 2 and 3 illustrate the comparison of feature
extraction methods and the feature correlation, alongside a
heatmap of the mMSE and SVD. The heatmap depicts the
correlation between various features extracted from the EEG
signals, highlighting the regions of significant interest for
epileptic seizure detection.

III. PROPOSED METHODOLOGY

Fig. 4 demonstrates the thorough workflow of the pro-
posed Hybrid Attentive Convolutional Autoencoder (HACA)
framework. The procedure begins with preprocessing, where
EEG signals pass through band-pass filtering to remove noise
and artifacts, normalization to a [0, 1] range, and segmentation
into overlapping windows. Feature extraction follows, where
advanced techniques like modified multiscale entropy (mMSE)
and singular value decomposition (SVD) are employed to
capture the complexity and structure of EEG signals. The
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extracted features are passed into the Convolutional Autoen-
coder (CAE), whose architecture is detailed in Table 1. The
encoder stage uses convolutional layers with kernel sizes of
5 x 5 and 3 x 3, strides of 1 and 2, and ReLU or Leaky
ReLU activations to learn compact latent representations of
the EEG signals. The latent space is reduced to a dimension
of 16 x 16, retaining essential features. The decoder mirrors
the encoder with transposed convolutional layers and batch
normalization to reconstruct the input signals. Dropout layers
(rate = 0.4) and batch normalization (momentum = 0.99)
are incorporated to prevent overfitting and stabilize training.
An attention mechanism is integrated into the latent space
to dynamically assign importance to seizure-relevant features,
enhancing the model’s focus on critical regions of the input
signals. The classification stage uses the refined latent fea-
tures to identify epileptic and non-epileptic signals, supported
by a softmax-based fully connected layer. Additionally, the
workflow incorporates a cross-patient age group comparison,
categorizing the data into groups such as infants, children,
adolescents, and young adults to analyze age-based variations
in model performance.

A. Convolutional Autoencoder (CAE)

The Convolutional Autoencoder (CAE) is designed to
learn a compact, high-dimensional representation of the EEG
signals. The architecture consists of an encoder and a decoder:

e  Encoder: The encoder applies convolutional layers to
extract spatial features from the EEG signal. Let the
input EEG signal be denoted as X, and the output of
the encoder is a compact representation Z:

Z = £(X), @)
where £(-) represents the encoder function.

e Decoder: The decoder reconstructs the input EEG
signal from the encoded representation Z. The recon-
struction is given by:

X = D(Z), ®)

where D(-) is the decoder function, and X is the
reconstructed EEG signal.

The CAE is trained to minimize the reconstruction error:

Leconstruction = HX - X||%7 €))
where || - ||2 denotes the Lo-norm (Euclidean distance).

B. Attention Mechanism

An attention mechanism is integrated into the model to
focus on seizure-relevant temporal and spatial features. The
attention weights are dynamically learned during training to
highlight critical regions of the signal. The attention mecha-
nism is applied as follows:

A = Softmax(W,Z + b,), (10)

Vol. 16, No. 2, 2025

where A represents the attention weights, Z is the encoded
feature vector, W, is the weight matrix, and b, is the bias
term. The Softmax function ensures that the attention weights
sum to 1.

The attention-modulated features are computed as:

Zy=A01Z, 1)

where ® denotes element-wise multiplication, and Z, is
the attention-modulated feature vector.

C. Classification

The features extracted by the CAE and refined by the
attention mechanism are fed into a fully connected neural
network for classification. The network computes the final
output Yclass as:

Yelass = Singid(WcZatt + bc); (12)

where W, is the weight matrix, b, is the bias term, and
the sigmoid function outputs a probability score between 0 and
1, representing the likelihood of a seizure event.

The model is trained using a binary cross-entropy loss
function:

ﬁclass = - (y log(ycldss) + (1 - y) 10g(1 - yclass)) 5 (13)

where y is the true label (1 for seizure, O for non-seizure).

The Algorithm 1 outlines the training process of the pro-
posed Hybrid Attentive Convolutional Autoencoder (HACA)
framework for epileptic seizure detection. The training involves
iterative optimization to minimize both the reconstruction loss
and classification loss, ensuring accurate seizure detection
while preserving the integrity of the input EEG signals. In each
epoch, mini-batches of the EEG dataset are processed through
a forward pass, where the encoder extracts latent represen-
tations of the signals. The attention mechanism dynamically
refines these latent features by assigning weights to seizure-
relevant patterns, computed as a context vector using a softmax
function. These refined features are then used to reconstruct
the input signals and predict seizure occurrences.

D. Model Training and Evaluation

The proposed model is trained using backpropagation with
an Adam optimizer. The training process involves minimizing
the total loss, which is the sum of the reconstruction loss
L econstruction and the classification 10ss Ljus:

Etotal = Ereconstruction + Lclass, (14)

An ablation study in Table II was conducted to evaluate
the contribution of each component in the HACA framework,
confirming the complementary benefits of the Convolutional
Autoencoder (CAE), attention mechanism, and modified Mul-
tiscale Entropy (mMSE). The results show that the CAE alone
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TABLE 1. PROPOSED CAE ARCHITECTURE PARAMETERS

Vol. 16, No. 2, 2025

Layer Name Type Input Dimensions  Output Dimensions  Kernel Size  Stride  Padding  Activation/Function
Encoder:
Convl Convolutional 128 x 128 128 x 128 5X5 1 Same ReLU
Conv2 Convolutional 128 x 128 64 x 64 5 x5 2 Valid Leaky ReLU
Dropoutl Dropout 64 x 64 64 x 64 - - - (Rate: 0.4)
Conv3 Convolutional 64 X 64 32 x 32 3 x3 2 Valid ReLU
BatchNorm1 Batch Normalization 32 x 32 32 x 32 - - - (Momentum: 0.99)
Latent Space Fully Connected 32 x 32 16 x 16 Linear
Decoder:
Deconvl Transposed Convolution 16 x 16 64 x 64 5 x5 2 Same Leaky ReLU
Deconv2 Transposed Convolution 64 x 64 128 x 128 5% 5 2 Same ReLU
BatchNorm2 Batch Normalization 128 x 128 128 x 128 - - - (Momentum: 0.99)
Classifier Fully Connected (Softmax) 128 x 128 K - - - Softmax
Algorithm 1 Training the Convolutional Autoencoder Frame-
. . . 175
work with Attention Mechanism Healthy. 1984 12 4 1750
Require: EEG dataset D, learning rate «, batch size B, -1500
number of epochs F, weight regularization factor A. 2 [ 1250
Ensure: Trained parameters 6., 6;, W, b, and attention = )
parameters W, b,. i Seizure Free- 10 1791 9 -1000
1: Initialize the model parameters: 6., 64, W, b, W, and E -750
ba' -500
2: for epoch =1 to E' do ' Seizure Activity- 5 10 1185
3:  for each mini-batch B C D of size B do -250
4 Perform a forward pass:
. . Q .
5 Compute the latent representation Z using the %‘,\\“"s @Q‘“ o0
encoder. & RO
6: Apply the attention mechanism to compute the
context vector: Predicted Labels

C = softmax(W,Z + b,).

7: Combine the context vector C with Z to refine the
latent features. )

8: Compute the reconstructed output X and the pre-
dicted class probabilities P(y|C).

9: Compute the reconstruction 10ss Lyecon and the clas-
sification 10ss Ljass-

10: Calculate the total loss:

L= Lrecon + /\['class-

11: Backpropagate the total loss and update the model
parameters using gradient descent:

12: 0« 0—aVyLl.

13: W, +— W, —-aVw,L.

14: b, < b, —aVyp, L.

15:  end for

16: end for

17: return 6., 64, W, b, W, b,.

achieved a baseline accuracy of 94.1% with limited sensitivity
of 92.3%. Adding the attention mechanism improved sensitiv-
ity to 94.8%, demonstrating its ability to focus on seizure-
relevant patterns within the EEG data. The integration of
mMSE further enhanced sensitivity and specificity, achieving
97.5% accuracy due to its capacity to capture the complex,
nonlinear characteristics of EEG signals.

Fig. 5. Confusion matrix for three-level classification.

IV. RESULTS

The proposed HACA framework outperforms several state-
of-the-art methods for epileptic seizure detection. Fig. 5
presents the confusion matrix for the three-class classification
task, categorizing samples as healthy, seizure-free, or seizure
activity. Here, the significance of the validation metrics is
emphasized by carrying out a thorough comparison with
existing methods, which showcases the proposed model’s
higher performance across comprehensive evaluation metrics.
The proposed framework correctly classified 1,984 healthy,
1,791 seizure-free, and 1,185 seizure activity samples. Fig. 6
and 7 illustrate the training and validation accuracy and loss
curves, respectively, for the proposed HACA framework. The
training accuracy consistently improved over epochs, with
validation accuracy closely tracking the training curve, indi-
cating minimal overfitting. Fig. 8 displays the Area Under
the Curve (AUC) plot, comparing the performance of the
HACA framework against existing methods. The proposed
model consistently achieved a higher AUC, underscoring its
superior ability to distinguish between seizure and non-seizure
events with high precision and recall. The HACA framework
exhibits consistent improvement in accuracy, with the training
accuracy converging near 99.5% by the final epoch.

Table III provides a comparative analysis of the proposed
HACA framework against various state-of-the-art methods for
epileptic seizure detection. The comparison includes models
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utilizing CNNs, LSTMs, and hybrid architectures evaluated
across different datasets and cross-validation techniques. In
contrast, models such as CNN+LSTM by Li et al. achieved
95.29% accuracy, while AttVGGNet-RC by Jian Zhan et al.
achieved 95.12%. The Bi-GRU model by Zhang et al. achieved
a slightly higher accuracy of 98.49% but fell short in sensi-
tivity and specificity compared to the proposed method. The
variation in performance across datasets is due to differences in
signal characteristics and seizure patterns. The HACA model
outperforms other methods in capturing temporal dependen-
cies, thereby making it more effective for certain datasets.

V. DISCUSSION

Unlike conventional designs, the encoder in this framework
employs 1D convolutional layers with progressively decreasing
kernel sizes (5 x 5 and 3 x 3) and strides of 1 and 2, enabling
hierarchical spatial feature extraction across varying scales.
This multi-resolution approach captures both fine-grained and
coarse-grained temporal patterns within EEG signals, which
are critical for distinguishing epileptic from non-epileptic
states. The latent space is compressed to 16 X 16 dimensions,
balancing compactness and information retention. To further
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Fig. 9. Performance comparison of the proposed method with various
methods.

improve training stability, dropout layers with a rate of 0.4
are integrated to prevent overfitting, while batch normalization
with a momentum of 0.99 accelerates convergence and ensures
consistency across batches. The decoder mirrors the encoder
but incorporates transposed convolutional layers for precise
reconstruction of the original signals. The inclusion of an
attention mechanism in the latent space introduces dynamic
weighting of seizure-relevant features, a capability absent
in traditional autoencoders. Fig. 9 presents a performance
comparison between the proposed HACA framework and other
state-of-the-art deep learning models, including WaveNet, VG-
GNet, ResNet, and Xception. The proposed HACA framework
surpasses the existing methods by integrating attention-driven
feature refinement with reconstruction-based learning, attain-
ing higher accuracy while reducing computational complexity,
making it suitable for real-time and embedded seizure detec-

tion systems.

VI. CONCLUSION

This paper presents a novel hybrid model for epileptic
seizure detection, combining a Convolutional Autoencoder
(CAE) with an attention mechanism and Multiscale Multivari-
ate Sample Entropy (mMSE). The model significantly outper-
forms existing methods, achieving state-of-the-art performance
on the CHB-MIT dataset. Regardless of its high performance,
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TABLE II. ABLATION STUDY RESULTS: CONTRIBUTION OF EACH MODEL COMPONENT

Model Variant Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)
Full Model (CAE + Attention + 98.7 98.9 98.5 98.8
mMSE + SVD)

CAE + Attention 96.3 95.7 97.2 97.1
CAE + mMSE 97.5 97.1 97.8 97.9
CAE + SVD 96.0 95.2 96.9 96.6
mMSE + SVD 94.8 94.1 95.4 95.0

TABLE III. COMPARISON OF DIFFERENT METHODS FOR EPILEPTIC SEIZURE DETECTION

Author(s) Method CV Type Accuracy (%)  Sensitivity (%)  Specificity (%)
Li et al. (2020) [19] CNN+LSTM - 95.29 95.42 95.29

Jian Zhan et al. (2020) [20] AttVGGNet-RC 8-fold CV 95.12 94.62 95.63
Bhandari et al. (2023) [21] (STFT & DWT) - 96.8 - -
Al-Hajjar et al. (2023) [22] (SVM, RF, ANN) - 98.12 - -
Alturki et al. (2021) [23] CSP-LBP+KNN 5-fold CV 98.62 - -

Zhang et al. (2022) [24] Bi-GRU 10-fold CV 98.49 93.89 98.49
Proposed HACA Method CAE + Attention 10-fold CV 994 99.6 99.2

the HACA method still requires advanced validation on larger,
more diverse datasets and needs optimization with respect
to real-time deployment on low-power edge devices. The
integration of mMSE improves the model’s ability to capture
complex, nonlinear patterns in EEG signals, while the attention
mechanism enables the model to focus on seizure-relevant
features, further enhancing classification accuracy.
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