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Abstract—This research investigates the performance of ma-
chine learning and deep learning models in detecting heart
murmurs from audio recordings. Using the PhysioNet Challenge
2016 dataset, we compare several traditional machine learning
models—Support Vector Machine, Random Forest, AdaBoost,
and Decision Tree—with a Fully Convolutional Neural Network
(FCNN). The findings indicate that while traditional models
achieved accuracies between 0.85 and 0.89, they faced challenges
with data complexity and maintaining a balance between pre-
cision and recall. Ensemble methods such as Random Forest
and AdaBoost demonstrated improved robustness but were still
outperformed by deep learning approaches. The FCNN model,
leveraging artificial intelligence, significantly outperformed all
other models, achieving an accuracy of 0.99 with a precision of
0.94 and a recall of 0.96. These results highlight the potential of
AI-driven cardiovascular diagnostics, as deep learning models
exhibit superior capability in identifying intricate patterns in
heart sound data. Our findings suggest that deep learning models
offer substantial advantages in medical diagnostics, particularly
for cardiovascular diagnostics, by providing scalable and highly
accurate tools for heart murmur detection. Future work should
focus on improving model interpretability and expanding dataset
diversity to facilitate broader adoption in clinical settings.
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I. INTRODUCTION

Artificial Intelligence (AI) has profoundly impacted the
medical field, particularly in its ability to rapidly process
and analyze vast datasets with unprecedented accuracy and
speed. This capability has revolutionized healthcare by en-
abling earlier and more precise diagnoses, the development
of personalized treatment plans, and overall improved patient
outcomes. Among the most promising applications of AI is its
role in cardiac care, specifically in the detection and analysis of
heart murmurs—abnormal heart sounds that can be indicative
of various cardiovascular conditions. Heart murmurs serve as
critical indicators of underlying heart issues, ranging from
benign anomalies to severe, life-threatening diseases.

The heart produces characteristic ”lub-dub” sounds as its
valves close during the pumping of blood. A heart murmur
is an additional sound detected during this process, often
signaling potential turbulence in blood flow. While many
murmurs are benign, others can signal structural abnormalities
such as malfunctioning valves or congenital defects. Precise
and early detection is crucial to facilitate timely intervention,

significantly improving patient prognosis and reducing mortal-
ity rates. Cardiovascular diseases (CVD), many related to heart
murmurs, are the leading cause of death globally, accounting
for approximately 19.91 million deaths in 2021 [1]. Moreover,
CVD represented 12% of total U.S. health expenditures from
2019 to 2020, making it the most costly diagnostic group [2].
A substantial portion of these fatalities could potentially be
prevented with earlier detection and treatment. Heart murmurs
are also a leading cause for referral to pediatric cardiolo-
gists, with studies indicating that up to 72% of children will
experience a murmur at some point during their childhood
or adolescence [3]. While some murmurs resolve over time,
others may persist into adulthood, requiring ongoing evaluation
and management.

Traditional methods of detecting heart murmurs, such as
physical examination with a stethoscope, have several limita-
tions compared to AI-based detection techniques. The accuracy
of traditional auscultation heavily depends on the clinician’s
experience, leading to potential human error and variability
in interpretation. This variability can result in inconsistent
diagnoses and treatment plans. Faint or position-specific mur-
murs may be missed, and traditional methods do not provide
quantitative data about the murmur’s characteristics, limiting
the ability to track changes over time. Moreover, traditional
detection relies on the physical presence of both the patient
and healthcare provider, making it less adaptable to remote
monitoring. Complex heart conditions with subtle or mixed
murmurs can be particularly challenging to diagnose accurately
with a stethoscope alone. Additionally, auscultation can be
time-consuming, potentially leading to rushed assessments in
busy clinical settings. Furthermore, traditional methods do not
easily integrate with other patient data, such as echocardio-
grams or electronic health records, whereas AI-based systems
can combine multiple data sources for a more comprehensive
diagnosis.

Despite advancements in Artificial Intelligence (AI) for
medical diagnostics, there remains a gap in evaluating the per-
formance of these models for heart murmur detection. While
some studies have explored traditional ML approaches, there
is limited research comparing these methods to deep learning
architectures, such as Fully Convolutional Neural Networks
(FCNN), in the specific context of heart murmur detection.
This study aims to bridge this gap by systematically com-
paring the effectiveness of traditional ML models—Support
Vector Machine, Random Forest, AdaBoost, and Decision
Tree—against an FCNN model using heart sound recordings
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from the PhysioNet Challenge 2016 dataset. The objective
is to determine whether deep learning provides significant
improvements over traditional ML techniques in detecting
heart murmurs and enhancing diagnostic accuracy.

Hence, integrating AI in heart murmur detection offers
a transformative solution to these limitations by providing a
more consistent and objective analysis. AI-powered diagnostic
tools can detect subtle patterns in heart sound recordings that
may not be discernible to the human ear, thereby enhancing
diagnostic precision and ensuring that at-risk patients are
identified earlier. AI’s ability to reduce human error, process
large volumes of data, and provide real-time diagnostic support
across diverse healthcare settings offers significant advantages
over traditional approaches. Despite these benefits, traditional
methods continue to dominate clinical practice due to their
reliance on the expertise and judgment of physicians, which
can lead to variability in diagnosis and patient outcomes.
The accuracy of traditional diagnostics often depends on the
clinician’s experience, and the processes can be time-intensive,
potentially lacking the precision necessary for early detection.

To address these challenges, this study aims to develop
an automated system for heart murmur detection utilizing
machine learning (ML) and deep learning (DL) techniques.
Leveraging a dataset from the PhysioNet Challenge 2016,
the research will focus on the extraction of relevant features
from heart sound recordings using Mel-Frequency Cepstral
Coefficients (MFCC). MFCC is selected for its proven efficacy
in capturing the essential characteristics of audio signals, mak-
ing it an optimal choice for heart sound analysis. Following
feature extraction, various ML and DL models will be imple-
mented and trained on the dataset, with the goal of evaluating
their accuracy and effectiveness in detecting heart murmurs.
Moreover, this research seeks to demonstrate the significant
potential of AI in enhancing the early detection of heart
murmurs, ultimately leading to improved patient outcomes and
a reduction in the global burden of cardiovascular diseases. By
advancing the development of these sophisticated models, the
study aims to contribute to the creation of a more reliable,
accurate, and accessible diagnostic tool for heart murmur
detection, thereby improving healthcare delivery and patient
care.

The remainder of this article is organized as follows:
Firstly, Section II provides a comprehensive review of the
state-of-the-art methods in heart murmur detection, particu-
larly highlighting the advancements and challenges associated
with applying machine learning and deep learning techniques.
Subsequently, Section III delves into the methodology em-
ployed in this study, where the processes of data collection,
preprocessing, feature extraction, and the application of var-
ious ML and DL models are thoroughly detailed. Following
this, Section IV presents the results, offering a comparative
analysis of the models’ performances while discussing their
implications for clinical practice. Lastly, Section V concludes
the article with a summary of the key findings, accompanied by
an exploration of limitations and recommendations for future
research directions.

II. STATE-OF-THE-ART

The advancements in AI for heart murmur detection and
diagnosis have led to a diverse range of studies employing

various ML and DL techniques to improve the accuracy
and reliability of these methods. The Multi-Kernel Residual
Convolutional Neural Network (MK-RCNN) model stands
out as a significant innovation, capturing multi-scale fea-
tures through multi-kernel convolutional networks and utilizing
residual learning for deeper feature extraction. This model
achieved an impressive 98.33% accuracy on three datasets,
making it a promising tool for reliable heart murmur di-
agnosis in primary healthcare settings [4]. Complementing
this approach, a comprehensive review on machine learning-
based analysis of PCG signals underscores the importance of
feature extraction and data quality in enhancing diagnostic
accuracy. This review explores how supervised, unsupervised,
and deep learning techniques have been effectively applied to
heart sound analysis, significantly improving the accuracy of
cardiovascular disease diagnosis [5].

In parallel, the development of novel real-time detection
methods, such as FunnelNet, has demonstrated the efficiency of
combining traditional and depthwise separable convolutional
networks for heart murmur detection. FunnelNet employs
continuous wavelet transform (CWT) for feature extraction
and integrates SqueezeNet, a Bottleneck layer, and Expan-
sionNet, achieving state-of-the-art performance with 99.70%
accuracy on four public datasets [6]. This method’s suitability
for resource-constrained devices highlights its potential for
accessible medical services. Additionally, the exploration of
general-purpose audio representations pre-trained on large-
scale datasets, like the Masked Modeling Duo (M2D), has
shown the effectiveness of self-supervised learning methods
in heart sound analysis, with ensembling techniques further
improving diagnostic outcomes [7].

Building on these advancements, other studies have focused
on the classification of heart murmur quality. A study employ-
ing deep neural networks to classify heart murmur quality as
harsh or blowing utilized a CNN with channel attention and
GRU networks to extract features from log-Mel spectrograms,
followed by a Feature Attention module to weight features
across segments [8]. This model achieved 73.6% accuracy,
with F1-scores of 76.8% for harsh murmurs and 67.8% for
blowing murmurs, illustrating the nuanced capabilities of AI
in analyzing heart sound characteristics. Moreover, traditional
heart sound classification methods, which often depend on
ECG-labeled PCGs or feature extraction from mel-scale fre-
quency cepstral coefficients (MFCC), have seen significant
improvements with the introduction of capsule neural net-
works (CapsNet) [9]. CapsNet enhances feature representation
through iterative dynamic routing, achieving validation accura-
cies of 90.29% and 91.67%, thus offering a robust alternative
for heart murmur detection.

Further innovation in this field includes the development
of CardioXNet, a lightweight CRNN architecture designed to
detect five cardiac conditions using raw PCG signals. Car-
dioXNet combines representation learning with parallel CNN
pathways for feature extraction and sequence residual learn-
ing using bidirectional LSTMs, capturing temporal features
with high accuracy and low computational requirements [10].
This model’s applicability in low-resource settings on mobile
devices is particularly noteworthy. Alongside these advance-
ments, a study exploring general-purpose audio representations
pre-trained on large-scale datasets for heart murmur detection
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introduced the self-supervised learning method Masked Mod-
eling Duo (M2D), which outperformed previous techniques,
achieving a weighted accuracy of 0.832 and an unweighted
average recall of 0.713 [7]. The effectiveness of ensembling
M2D with other models demonstrates the broader applicability
of general-purpose audio representations in heart sound anal-
ysis.

The continuous evolution of AI-driven heart sound anal-
ysis has also seen the integration of traditional ML methods
with deep learning. A study focused on time-frequency heat
maps combined with a deep CNN to detect abnormalities
in heart sounds achieved commendable performance, balanc-
ing sensitivity and specificity—an essential aspect of cost-
sensitive medical diagnostics [11]. Furthermore, Cardi-Net, a
deep learning model combining CNN and power spectrogram
analysis, was introduced to extract discriminative features from
PCG signals for the multi-class classification of four cardiac
disorders without pre-processing or feature engineering [13].
Enhanced by data augmentation and 10-fold cross-validation,
Cardi-Net achieved 98.88% accuracy, making it suitable for
real-time use across various platforms, including cloud services
and mobile apps.

In a different approach, the researchers transformed PCGs
into spectral images that preserved the topological structure of
the original data. This transformation allowed them to leverage
the power of deep convolutional neural networks (CNNs)
for feature extraction. To enhance the model’s performance,
data augmentation techniques were employed to increase the
diversity of the training data. Additionally, transfer learning
was utilized to fine-tune pre-trained CNN architectures, en-
abling the model to learn from existing knowledge [12]. To
capture the temporal dynamics of cardiac murmurs, a recurrent
neural network (RNN) was integrated into the architecture.
This hybrid approach resulted in a significant improvement in
accuracy, achieving a remarkable 94.01% in automatic cardiac
murmur detection without the need for manual segmenta-
tion. The performance of an Adaptive Neuro-Fuzzy Inference
System (ANFIS) was also evaluated for detecting abnormal
cardiac valve sounds using spectral analysis features. After
de-noising and feature extraction through High Order Spectral
(HOS) analysis, the ANFIS model achieved classification
accuracy between 63-89%, highlighting its potential in specific
diagnostic contexts [14]. Another significant development is
the creation of a portable, low-cost system for early detection
of valvular heart abnormalities, such as arrhythmias and mur-
murs. Designed for use by untrained frontline health workers,
this system processes stethoscope sounds into spectrograms for
classification via cloud-based CNN models, achieving a 95%
average classification accuracy [15]. Its validation with real-
life heart sounds collected using a low-cost digital stethoscope
demonstrates its promise as a comprehensive diagnostic tool
for enhancing healthcare in developing regions.

Moreover, studies have explored the combination of PCG
and ECG waveforms for enhanced disease screening through
a novel dual-convolutional neural network approach. This
method introduces both record-wise and sample-wise evalu-
ation frameworks, showing that integrating ECG and PCG
data significantly outperforms single-modality methods, lever-
aging transferable features from separately collected ECG and
PCG waveforms for improved classification accuracy [16].

The application of ensemble models combining random forest
and extreme gradient boost for heart sound classification has
also been explored, with the ensemble model using Moth
Flame Optimization (MFO) further improving results, reaching
89.53% accuracy, 0.9 F1 score, and 0.95 AUC [17].

The field has also seen the introduction of AI-driven heart
monitoring devices that screen and identify heart sounds,
transmitting data to healthcare providers through the Internet
of Things (IoT) [18]. These systems, which employ LSTM
architectures, enable patients to self-monitor their heart health,
offering a novel approach to managing coronary conditions.
On the other hand, the challenge of detecting heart disease
from heart sound signals with imbalanced training and testing
sets has also been addressed by developing ML models using
features extracted from Discrete Wavelet Transform (DWT)
and Mel-Frequency Cepstral Coefficients (MFCC). The study
explored various models, including Random Forest and Ex-
treme Gradient Boost, achieving high accuracy and AUC,
particularly when using an ensemble model with Moth Flame
Optimization [17]. Finally, a combination of conventional
feature engineering and deep learning has been employed
to classify normal and abnormal heart sounds automatically.
Initially, 497 features were extracted from eight domains,
which were then fed into a CNN. To prevent overfitting,
fully connected layers were replaced with a global average
pooling layer, and class weights were adjusted to address
class imbalance [19]. Using stratified five-fold cross-validation,
the method achieved a mean accuracy of 86.8%, sensitivity
of 87%, specificity of 86.6%, and a Matthews correlation
coefficient of 72.1%, striking a balance between sensitivity
and specificity.

III. METHODOLOGY

The flowchart depicted in Fig. 1 illustrates the compre-
hensive methodology employed in this study. It details the
entire process, from data acquisition through to the final
model evaluation, highlighting the structured and methodical
approach taken to develop, refine, and assess the performance
of the heart murmur detection models.

Fig. 1. Heart murmur detection model.
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A. Data Collection

The PhysioNet Challenge 2016 dataset was utilized for
this study [20], comprising heartbeat sounds collected from a
diverse range of patients in clinical settings using electronic
stethoscopes. The recordings, saved in .wav format with a
sampling rate of 2 kHz, include normal heartbeats, murmurs,
and other pathological conditions like extrasystole and gallop
rhythms. These high-quality recordings were gathered from
multiple clinical sites worldwide, ensuring a broad spectrum
of acoustic environments and patient conditions. To maintain
consistency and quality, standard recording protocols were
adhered to, including consistent microphone placement and
controlled ambient noise levels.

Each audio file is accompanied by metadata that includes
labels indicating the presence or absence of heart murmurs,
as diagnosed by expert cardiologists. The dataset is diverse,
with recordings from patients across various age groups,
genders, and clinical histories, which is crucial for developing
models that generalize well across different populations. The
dataset includes 3126 recordings from 764 patients, captured
from different auscultation points. These recordings vary in
length, allowing for the study of heart sounds over different
time intervals. Despite challenges such as patient movement,
breathing, and background noise, the dataset remains one of
the most comprehensive publicly available collections of heart
sounds, making it invaluable for research in heart murmur
detection and related fields.

B. Data Preprocessing

The preprocessing of the dataset involved several critical
steps to ensure the quality and suitability of the data for model
training and evaluation. First, the audio files were loaded using
the Librosa library in Python, which is specifically created for
audio and music analysis. It offers essential tools for handling
audio data, simplifying the extraction and manipulation of
features, signal analysis, and the execution of tasks such as
beat tracking, pitch detection, and sound classification. During
this stage, any corrupted or incomplete files were identified
and discarded to maintain the integrity of the dataset.

To eliminate any potential ordering bias and ensure the data
is randomized, the entire dataset was shuffled. This process
is essential to prevent the model from picking up unintended
patterns based on the order of the data, which could skew the
learning process. Shuffling helps the model avoid overfitting
by not relying on the sequence of data, thereby enhancing its
ability to generalize to new, unseen examples and improving
overall model performance.

Following the shuffling process, labels indicating the pres-
ence or absence of heart murmurs were extracted from the
accompanying metadata to create the target variable for clas-
sification tasks. The labeling method involved using predefined
criteria from the metadata files, which typically included
annotations from medical professionals or automated detection
algorithms. This extraction was performed with meticulous
care to ensure that each label was correctly aligned with its
corresponding audio recording. Accurate alignment of labels
and recordings is essential for reliable model training and eval-
uation, as it ensures that the model is learning from properly

matched data and enhances the quality of the classification
process.

Finally, the dataset was subsequently divided into training
and test sets using stratified sampling, with 70% of the data
allocated to the training set and 30% to the test set. Stratified
sampling was employed to ensure that both subsets accurately
reflected the original distribution of positive and negative cases.
This method is crucial for addressing the dataset’s inherent
imbalance, as it prevents the creation of subsets that could
disproportionately favor one class over the other. By main-
taining proportional representation in both the training and test
sets, stratified sampling helps the model learn from a balanced
perspective, which enhances its ability to generalize effectively
to new, unseen data. Furthermore, this approach supports a
more reliable evaluation of the model’s performance, reducing
the risk of biased results and ensuring that both positive and
negative cases are adequately represented in the testing phase.

C. Features Extraction

As discussed earlier, MFCC was selected for feature ex-
traction due to its proven ability to represent audio signals
in a form that is highly compatible with ML and DL mod-
els. MFCCs effectively capture the timbral characteristics of
audio, which are crucial for distinguishing subtle variations,
such as heart murmurs, that may be indicative of underlying
health conditions. In addition to MFCCs, other features were
extracted to provide a comprehensive representation of the
audio signals. Chroma features, which capture the harmonic
content of the audio, were computed, and their mean and
standard deviation were calculated. Spectral contrast features,
representing the difference in amplitude between peaks and
valleys in the sound spectrum, were also extracted along
with their mean and standard deviation. Lastly, Tonnetz (tonal
centroid features), which capture the tonal properties of the
audio, were computed, and their mean and standard deviation
were included.

During this process, each audio recording was segmented
into short frames of 25ms, with a 10ms overlap to ensure
that transient features were not missed. For each frame, 13
MFCCs were computed using the librosa library, based on a
filter bank that mimics the human ear’s perception of sound.
The resulting coefficients were chosen because they offer a
balance between computational efficiency and the richness of
information captured. After extracting the MFCCs, the mean
and standard deviation across all frames were calculated, re-
sulting in a fixed-length feature vector for each recording. This
approach ensures that the variability within each recording is
captured, while also reducing the dimensionality of the data,
making it more manageable for ML and DL models.

In total, 130 features were extracted from each audio file,
comprising 40 MFCCs (mean and standard deviation), 24
chroma features (mean and standard deviation), 14 spectral
contrast features (mean and standard deviation), and 12 Ton-
netz features (mean and standard deviation). These features
collectively provide a rich and detailed representation of the
heart sound recordings, enabling effective analysis and clas-
sification by the ML and DL models. MFCCs are widely
favored in audio processing because they provide a compact
representation of the power spectrum of sound, making them
ideal for detecting subtle anomalies like heart murmurs.
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Additionally, the choice of 13 coefficients aligns with
common practices in speech and audio processing, where it has
been empirically shown that this number provides sufficient
detail for accurate modeling while avoiding overfitting. The
extracted feature vectors were then normalized and fed into
the ML and DL models. This step ensures consistency across
recordings and enhances the models’ ability to generalize from
the training data to unseen examples. By leveraging these
diverse features, the models can better capture the nuanced dif-
ferences between normal heart sounds and those that indicate
murmurs, ultimately improving the accuracy of the detection
system.

D. Normalization and Balancing

Following the feature extraction process, the audio signals
were normalized to achieve a zero mean and unit variance.
This normalization step is crucial for ensuring consistency
across the input data by removing scale differences between
features. Such standardization not only enhances the overall
performance of the model but also facilitates faster and more
stable convergence during the training phase. By normalizing
the data, we mitigate potential biases that could arise from
varying signal amplitudes, thereby improving the reliability
and accuracy of the model’s predictions.

Moreover, an analysis of the dataset revealed a significant
imbalance between normal and abnormal recordings, with nor-
mal recordings being more prevalent. This disparity could lead
to the machine learning models favoring the majority class,
resulting in suboptimal performance on the minority class. To
address this issue, we applied techniques like the Synthetic
Minority Over-sampling Technique (SMOTE) and Random
Over-Sampling. SMOTE works by generating synthetic sam-
ples for the minority class. It does this by interpolating between
existing minority class samples, creating new data points that
lie along the line segments connecting nearest neighbors in
the feature space. This method not only increases the number
of minority class samples but also introduces more variability,
helping to reduce the risk of overfitting. On the other hand,
Random Over-Sampling (ROS) involves duplicating existing
minority class samples to balance the dataset. While ROS
is straightforward and effective, it can sometimes lead to
overfitting because it doesn’t introduce new information into
the model. By combining SMOTE and ROS, we ensured a
more balanced dataset, which is crucial for training models
that can make unbiased and reliable predictions. This balanced
approach helps the model to better generalize across both the
majority and minority classes, ultimately leading to improved
detection of abnormal cases in the dataset.

E. Applying the Used Methods

1) ML and DL Algorithms: The final step in the method-
ology involves applying a range of machine learning (ML)
and deep learning (DL) techniques to the preprocessed dataset
to detect heart murmurs. Specifically, we employed Support
Vector Machine (SVM) [21], Random Forest (RF) [22], Ad-
aBoost [23], Decision Tree [24], and a Fully Convolutional
Neural Network (FCNN) [25] for this classification task. Each
of these algorithms brings unique strengths: SVM is effective
in handling high-dimensional spaces, RF and AdaBoost are ro-
bust against overfitting, and FCNN excels in learning complex

patterns directly from the raw audio data. To rigorously evalu-
ate the performance of each model in detecting heart murmurs,
we calculated key metrics including accuracy, precision, recall,
and F1 score. These metrics offer a comprehensive evaluation,
ensuring not only the overall correctness of the models but
also their capability to balance the trade-offs between false
positives and false negatives, an essential consideration in the
accurate detection of heart murmurs.

2) Hyperparameter tuning and architectural design: Hy-
perparameter tuning is a crucial aspect of any machine learning
(ML) and deep learning (DL) application, as it directly impacts
the model’s performance by finding the optimal settings that
allow the algorithm to best capture the underlying patterns in
the data. For instance, in the case of Support Vector Machine
(SVM), hyperparameter tuning was meticulously performed
using GridSearchCV to optimize critical parameters such as
C (the regularization parameter) and gamma (the kernel co-
efficient). The parameter C controls the trade-off between
achieving a low error on the training data and minimizing the
model’s complexity, while gamma defines the influence of a
single training example. Exploring a range of values, including
C: [0.01, 0.1, 1, 10] and gamma: [‘scale’, ‘auto’], ensured
a comprehensive search of the parameter space, thereby en-
hancing the model’s ability to generalize to new data. This
systematic exploration is essential because it allows the model
to adapt to the specific characteristics of the dataset, leading
to improved accuracy and robustness.

Similarly, the decision tree classifier was finetuned us-
ing GridSearchCV as well to optimize parameters such
as max depth, min samples split, and min samples leaf.
These parameters are critical for controlling the tree’s
growth and complexity—max depth limits the depth of the
tree to prevent overfitting, while min samples split and
min samples leaf dictate the minimum number of samples
required to split an internal node and to be at a leaf node,
respectively. By testing values for max depth: [5, 10, 15],
min samples split: [2, 5, 10], and min samples leaf: [1, 2,
5], the decision tree was carefully tailored to achieve the
optimal balance between model complexity and predictive
power, ensuring that the tree was neither too simplistic nor
overly complex.

In the deep learning model, constructed using Tensor-
Flow/Keras, the architecture was designed with careful consid-
eration of both complexity and computational efficiency. The
Sequential model began with a dense input layer consisting
of 256 neurons, followed by three hidden layers with 64, 32,
and 16 neurons, each utilizing ReLU activation functions. To
mitigate the risk of overfitting, a dropout rate of 0.5 was
introduced between layers, which helped in maintaining the
model’s ability to generalize by randomly disabling a fraction
of the neurons during training. The output layer, a dense layer
with a single neuron and a sigmoid activation function, was
designed to output the probability of heart murmur presence.
The architectural choices were driven by the need to balance
the model’s ability to learn intricate patterns within the data
while avoiding excessive complexity that could lead to over-
fitting.

The model was compiled using the Adam optimizer and
binary cross-entropy loss function, chosen for their efficiency
and effectiveness in binary classification tasks. Training was
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conducted over 100 epochs with a batch size of 32, ensuring
sufficient learning while maintaining computational feasibil-
ity. Regularization techniques, such as early stopping (with
patience set to 10) and learning rate reduction (with a factor
of 0.5 and patience set to 5), were employed to prevent
overfitting and ensure that the model converged to an optimal
solution. These strategies collectively contributed to building
a robust and efficient model capable of accurately detecting
heart murmurs from the given dataset.

IV. RESULTS AND DISCUSSION

The results of this study underscore the significant advance-
ments achieved through both traditional ML models and a DL
model in detecting heart murmurs from audio recordings. The
comparative analysis, as presented in the provided Table I,
reveals distinct differences in performance between the ML
models—Support Vector Machine (SVM), Random Forest,
AdaBoost, and Decision Tree—and the deep learning model,
specifically the FCNN.

The SVM model achieved an accuracy of 0.85, with corre-
sponding F1-score, precision, and recall values of 0.84, 0.84,
and 0.85, respectively as depicted in Fig. 2. While these results
provide a solid baseline, they indicate that SVM struggled to
handle the complexity of the data, particularly in terms of
balancing precision and recall. This suggests that the model’s
reliance on a hyperplane for classification may not be the most
effective strategy for high-dimensional, complex heart sound
data, which exhibits non-linear relationships that require more
flexible learning methods.

Similarly, the Decision Tree model, with an accuracy of
0.89 and matching precision and recall values, shown in Fig. 3,
performed better than SVM but still exhibited limitations in
fully capturing the intricate patterns within the data. This is
expected, as single-tree models are prone to overfitting and
fail to generalize well, especially when dealing with highly
variable heart sound signals.

Fig. 2. SVM classification results.

In contrast, the ensemble methods, Random Forest and
AdaBoost, demonstrated enhanced performance, particularly
in terms of their robustness against over-fitting. The Random
Forest model achieved an accuracy of 0.87, with an F1-score
of 0.88, precision of 0.90, and recall of 0.87 as illustrated

Fig. 3. Random forest classification results.

in Fig. 4. These results highlight the model’s ability to gen-
eralize well across the dataset, benefiting from the ensemble
approach’s capacity to combine multiple decision trees and
reduce variance. AdaBoost, with an accuracy of 0.88 and
consistent F1-score, precision, and recall of 0.88, highlighted
in Fig. 5, illustrates the potential of boosting techniques in
improving model performance by focusing on misclassified in-
stances. The performance improvement of AdaBoost suggests
that iterative reweighting of data points can effectively guide
the learning process toward difficult-to-classify cases, making
it particularly valuable for datasets with subtle variations, such
as heart murmurs.

Fig. 4. AdaBoost classification results.

However, the most significant improvement was observed
with the FCNN deep learning model, which outperformed all
traditional ML models by a considerable margin. The FCNN
achieved an impressive accuracy of 0.99, with an F1-score
of 0.94, precision of 0.94, and recall of 0.96. These results
displayed in Fig. 6 demonstrate the deep learning model’s
superior capability in capturing the complex and subtle features
within the heart sound recordings that the traditional models
struggled to detect. One of the key advantages of the FCNN
is its ability to automatically extract hierarchical features from
the raw audio data, which is particularly valuable in this study
for identifying minute acoustic variations in heart murmurs that
might be overlooked by traditional feature extraction methods.
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Fig. 5. Decision tree classification results.

The architecture of the FCNN, with its multiple hidden
layers, ReLU activation functions, and dropout mechanisms,
allowed for an effective learning process that minimized
overfitting and maximized predictive accuracy. The use of
regularization techniques such as early stopping and learning
rate reduction further optimized the model’s performance,
ensuring that it remained both accurate and generalizable.
This suggests that deep learning models not only outperform
traditional approaches but also maintain stability across diverse
datasets, a crucial factor for clinical adoption.

Fig. 6. FCNN Classification results.

Overall, the classification results are comprehensively dis-
played in Fig. 7, effectively highlighting the performance
differences across all models. The drastic improvement seen
in FCNN emphasizes that deep learning architectures, with
their ability to handle complex feature interactions, could rev-
olutionize heart murmur diagnostics, potentially outperforming
traditional auscultation and even current ML-based methods.

These results, as compared in Table I underscore the trans-
formative potential of deep learning models in the evolving
landscape of heart murmur detection, signaling a paradigm
shift from traditional machine learning approaches. The tra-
ditional models, such as Support Vector Machines (SVM),
Decision Trees, and even ensemble methods like Random
Forest and AdaBoost, provided a valuable baseline in this

Fig. 7. Classification results of used algorithms.

study. They demonstrated solid performance in terms of ac-
curacy, precision, recall, and F1-score, especially when paired
with techniques to manage data complexities and imbalances.
However, despite these efforts and improvements, these models
still fell short of the performance levels achieved by the Fully
Convolutional Neural Network (FCNN).

TABLE I. PERFORMANCE COMPARISON OF ML AND DL MODELS FOR
HEART MURMUR DETECTION

Model used Accuracy F1-score Precision Recall
ML

SVM 0.85 0.84 0.84 0.85
Random Forest 0.87 0.88 0.90 0.87

AdaBoost 0.88 0.88 0.89 0.88
Decision Tree 0.89 0.89 0.89 0.89

DL
FCNN 0.99 0.94 0.94 0.96

The superior performance of the FCNN suggests that deep
learning models have a distinct advantage in handling the
complexities inherent in medical data, particularly in tasks
like heart murmur detection. Unlike traditional models, which
often rely on manual feature extraction and struggle with
high-dimensional data, deep learning models are capable of
automatically learning intricate patterns from raw data. This
ability is especially crucial in medical diagnostics, where
subtle variations in data, such as the nuanced differences
in heart sound recordings, can significantly impact patient
outcomes. The FCNN’s architecture, with its deep layers,
ReLU activations, and regularization techniques, enabled it to
capture these subtleties effectively, leading to higher accuracy
and more reliable predictions.

Moreover, the FCNN’s capacity to process vast amounts of
data with minimal need for extensive feature engineering un-
derscores a significant advantage of deep learning in the realm
of medical diagnostics. As the healthcare industry continues
to produce enormous volumes of data—from electronic health
records and imaging to sensor-based monitoring—models that
can efficiently analyze and learn from this data will become
increasingly indispensable. The implications of these capa-
bilities are substantial. As deep learning models consistently
demonstrate their effectiveness in handling complex diagnostic
tasks, they are poised to become fundamental components
of medical practice, significantly improving the precision and
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speed of diagnoses.

In the specific context of heart murmur detection, this tech-
nological advancement could lead to the earlier and more accu-
rate identification of potentially life-threatening cardiovascular
conditions, thereby improving patient outcomes and streamlin-
ing healthcare delivery. Furthermore, the inherent scalability of
deep learning models makes them particularly well-suited for
integration into comprehensive healthcare systems, including
telemedicine platforms and automated diagnostic tools. This
scalability ensures that their benefits can be extended across
diverse healthcare settings, from remote clinics to large urban
hospitals, further amplifying their impact on patient care and
the overall efficiency of medical services.

V. CONCLUSION

This comparative study, which included both machine
learning (ML) and deep learning (DL) methods, highlights
the significant advancements and potential of using these tech-
niques for the early diagnosis and detection of heart murmurs.
The study utilized the PhysioNet Challenge 2016 dataset, a
comprehensive collection of heartbeat sounds gathered from a
diverse range of patients using electronic stethoscopes in clin-
ical settings. This dataset, comprising over 3,000 recordings
from 764 patients, provided a robust foundation for training
and evaluating various models. The methodology involved
several key steps, starting with the preprocessing of audio
data using the Librosa library, where features such as Mel-
Frequency Cepstral Coefficients (MFCCs), chroma features,
spectral contrast, and Tonnetz were extracted to capture the
essential characteristics of the heart sounds. Following feature
extraction, the dataset was divided into training and test sets
using stratified sampling to ensure balanced representation of
positive and negative cases. The study then applied a range of
ML and DL algorithms, including Support Vector Machine
(SVM), Random Forest, AdaBoost, Decision Tree, and a
Fully Convolutional Neural Network (FCNN), to classify heart
murmurs. Hyperparameter tuning was meticulously performed
using GridSearchCV to optimize model performance, ensuring
that each algorithm was tailored to the specific characteris-
tics of the dataset. The FCNN, in particular, demonstrated
a substantial improvement in accuracy and reliability over
traditional methods, underscoring the potential of DL models
in this domain.

The results suggest that integrating AI-powered diagnostic
tools into clinical practice could lead to earlier and more
precise diagnoses, thereby improving patient outcomes and
reducing the global burden of cardiovascular diseases. How-
ever, several limitations must be acknowledged. The primary
challenge lies in the reliance on the dataset, which, while
comprehensive, may not fully represent the variability encoun-
tered in real-world clinical settings, where factors such as
diverse demographic characteristics, comorbidities, and record-
ing environments could affect the model’s generalizability.
Additionally, despite the superior performance of the deep
learning model, its “black box” nature poses challenges for
clinical adoption, as it makes it difficult for clinicians to
interpret the rationale behind specific predictions, potentially
hindering trust in the model.

Furthermore, the study focused primarily on heart sounds
recorded under controlled conditions, without thoroughly ad-

dressing the impact of real-world noise and artifacts, which
could degrade the model’s performance in actual clinical envi-
ronments. To overcome these limitations and advance the field
further, future research should focus on acquiring more diverse
and representative datasets that include a broader range of
patient demographics and clinical conditions, thus enhancing
the model’s generalizability. Additionally, developing person-
alized heart murmur detection models that take into account
individual patient characteristics, such as medical history and
genetic data, could lead to even more accurate and relevant
predictions. Finally, efforts should be made to enhance the
interpretability of deep learning models through explainable AI
techniques, which could provide clinicians with better insights
into the model’s decision-making process and facilitate greater
integration into clinical practice.
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