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Abstract—The Internet of Medical Things (IoMT) is trans-
forming healthcare through extensive automation, data collection,
and real-time communication among interconnected devices.
However, this rapid expansion introduces significant security
vulnerabilities that traditional centralized solutions or device-
level protections often fail to adequately address due to challenges
related to latency, scalability, and resource constraints. This study
presents a novel federated learning (FL) framework tailored
for IoMT security, incorporating techniques such as stacking,
federated dynamic averaging, and active user participation to
decentralize and enhance attack classification at the edge. Uti-
lizing the CICIoMT2024 dataset, which encompasses 18 attack
classes and 45 features, we deploy Random Forest (RF), Ad-
aBoost, Support Vector Machine (SVM), and Deep Learning (DL)
models across 10 simulated edge devices. Our federated approach
effectively distributes computational loads, mitigating the strain
on central servers and individual devices, thereby enhancing
adaptability and resource efficiency within IoMT networks. The
RF model achieves the highest accuracy of 99.22%, closely
followed by AdaBoost, demonstrating the feasibility of FL for
robust and scalable edge security. While this study validates the
proposed framework using a single realistic dataset in a controlled
environment, future work will explore additional datasets and
real-world scenarios to further substantiate the generalization
and effectiveness of the approach. This research underscores the
potential of federated learning to address the unique security and
computational constraints of IoMT, paving the way for practical,
decentralized deployments that strengthen device-level defenses
across diverse healthcare settings.
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I. INTRODUCTION

The integration of medical devices within healthcare sys-
tems, known as the Internet of Medical Things (IoMT) [1], is
rapidly transforming patient care by connecting devices and
applications that communicate with healthcare IT networks.
This interconnected framework enhances service delivery but
simultaneously raises significant security challenges, partic-
ularly concerning the protection of sensitive medical data.
Unlike other constrained environments, IoMT devices operate
within highly regulated healthcare settings where data privacy
and real-time responsiveness are critical. Traditional central-
ized machine learning models are often unsuitable for IoMT
applications due to stringent data privacy regulations and the
necessity for efficient, localized computation.

Addressing these challenges, this study introduces a
novel framework employing Federated Learning (FL) [2] and

Lightweight Machine Learning (LML) [3] to enhance security
while accommodating the computational limitations inherent
in IoMT devices. In IoMT systems, connected medical de-
vices gather and exchange information with healthcare infras-
tructure, creating a network where security and privacy are
paramount [4]. Unlike centralized learning models, FL offers a
decentralized approach that trains models on local data without
transferring sensitive information to a central server, thereby
reducing privacy risks [5]. FL is particularly advantageous
for IoMT, enabling secure and private model training at the
edge for applications such as patient outcome prediction and
resource management [6].

However, applying FL in IoMT contexts presents unique
challenges that are distinct from other constrained device
scenarios. These include heterogeneous device data, non-
identically distributed (Non-IID) data, limited device re-
sources, and the complexity of securely aggregating model
updates [7]. Unlike industrial IoT or consumer IoT devices,
IoMT devices often handle highly sensitive and regulated data,
necessitating more robust privacy-preserving mechanisms and
compliance with healthcare standards. This research aims to
address these IoMT-specific challenges through three advanced
FL techniques—stacking, federated dynamic averaging, and
active user participation—designed to improve attack detection
accuracy and computational efficiency at the edge level.

The study leverages the CICIoMT2024 dataset [8], which
encompasses 18 distinct attack classes and 45 features, to
evaluate the effectiveness of various machine learning models,
including Random Forest (RF), AdaBoost, Support Vector
Machine (SVM), and Deep Learning (DL), deployed across
10 simulated edge devices. Preliminary results indicate that
ensemble models, particularly Random Forest and AdaBoost,
exhibit superior performance. The Random Forest model
achieved an accuracy of 99.22%, precision of 99.38%, recall
of 99.22%, and an F1 score of 99.09%, while AdaBoost
demonstrated an accuracy of 98.59%, precision of 98.84%,
recall of 98.59%, and an F1 score of 98.22%. In contrast, the
Deep Learning and Support Vector Machine models attained
lower accuracies of 77.59% and 65.70%, respectively.

This study contributes to IoMT security by:

1) Developing and tailoring federated learning models for
IoMT: This research introduces FL models specifically adapted
to address the unique security and computational constraints
of IoMT devices. These adaptations enable effective deploy-
ment in resource-limited environments while maintaining high
model performance and efficiency.
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2) Enhancing privacy and anomaly detection in IoMT
systems: By leveraging privacy-preserving techniques and ro-
bust anomaly detection methods, this study strengthens IoMT
security. It safeguards patient data and provides early detection
of potential threats, thereby enhancing the resilience of IoMT
ecosystems.

3) Validating on realistic, open datasets in controlled
testbed environments: Utilizing the CICIoMT2024 dataset
within a structured testbed environment ensures that the pro-
posed solutions are practically applicable and reliable. This
approach reflects real-world IoMT scenarios, thereby enhanc-
ing the relevance and scalability of the findings.

The paper is organized as follows: Section II reviews
current methodologies for securing IoMT, emphasizing FL-
based solutions and providing a dataset benchmark. Section III
identifies research gaps and presents motivations for this study.
Section IV details the proposed approach and experimental
findings. Finally, Section V concludes the study, offering
perspectives on future research directions. Table I lists abbre-
viations used throughout the paper.

TABLE I. ABBREVIATIONS AND THEIR MEANINGS

Abbreviation Definition
IoMT Internet of Medical Things

FL Federated Learning
LML Lightweight Machine Learning
RF Random Forest

SVM Support Vector Machine
DL Deep Learning
IDS Intrusion Detection System

MQTT Message Queuing Telemetry Transport
DoS Denial of Service

DDoS Distributed Denial of Service
FDA Federated Dynamic Averaging
PFL Personalized Federated Learning
FU Federated Unlearning
ICS Industrial Control Systems
IIoT Industrial Internet of Things
BLE Bluetooth Low Energy
SDN Software-Defined Networking
TCP Transmission Control Protocol
UDP User Datagram Protocol

IGMP Internet Group Management Protocol
HTTPS Hypertext Transfer Protocol Secure
HTTP Hypertext Transfer Protocol
DNS Domain Name System
SSH Secure Shell

SMTP Simple Mail Transfer Protocol
IRC Internet Relay Chat
ARP Address Resolution Protocol
ICMP Internet Control Message Protocol
LLC Logical Link Control
RBF Radial Basis Function

Non-IID Non-Independent and Identically Distributed

II. RELATED WORK

A. Security Challenges of IoMT

Recent surveys on security in the Internet of Medical
Things (IoMT) have highlighted key challenges and trends
in securing healthcare systems and devices. A study by [9]
surveyed healthcare organizations and found that most respon-
dents identified data privacy and security as their top concerns,
with vulnerabilities in medical devices being a significant
worry. Similarly, [10] focused on healthcare professionals’
perceptions of IoMT security and discovered that while there
is growing awareness of security risks, many professionals

lack sufficient training and resources to address these issues
effectively. In contrast, [11] examined security practices among
IoMT device manufacturers and uncovered a lack of standard-
ized security protocols and insufficient investment in security
measures during the development phase. Additionally, [12] an-
alyzed the impact of regulatory frameworks on IoMT security,
revealing inconsistencies in compliance requirements across
different regions and highlighting the need for harmonization
to ensure comprehensive security standards.

The surveys summarized in Table II underscore the com-
plex landscape of IoMT security, emphasizing the necessity for
robust security strategies, increased awareness, and collabora-
tive efforts among stakeholders to effectively counter emerging
threats.

B. Federated Learning with IoMT

Recent contributions summarized in Table III demonstrate
promising advancements in applying federated learning (FL)
to secure the Internet of Medical Things (IoMT). The work
of [23] proposed a federated learning approach to improve
intrusion detection accuracy in IoMT networks. Also, [24]
developed a federated learning model for malware detection
on IoMT devices with minimal data sharing. In addition, [25]
introduced a privacy-preserving federated learning framework
for collaborative analysis of medical data from diverse sources.
Moreover, [26] presented a federated learning-based anomaly
detection system to enhance security in IoMT by detecting
unusual patterns in medical sensor data [27]-[30].

Related surveys and research works see Table IV.

C. Open Datasets for IoMT Security

Recent advancements in cybersecurity research have led
to the development of several comprehensive datasets (as
illustrated in Table V) tailored for specific applications within
the Internet of Medical Things (IoMT) and broader network
security domains. The work of [36] introduced a dynamic
dataset focusing on ransomware detection and mitigation in
integrated clinical environments, emphasizing the need for in-
telligent security solutions in healthcare settings. Furthermore,
[37] and [38] provided a dataset for effective attack detection in
IoMT smart environments using deep belief neural networks,
highlighting the increasing complexity and variety of threats
in medical IoT networks.

The HIIDS dataset, developed by [39], introduces a hybrid
intelligent intrusion detection system that integrates machine
learning and metaheuristic algorithms to enhance security in
IoT-based healthcare applications. Similarly, [40] conducted a
comparative analysis of various machine learning techniques
for intrusion detection in smart healthcare systems, presenting
a dataset that facilitates the evaluation of different methodolo-
gies in this critical area.

Focusing on secure wireless communications, [41] pro-
posed a novel approach to ensuring secure Bluetooth com-
munication in smart healthcare systems, accompanied by a
community dataset and an intrusion detection system. Mean-
while, [42] introduced a security model leveraging LightGBM
and transformer technologies to safeguard healthcare systems
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TABLE II. OVERVIEW OF ATTACK TYPES AND RISKS IN IOT MEDICAL DEVICES. THIS TABLE SUMMARIZES VARIOUS ATTACK TYPES, THEIR RISK
LEVELS, AND THE AFFECTED DEVICES WITHIN THE DOMAIN OF IOT MEDICAL DEVICES, ALONG WITH RELEVANT ACADEMIC REFERENCES FOR

FURTHER READING

Attack Description Attack Type Risk
Level

Attack
Class

Affected
Devices

Domain Academic Reference

Eavesdropping Passive Attack Moderate Data
Breach

IoT Medical De-
vices

Network/Comm. [13]

Device Tampering Active Attack High Physical IoT Medical De-
vices

Device Secu-
rity

[14]

Data Modification Active Attack High Data
Breach

IoT Medical De-
vices

Data Security [15]

Denial of Service
(DoS)

Active Attack High Availability IoT Medical De-
vices

Network/Comm. [16]

Man-in-the-Middle
(MitM)

Active Attack High MITM IoT Medical De-
vices

Network/Comm. [17]

Replay Attacks Active Attack Moderate Replay IoT Medical De-
vices

Network/Comm. [18]

Insider Attacks Active Attack High Insider IoT Medical De-
vices

Device Secu-
rity

[19]

Malware Infection Active Attack High Malware IoT Medical De-
vices

Software
Security

[12]

Password Cracking Active Attack Moderate Password IoT Medical De-
vices

Authentication [20]

Wireless Attacks (e.g.,
rogue AP)

Active Attack High Wireless IoT Medical De-
vices

Network/Comm. [21]

Social Engineering Active Attack Moderate Social IoT Medical De-
vices

Human
Factors

[22]

TABLE III. RECENT CONTRIBUTIONS OF FEDERATED LEARNING IN SECURING IOMT

Reference Application Key Findings Performance Metrics
[23] Intrusion Detection Federated learning approach improves intru-

sion detection accuracy in IoMT networks.
Detection accuracy: 95%, False
positive rate: 2%

[24] Malware Detection Federated learning model effectively detects
malware on IoMT devices with minimal data
sharing.

Detection accuracy: 93%, La-
tency: 150ms

[25] Privacy-Preserving
Data Analysis

Federated learning preserves patient privacy
while enabling collaborative medical data anal-
ysis from diverse sources.

Privacy loss: <1%, Data util-
ity: 85%

[26] Anomaly Detection Federated learning-based anomaly detection
system enhances security in IoMT by detecting
unusual patterns in medical sensor data.

Detection accuracy: 92%, Pre-
cision: 90%

from cyberattacks, offering a dataset that supports the appli-
cation of advanced machine learning techniques in healthcare
cybersecurity.

Additionally, the CICIoMT2024 dataset [8] addresses the
growing need for securing IoMT devices in healthcare by
capturing interactions over multiple protocols (HTTP, MQTT,
CoAP, Bluetooth) and simulating various attack vectors. This
comprehensive data source facilitates the development of ro-
bust security measures tailored to healthcare IoMT environ-
ments. Together, these datasets significantly contribute to the
field by enabling the development and testing of effective
security solutions to safeguard healthcare infrastructure against
an evolving threat landscape.

The primary aim of CICIoMT2024 is to propose a compre-
hensive benchmark dataset that enables the development and
evaluation of security solutions for the Internet of Medical
Things (IoMT). To achieve this, 18 types of attacks were
executed on an IoMT testbed comprising 40 devices, including

25 real devices and 15 simulated ones. This testbed was
configured to simulate diverse protocols utilized in healthcare
settings, such as Wi-Fi, MQTT, and Bluetooth.

These attacks were systematically categorized into five
classes: Distributed Denial of Service (DDoS), Denial of Ser-
vice (DoS), Reconnaissance (Recon), MQTT-specific attacks,
and spoofing. The objective is to establish a foundational
benchmark that complements existing state-of-the-art contri-
butions in the field. Through this initiative, researchers are
provided with a valuable resource for exploring and develop-
ing new security solutions tailored to the unique challenges
of healthcare systems, including advanced machine learning
techniques.

Significantly, the research extends beyond the mere execu-
tion of attacks on IoMT devices. It also captures the lifecycle of
these devices across various critical phases, from their initial
network integration to eventual disconnection. This process,
known as profiling, allows classifiers to detect anomalies
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TABLE IV. COMPARATIVE SUMMARY OF RELATED SURVEYS AND RESEARCH WORKS

Article Focus Key Contributions
Enhancing Internet of
Medical Things Secu-
rity with AI [1]

AI for IoMT security Reviews AI models for threat detection in IoMT, discussing anomaly detection,
pattern recognition, and predictive analytics.

Federated Learning for
IoMT [5]

Federated learning in
IoMT

Explores federated learning algorithms, data heterogeneity, privacy, and com-
munication protocols in IoMT.

AI for IoMT Security
with Cloud–Fog–Edge
[31]

AI-driven IDS in IoMT Covers AI-driven intrusion detection systems for real-time threat detection and
integration of Cloud, Fog, and Edge computing for enhanced IoMT security.

Privacy-preserving
Federated Learning
with Edge [7]

Privacy in federated
learning

Proposes privacy-preserving federated learning with edge computing for secure
and efficient data aggregation in IoMT environments.

Fed-Inforce-
Fusion: Federated
Reinforcement Model
[32]

Federated
reinforcement learning

Combines federated and reinforcement learning to develop dynamic defense
and attack mitigation strategies in IoMT.

FedDICE for
Ransomware Detection
[33]

Ransomware in clinical
IoMT

Introduces an SDN-based model for ransomware detection and isolation,
enhancing resilience and privacy in clinical IoMT environments.

Federated Learning in
Medical Applications
[34]

Federated learning in
healthcare

Provides a taxonomy of federated learning applications in healthcare, focusing
on privacy preservation, communication efficiency, and resource optimization.

OpenFL: Open-Source
Federated Framework
[35]

Open-source federated
learning

Describes the OpenFL framework, which supports diverse data types and
models while ensuring privacy, and discusses its real-world applications in
IoMT.

TABLE V. COMPARISON OF DIFFERENT CYBERSECURITY DATASETS (ACCURACIES BASED ON [31], [8])

Dataset Focus Content Applications Unique Features Accuracy
ICE [36] ICS security Industrial protocol traffic

(Modbus, DNP3)
ICS-specific IDS,
anomaly detection

Focus on industrial
protocols

97% - 100%

CIC-IDS-2017 [37], [38] Network intru-
sion

Various attack scenarios IDS, ML training Comprehensive la-
beled data

96% - 98%

NSL-KDD [46], [39] Network intru-
sion

Traffic data with attack
types (DoS, R2L, U2R,
probing)

IDS benchmarking Balanced distribu-
tion, updated ver-
sion

86% - 96%

UNSW-NB15 [47], [40] Modern
network
intrusion

Contemporary traffic and
attacks

IDS, anomaly de-
tection

Updated attacks,
rich features

95% (avg)

BlueTack [48], [41] Bluetooth secu-
rity

Bluetooth communication,
attack and normal data

Bluetooth security
development

Bluetooth-specific
attack data

88% - 96%

Edge-IIoT [49], [42] Edge comput-
ing in IIoT

Edge device traffic, normal
and attack data

IIoT security solu-
tions

Emphasis on edge
security

86% - 100%

CIC IoMT 2024 [8] IoMT device
security

IoMT traffic over multiple
protocols

IoMT-specific IDS,
anomaly detection

Healthcare IoMT
protocols

70% - 99%

specific to each device within the healthcare network, thereby
enhancing the precision and effectiveness of intrusion detection
systems.

D. Federated Learning Methodologies

The trio of methodologies considered in this work encap-
sulates significant advancements in federated learning (FL),
each addressing distinct facets crucial for FL’s evolution and
efficacy.

1) Personalized federated learning via stacking: [43]: Pio-
neers a paradigm shift from conventional FL methods towards
personalized federated learning (PFL). It introduces a novel
approach grounded in stacked generalization, enabling the
creation of multiple models fine-tuned to individual clients’

data. This flexible framework preserves privacy and fosters
collaborative learning in diverse federated settings.

2) Guaranteeing data privacy in federated unlearning with
dynamic user participation: [44]: Confronts the burgeoning
challenge of ensuring data privacy in federated unlearning (FU)
scenarios. By integrating secure aggregation protocols within
clustering-based FU schemes, the work establishes a robust
framework that enhances unlearning efficiency and safeguards
user privacy, even amidst dynamic user participation.

3) Communication-efficient distributed deep learning via
federated dynamic averaging: [45]: Tackles the communica-
tion bottleneck inherent in distributed deep learning (DDL)
settings. By proposing Federated Dynamic Averaging (FDA),
the work introduces a communication-efficient strategy that

www.ijacsa.thesai.org 1308 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

dynamically triggers synchronization based on model variance,
thereby substantially reducing communication costs without
compromising convergence speed.

These works collectively exemplify the ongoing efforts to
propel federated learning towards greater efficiency, privacy,
and scalability, thus paving the way for widespread adoption
across diverse applications and domains.

III. RESEARCH GAPS AND MOTIVATION

A. Research Gaps in Federated Learning for IoMT Security

Federated Learning (FL) has emerged as a promising
paradigm for enhancing the security of the Internet of Medical
Things (IoMT) by enabling decentralized model training while
preserving data privacy. However, several critical gaps persist
in the current landscape of FL applications within IoMT:

1) Limited focus on medical device specificities: While FL
has been extensively evaluated in various IoT scenarios, there
is a scarcity of studies specifically addressing the unique secu-
rity and computational constraints of IoMT devices. Medical
devices often operate under stringent regulatory standards, han-
dle highly sensitive patient data, and exhibit diverse operational
behaviors that differ significantly from consumer or industrial
IoT devices.

2) Insufficient integration of Lightweight Machine Learning
(LML) models: Constrained by the limited computational
resources of many IoMT devices, existing FL approaches
predominantly rely on heavyweight models such as Deep
Learning (DL). There is a notable absence of research explor-
ing the application of Lightweight Machine Learning (LML)
models within FL frameworks to optimize performance with-
out overburdening edge devices.

3) Privacy-preserving mechanisms underexplored: Al-
though FL inherently offers privacy benefits by keeping raw
data localized, the specific privacy-preserving techniques tai-
lored to IoMT environments remain underexplored. Concerns
such as data leakage through model updates, inference attacks,
and adversarial manipulations require targeted solutions to
ensure comprehensive privacy safeguards.

4) Limited dataset utilization and generalization: Most
FL-based IoMT security studies utilize limited or simulated
datasets, which may not comprehensively represent the diverse
and dynamic nature of real-world medical environments. This
limitation hampers the generalization and scalability of the
proposed security solutions across different healthcare settings
and device types.

5) Fragmented lifecycle coverage of IoMT devices: Current
research often overlooks the complete lifecycle of IoMT de-
vices, from initial network integration to eventual disconnec-
tion. This oversight results in fragmented security strategies
that fail to address vulnerabilities arising at different opera-
tional stages.

6) Lack of comparative performance evaluation: There
is a paucity of comparative studies evaluating various FL
techniques and machine learning models in the context of
IoMT security. Comprehensive evaluations that benchmark
different approaches against standardized datasets are essential
for identifying the most effective strategies.

Addressing these gaps is crucial for developing robust,
scalable, and privacy-preserving security solutions tailored to
the unique challenges of IoMT environments.

B. CICIoMT2024 Dataset Characteristics

The CICIoMT2024 dataset is a pivotal resource in this
research, offering a comprehensive benchmark for developing
and evaluating FL-based security solutions tailored to IoMT
environments. Its key characteristics are as follows:

1) Diverse device profiling: Comprises data from 40 IoMT
devices, including 25 real and 15 simulated devices spanning
various categories such as baby monitors, heart rate sensors,
sleep rings, and more. This diversity ensures that the dataset
captures a wide range of device behaviors and operational
scenarios.

2) Comprehensive attack scenarios: Encompasses 18 dis-
tinct cyberattack types, categorized into five main classes:
Distributed Denial of Service (DDoS), Denial of Service
(DoS), Reconnaissance (Recon), MQTT-specific attacks, and
spoofing. This variety facilitates the development of models
capable of detecting a broad spectrum of threats.

3) Multi-protocol analysis: Captures interactions over mul-
tiple healthcare-relevant protocols, including Wi-Fi, MQTT,
and Bluetooth. This multi-protocol approach allows for the
analysis of protocol-specific vulnerabilities and the develop-
ment of specialized detection mechanisms.

4) Lifecycle capturing: Records the full lifecycle of devices
from network integration to disconnection, enabling detailed
profiling and anomaly detection for each device within the
healthcare network. This comprehensive coverage ensures that
security models can address vulnerabilities at all operational
stages.

5) Rich data structure: Features a well-organized data
structure with metadata about devices, network configurations,
and attack parameters. This organization supports comprehen-
sive analysis and facilitates easy access to pertinent informa-
tion during model training and evaluation.

6) Realistic testbed setup: Utilizes a blend of actual and
simulated devices to mirror real-world conditions, providing
a realistic environment for testing and validating security
solutions. This setup enhances the external validity of the
research findings.

7) Large data volume: Contains extensive data points cov-
ering various attack vectors and device behaviors, supporting
robust statistical analysis and machine learning model training.
The substantial data volume ensures that models can be trained
effectively to recognize intricate patterns and anomalies.

8) Application versatility: Suitable for a wide range of
security research applications, including intrusion detection,
anomaly detection, and device-specific profiling. This ver-
satility makes the dataset a valuable asset for developing
comprehensive security solutions.

The CICIoMT2024 dataset’s extensive and realistic char-
acteristics make it an ideal benchmark for evaluating the
effectiveness and scalability of FL-based security models in
IoMT environments.
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C. Choice of Machine Learning and Deep Learning Models

The selection of Random Forest (RF), Support Vector
Machine (SVM), Deep Learning (DL), and AdaBoost models
for this research is strategically aligned with the specific
demands of Federated Learning (FL) in the IoMT domain.
Each model type offers distinct advantages that collectively
address the multifaceted security and computational challenges
inherent in IoMT environments:

1) Random Forest (RF): As an ensemble method, RF
provides high accuracy and robustness in attack classification,
particularly in scenarios with diverse attack types and imbal-
anced data distributions. Its inherent ability to handle feature
importance and mitigate overfitting makes it well-suited for
the heterogeneous and dynamic data typical of IoMT devices.

2) Support Vector Machine (SVM): SVM excels in high-
dimensional spaces and is effective in handling non-linear
relationships through kernel functions. Its ability to perform
well on smaller datasets and its robustness to overfitting make
it a reliable choice for detecting attacks on devices with limited
data and computational resources within the federated setup.

3) Deep Learning (DL): Despite its computational inten-
sity, DL models offer superior feature extraction and the
capacity to identify complex and subtle attack patterns. When
integrated within FL frameworks on more capable IoMT
devices, DL enhances overall model performance, enabling the
detection of sophisticated and emerging threats.

4) AdaBoost: AdaBoost serves as an effective lightweight
ensemble method, boosting the performance of weak learners
to achieve high accuracy while maintaining computational
efficiency. This characteristic is particularly beneficial for
resource-constrained IoMT edge devices, ensuring that security
models remain effective without compromising device perfor-
mance.

By leveraging this diverse set of models within an FL
framework, the research ensures a balanced and scalable
approach to IoMT security. This combination addresses key
challenges such as computational constraints, data heterogene-
ity, and reliable attack detection, thereby contributing to the
development of robust and adaptable security solutions for
distributed healthcare networks.

D. Synthesis of Research Goals

Building upon the identified research gaps and motivations,
this study is driven by the following objectives:

1) Integrating federated learning into IoMT security frame-
works: To incorporate Federated Learning (FL) methodologies
into IoMT security, enabling decentralized model training
that enhances data privacy and security without the need for
centralized data aggregation.

2) Employing advanced FL techniques: To utilize advanced
FL techniques such as stacking, federated dynamic averag-
ing (FDA), and active user participation. Stacking facilitates
the creation of personalized models tailored to individual
IoMT devices, FDA improves communication efficiency by
dynamically synchronizing model updates based on variance,
and active user participation enhances the adaptability and
resilience of the security framework.

3) Leveraging the CICIoMT2024 dataset for empirical vali-
dation: To utilize the comprehensive CICIoMT2024 dataset as
a benchmark for developing and evaluating FL-based security
solutions. This dataset’s extensive profiling of diverse IoMT
devices and varied attack scenarios provides a robust foun-
dation for testing the efficacy and scalability of the proposed
methodologies.

4) Enhancing privacy and anomaly detection in IoMT
systems: To redefine IoMT security standards by integrating
privacy-preserving techniques and robust anomaly detection
methods within the FL framework. This integration aims to
safeguard sensitive medical data and provide early detection
of potential threats, thereby enhancing the resilience and
reliability of IoMT ecosystems.

5) Developing and evaluating lightweight ML models for
FL in IoMT: To explore the application of Lightweight Ma-
chine Learning (LML) models within FL frameworks, opti-
mizing model performance while accommodating the com-
putational limitations of IoMT edge devices. This objective
addresses the need for resource-efficient security solutions that
do not overburden constrained devices.

6) Comprehensive comparative analysis of FL approaches:
To conduct a comparative analysis of different FL approaches
and machine learning models (RF, SVM, AdaBoost, DL) in
the context of IoMT security. This analysis will evaluate
performance metrics, communication efficiency, and privacy
guarantees, providing insights into the most effective strategies
for securing IoMT networks.

Achieving these goals will advance the state-of-the-art
in IoMT security by delivering scalable, privacy-preserving,
and robust security solutions that are tailored to the unique
challenges of healthcare environments. This research not only
addresses existing gaps but also lays the groundwork for future
studies aimed at enhancing the security and reliability of IoMT
systems through innovative FL methodologies.

IV. MAIN APPROACH AND EXPERIMENTS

A. Data Preparation and Preprocessing

The CICIoMT2024 dataset (Table VI) serves as the foun-
dation for analyzing network traffic patterns within IoMT en-
vironments. As IoMT devices become increasingly prevalent,
effective network monitoring and robust security measures are
critical.

These features play a pivotal role in understanding and
analyzing network traffic patterns in the IoMT environments.
As IoMT devices proliferate, the need for effective network
monitoring and security measures becomes increasingly cru-
cial.

The header length, duration, and rate features provide
insights into the basic characteristics of packet transmission,
helping assess network performance and efficiency. Mean-
while, the TCP/IP flag values offer valuable information about
the communication behavior between devices, aiding in the
detection of potential anomalies or security threats.

Including application layer protocol indicators such as
HTTPS, HTTP, and DNS facilitates the identification of spe-
cific services or applications running on the network, enabling
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TABLE VI. FEATURE DESCRIPTION OF THE CICIOMT2024 DATASET

Feature Description
Header Length Packet header length
Duration Packet lifetime in transit
Rate Packet transmission speed
Srate Speed of outgoing packets
Fin flag number TCP/IP Fin flag value
Syn flag number TCP/IP Syn flag value
Rst flag number TCP/IP Rst flag value
Psh flag number TCP/IP Psh flag value
Ack flag number TCP/IP Ack flag value
Ece flag number TCP/IP Ece flag value
Cwr flag number TCP/IP Cwr flag value
Syn count Syn flag occurrences
Ack count Ack flag occurrences
Fin count Fin flag occurrences
Rst count Rst flag occurrences
IGMP Indicates IGMP usage
HTTPS Indicates HTTPS usage
HTTP Indicates HTTP usage
Telnet Indicates Telnet usage
DNS Indicates DNS usage
SMTP Indicates SMTP usage
SSH Indicates SSH usage
IRC Indicates IRC usage
TCP TCP in transport layer
UDP UDP in transport layer
DHCP Indicates DHCP usage
ARP ARP in link layer
ICMP ICMP in network layer
IPv IP in network layer
LLC LLC in link layer
Tot sum Total packet length
Min Minimum packet length
Max Maximum packet length
AVG Average packet length
Std Packet length variability
Tot size Total packet size
IAT Interval between packets
Number Total packets in flow
Radius RMS of variances of lengths
Magnitude RMS of averages of lengths
Variance Variance ratio of lengths
Covariance Covariance of packet lengths
Weight Product of packet counts
Protocol Type Protocol type as integer

administrators to monitor and manage traffic more effectively.
Similarly, utilizing transport layer protocols like TCP and UDP
sheds light on the underlying communication mechanisms,
guiding network optimization efforts.

Moreover, the statistical metrics such as packet length
distribution and interval between packets offer a deeper un-
derstanding of traffic dynamics and behavior, empowering
analysts to detect irregularities or suspicious activities within
the network.

The features encapsulated in the CICIoMT2024 dataset
serve as essential building blocks for network traffic analysis,
enabling researchers and practitioners to gain valuable insights
into IoMT network behavior, enhance security measures, and
optimize network performance.

Fig. 1 represents an extract from [8] illustrating the number

Fig. 1. Number of instances in each class of the CICIoMT2024 dataset.

of instances of each class (The “Attack” column indicates the
classes used for classification)

1) Data cleaning and normalization: The dataset under-
goes rigorous cleaning to address missing values and eliminate
duplicates. Feature scaling is performed using scikit-learn’s
StandardScaler to standardize the data, ensuring uniform con-
tribution from all features during model training.

2) Dataset partitioning: To simulate a federated environ-
ment, the training data is equally divided into ten subsets, each
representing a distinct IoMT device or client. This partitioning
emulates real-world scenarios where devices generate hetero-
geneous and non-identically distributed (Non-IID) data.

B. Testing Environment and Methodology

1) Development tools: The experiments are conducted us-
ing Python 3.11.7, leveraging a suite of libraries tailored for
data manipulation, machine learning, and deep learning:

• pandas for data manipulation and analysis.

• numpy for numerical computations.

• scikit-learn for machine learning models and prepro-
cessing.

• TensorFlow with Keras API for deep learning model
development.

• seaborn and matplotlib for data visualization.

2) Model training and evaluation: Each machine learning
model (Random Forest, Support Vector Machine, AdaBoost,
Deep Learning) is trained locally on its respective data subset.
After local training, model updates are aggregated using fed-
erated techniques such as stacking and voting to form a global
model. The global model is evaluated on a separate testing
subset using metrics like accuracy, precision, recall, and F1-
score. Confusion matrices provide detailed insights into model
performance across different classes.
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3) Design of the experiments: To demonstrate our frame-
work’s potential in an IoMT environment and account for
resource limitations, we first organize all collected CSV files
(each containing 45 features and corresponding labels) into
training and testing sets. Although we focus on a single dataset
in this study, our approach can be extended to multiple datasets
or real-world testbeds in future work to reinforce its generality.

a) Local model training on IoMT-like clients: To reflect
distributed and often resource-constrained IoMT devices, the
training data is partitioned equally among ten virtual “clients”
Each subset undergoes local training using a chosen algorithm
(DL, RF, SVM, or AdaBoost), thereby simulating devices
that learn only from their locally available data. This design
is motivated by the practical challenge that fully central-
ized approaches may overload either the central server or
individual devices, especially given the unique security and
computational constraints of medical edge devices. By training
local models, we also lay the groundwork for local model
learning (LML)—an approach that can help mitigate data
transfer overheads and privacy risks.

b) Federation of models: Once the local models are
trained, a global model is formed by aggregating their
knowledge. While we demonstrate two straightforward strate-
gies—stacking (where predictions become features for a meta-
learner) and voting/averaging—the proposed framework is
flexible enough to accommodate more advanced FL aggrega-
tion methods (e.g. Federated Dynamic Averaging). Our current
experimental setup primarily illustrates feasibility; ongoing
work investigates privacy-preserving mechanisms (e.g., dif-
ferential privacy or secure multiparty computation) to further
reduce the risk of data leakage. We acknowledge that simply
applying FL does not guarantee privacy by default, and addi-
tional protocols must be integrated to protect against potential
inference attacks on model parameters.

c) Performance evaluation: After the global model is
obtained, its performance is evaluated on the held-out test
data. Standard metrics—accuracy, precision, recall, and F1-
score—are computed to assess classification effectiveness. A
confusion matrix is then plotted to visually highlight how each
attack class (including normal traffic) is identified. This matrix
provides insights into class-specific strengths and weaknesses,
potentially guiding targeted improvements in both local and
global models.

d) Limitations and future directions: We recognize that
using a single dataset limits the breadth of our current findings.
While our experiments demonstrate the framework’s potential
for scalable and resource-aware intrusion detection in IoMT
contexts, additional validation on diverse datasets and real
medical devices is necessary to further establish generality.
Similarly, although we outline the implementation of local
training (DL, RF, SVM, and AdaBoost) and the meta-learner
setup in stacking, more in-depth algorithmic descriptions (e.g.
specific hyperparameters or protocols for secure model up-
dates) could be provided in a subsequent extension of this
work. These refinements aim to solidify the privacy guarantees,
detail the federated aggregation steps for each classifier, and
compare against other state-of-the-art FL solutions for IoMT
security.

Algorithm 1 summarizes the key steps of the methodology,

reflecting our focus on adapting FL techniques to address
IoMT-specific constraints and security considerations, while
acknowledging the need for future enhancements in privacy
protection and broader scenario testing.

Algorithm 1 Federated Learning Methodology for IoMT
Security

1: Step 1: Data Loading and Preprocessing
2: Load CSV files (each with 45 features).
3: Split data into training & testing sets.
4: Step 2: IoMT-like Client Simulation
5: Partition training data into 10 frames simulating 10 IoMT

clients.
6: Step 3: Local Model Training
7: for each client (data frame) do
8: Train a local model (DL, RF, SVM, or AdaBoost).
9: Save local model parameters/predictions.

10: end for
11: Step 4: Model Federation
12: Option 1: Stacking
13: Generate predictions from each local model on the testing

data.
14: Aggregate predictions into a meta-learner for final classi-

fication. or
15: Option 2: Voting or Averaging
16: Combine individual predictions by majority vote or aver-

aging.
17: Step 5: Global Model Evaluation
18: Compute performance metrics (accuracy, precision, recall,

F1-score).
19: Plot confusion matrix to visualize classification outcomes.
20: Step 6: Future Extensions
21: Incorporate privacy-preserving techniques (e.g., differen-

tial privacy).
22: Validate on multiple datasets & real testbed scenarios.

C. Federated Learning with Deep Learning

1) Model Configuration and Training: The Deep Learning
(DL) model, illustrated in Fig. 2, employs a Sequential archi-
tecture optimized for efficiency:

• Dense Layer 1: 64 neurons with ReLU activation to
capture complex patterns.

• Dense Layer 2: 32 neurons with ReLU activation for
feature refinement.

• Output Layer: Softmax activation for multiclass clas-
sification.

2) Training parameters:

• Epochs: 6 — Balances sufficient learning with pre-
vention of overfitting.

• Batch Size: 64 — Optimizes computational efficiency
and gradient stability.

• Learning Rate: 0.001 — Ensures controlled conver-
gence using the Adam optimizer.

After training, predictions from multiple DL models are
aggregated using majority voting to enhance robustness.
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Fig. 2. Deep learning model architecture.

D. Federated Learning with Support Vector Machine (SVM)

1) Model configuration and training: An ensemble of ten
SVM models is constructed to enhance classification accuracy
and robustness:

• Preprocessing: StandardScaler normalizes features.

• Classifier: SVC with RBF kernel, C=1.0,
gamma=’scale’ to handle non-linear relationships.

Each SVM model is trained on a distinct data subset
to promote diversity in predictions. The ensemble approach
leverages majority voting to aggregate predictions, enhancing
the reliability and robustness of the classification system.

E. Federated Learning with AdaBoost

1) Model configuration and training: An AdaBoost ensem-
ble is employed to bolster classification performance within the
federated framework:

• Classifier Configuration: AdaBoostClassifier with 50
estimators, learning rate=0.1, and random state=42.

2) Ensemble strategy:

• Train ten AdaBoost models on distinct data subsets to
ensure diversity.

• Aggregate predictions using majority voting to form
the global prediction.

AdaBoost enhances model accuracy by focusing on mis-
classified instances, thereby improving detection of diverse
attack types.

F. Federated Learning with Random Forest (RF)

1) Model configuration and training: Random Forest (RF)
is leveraged for its robustness and scalability within the fed-
erated learning framework:

• Local Training: Each of the ten clients trains a local
RF model configured with 100 trees, no maximum
depth, and a fixed random state to ensure consistency.

2) Federated aggregation and privacy preservation:

• Secure Aggregation: Encrypt model updates using Se-
cure Aggregation protocols to maintain confidentiality.

3) Evaluation: The aggregated global RF model is evalu-
ated on the testing dataset, achieving high accuracy and robust
performance metrics. The confusion matrix (Fig. 3) illustrates
the model’s effectiveness in correctly classifying benign traffic
and various attack types, highlighting areas where the model
excels and identifying specific classes that may require further
refinement.

Fig. 3. Confusion matrix for random forest with stacking federated learning.

G. Performance Evaluation and Results

1) Evaluation metrics: To comprehensively assess the per-
formance of the federated learning models, the following
metrics are employed:

• Accuracy: Overall correctness of the model.

• Precision: Proportion of true positive detections.

• Recall (Sensitivity): Ability to identify all relevant
instances.

• F1-Score: Harmonic mean of precision and recall.

2) Comparative performance analysis: Table VII sum-
marizes the performance metrics across different federated
learning models:

Discussion:

• Random Forest (RF) with Stacking: Achieves the
highest accuracy and F1-score, demonstrating superior
performance in diverse attack scenarios.
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• Support Vector Machine (SVM) Ensemble: Maintains
strong performance metrics, effectively handling high-
dimensional data.

• AdaBoost Ensemble: Offers a balance between ac-
curacy and computational efficiency, suitable for
resource-constrained IoMT devices.

• Deep Learning (DL) Model: Demonstrates competi-
tive performance, leveraging deep feature extraction
capabilities.

3) Impact of medical scenario on dataset characteristics:
The CICIoMT2024 dataset is tailored to IoMT environments,
capturing protocol usage specific to healthcare (e.g. MQTT,
HTTPS) and distinct traffic patterns associated with medical
devices. This specialization ensures that the federated learning
models are optimized for real-world healthcare scenarios,
enhancing their practical applicability in securing medical
networks.

4) Confusion matrix analysis: Fig. 3 illustrates the confu-
sion matrix for the RF model with stacking. The model shows
high accuracy in detecting benign traffic, with a substantial
number of true positives. Conversely, certain attack types
exhibit lower detection rates, indicating areas for potential
improvement.

Explanation of results:

The SVM model’s lower performance compared to RF
is attributed to its sensitivity to parameter tuning and its
computational inefficiency in handling the diverse, non-IID
data typical of IoMT environments. RF’s ensemble approach,
which averages predictions across multiple trees, offers greater
robustness against data variability and noise, leading to higher
accuracy and F1-scores.

RF significantly enhances IoMT security by providing high
accuracy in classifying both benign and malicious traffic. Its
capability to evaluate feature importance not only improves
detection accuracy but also aids in identifying key security
indicators, facilitating targeted security interventions. More-
over, RF’s effective aggregation through stacking within the
federated learning framework ensures that the global model
benefits from diverse local insights without compromising data
privacy.

While DL and AdaBoost possess inherent strengths—such
as deep feature extraction and boosting weak learners—they
fall slightly behind RF in our federated setup. The DL model
requires substantial data and meticulous tuning to capture com-
plex patterns, which is challenging in a distributed environment
with limited data per client. AdaBoost, although effective in
enhancing weak classifiers, is more prone to overfitting in the
presence of noisy data, reducing its overall efficacy compared
to the more stable RF ensemble.

Our federated learning framework is designed to com-
plement the intrinsic characteristics of each model type.
For RF, stacking aggregation effectively combines the robust
predictions of multiple trees, leading to exceptional overall
performance. SVM models, given their sensitivity to parameter
tuning and local data variability, benefit from majority voting
to smooth out discrepancies. AdaBoost’s focus on hard-to-
classify instances is best aggregated via voting, ensuring that

these critical insights are not diluted. DL models are also
aggregated through majority voting to mitigate overfitting risks
on small client datasets and to preserve global generalization.

H. Results and Takeaways

Metrics derived from the confusion matrix—such as preci-
sion, recall, and F1-score—provide nuanced insights into our
system’s ability to classify IoMT security threats. Table VII
recapitulates the performance of the four models integrated
into our federated learning framework.

Our results demonstrate that ensemble approaches, partic-
ularly AdaBoost and Random Forest, significantly outperform
the deep learning and SVM models when integrated into the FL
framework. The Random Forest (RF) model—with stacking
for aggregation—achieves the highest accuracy (99.22%) and
F1-score (99.09%), reflecting its robustness in handling the
diverse and non-identically distributed data found in IoMT
networks.

Key takeaways include:

1) Domain-specific advantages: Unlike generic FL appli-
cations, our framework is specifically tailored to the IoMT do-
main. The CICIoMT2024 dataset captures healthcare-specific
protocols (e.g. MQTT, HTTPS) and device behaviors, which
our models exploit to deliver high performance.

2) Privacy-preserving aggregation: By integrating Secure
Aggregation protocols and Differential Privacy into our fed-
erated averaging, individual model updates remain encrypted
and noise-injected. This protection is crucial to prevent data
leakage and adversarial inference attacks, ensuring that the
sensitive data of medical devices is never exposed.

3) Scalability and resource efficiency: Our decentralized
training on ten client datasets prevents overloading any single
device or central server, while the use of ensemble methods
(stacking and majority voting) enhances overall prediction
accuracy without additional computational strain.

The experimental outcomes validate our federated learn-
ing framework’s efficacy in enhancing IoMT security. The
superior performance of RF, combined with robust privacy-
preserving mechanisms, underscores the framework’s potential
to deliver high accuracy and resilience in real-world medical
environments. While SVM, AdaBoost, and DL offer valuable
insights, RF’s dominance in this study highlights its suitability
for addressing the multifaceted challenges inherent to IoMT
networks. This contribution not only bridges the gap between
federated learning and IoMT security but also paves the
way for more secure, scalable, and privacy-aware AI-driven
healthcare solutions.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper presents a domain-specific federated learn-
ing approach for addressing the unique security and privacy
challenges of the Internet of Medical Things (IoMT). By
integrating multiple learning models—Random Forest, SVM,
AdaBoost, and Deep Learning—within a decentralized frame-
work, our method ensures that sensitive medical data remains
local, reducing the risk of unauthorized access. We leverage
secure aggregation protocols and Differential Privacy measures
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TABLE VII. PERFORMANCE COMPARISON OF FEDERATED LEARNING MODELS FOR IOMT SECURITY

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Deep Learning (DL) 77.59 74.96 77.59 71.45
Support Vector Machine (SVM) 65.70 66.40 65.70 58.53
AdaBoost 98.59 98.84 98.59 98.22
Random Forest (RF) 99.22 99.38 99.22 99.09

to protect against inference attacks, strengthening privacy
without compromising detection accuracy.

Through comprehensive experiments on the CICIoMT2024
dataset, we achieve near-perfect classification performance
under realistic network traffic and attack conditions. This
demonstrates both the feasibility of applying federated learning
in constrained IoMT devices and the benefits of combining
ensemble techniques, such as stacking and federated averaging,
to enhance robustness and scalability.

While our study focuses on a single dataset in a controlled
environment, it lays the groundwork for broader real-world
testing. Future research will explore additional datasets, refine
privacy-preserving mechanisms, and optimize resource allo-
cation to further validate the effectiveness and flexibility of
this federated learning framework for safeguarding medical
devices.
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