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Abstract—Plant disease detection is a crucial technology to
ensure agricultural productivity and sustainability. However, tra-
ditional methods tend to fail as they do not address imprecise and
uncertain data in a satisfactory way. We propose the Enhanced
Fuzzy Deep Neural Network (EFDNN) which integrate the fuzzy
logic with deep neural networks. This study aims to incorporate
and allow assessment of the economic impact of the EFDNN
on agricultural productivity for plant diseases detection. Data
for the research framework were collected from remote sensing
and economic sources. Preprocessing of data was done, namely
normalization and feature extraction to make sure that the inputs
are high quality. Deep Belief Networks (DBNs) were used as a
way to pretrain the EFDNN model and supervised learning was
then fine-tuned using this. Then, the model was evaluated with
accuracy, precision, recall and area under the receiver operating
characteristic curve (AUC-ROC), and compared against baseline
models: convolutional neural networks (CNNs), traditional DNNs,
and fuzzy neural network (FNNs). The plant disease detection
performance of the EFDNN model was 95.2% accuracy, 94.8%
precision, 95.6% recall, and 0.978 AUC-ROC. The accuracy of the
EFDNN model was greater than the accuracy of CNNs by 92.3%,
greater than traditional DNNs by 89.7% and FNNs’ accuracy by
90.4%. In economic analysis, however, a reduced pesticide use and
an increase in crop yield of USD120 per acre were calculated.
14.3%, leading to higher farmer revenues. The EFDNN model
is an effective enhancement to plant disease detection that offers
economic and agricultural benefits. This validates the potential
of combining fuzzy logic with deep learning to enhance the
performance and sustainability of agricultural practices.
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I. INTRODUCTION

Agricultural sector is very important to the survival and
economic status of most nations, especially in developing
countries. It is an irreplaceable backbone of the rural economy,
including ensuring livelihoods [1]. Nevertheless, plant diseases
still represent a major challenge to reduce the overall annual
crop yield and cause economic losses. Therefore, this impact
can be mitigated and agricultural productivity improved by
effective plant disease detection [2].

Remote sensing and ML represent two major frontiers
in disease detection among these technological advances. By
using these technologies, farmers can monitor large regions
without causing damage, and get fast and accurate information
that is necessary to control plant diseases [3]. Plant disease
identification and classification problems have been shown to
be promising problems for ML techniques, in particular, deep
neural networks (DNNs). Part of the reason for this success is

that fuzzy logic, which manages uncertainties and imprecise
data, was integrated into neural networks to form Fuzzy Deep
Neural Networks (FDNNs). The structural combination of
DNNs with learning capabilities and fuzzy system flexibility
yields FDNNs, which have been proven to be powerful tools
for plant disease detection [4].

The aim of this study is to create a complete understanding
of how advanced AI technologies can change modern agri-
culture in their technical performance as well as in terms of
money. The motivation for this research stems from the ur-
gency to resolve both food security and sustainable agriculture
plans, especially in an epoch of escalating environmental and
economic efforts. This study contributed to the larger goal of
making farming systems more resilient and productive through
the integration of advanced ML techniques with agricultural
applications. This also aligns with global efforts of using
technology towards sustainable development and is a nod to
the role technology plays in solving some critical challenges
in agriculture.

The primary objective of this study is to assess the
economic impact of enhanced fuzzy deep neural networks
(EFDNNs) on the detection of plant disease and agricultural
productivity. This involves several specific goals:

• Examine how EFDNN models detect plant diseases
compared to traditional methods and other ML tech-
niques.

• Determine the potential cost savings and productivity
gains from using EFDNN for plant disease detection.

• Investigate how implementing EFDNN can lead to
more efficient use of agricultural resources, such as
water, fertilizers, and pesticides.

• Based on the findings, propose recommendations for
policymakers and agricultural stakeholders on effec-
tively integrating EFDNN into existing agricultural
systems.

This paper introduces the EFDNN model, which integrates
fuzzy logic with deep neural networks to improve plant dis-
ease detection accuracy. A detailed methodology is provided,
including data collection, preprocessing, model development,
and evaluation. The EFDNN model outperformed other models
by a significant margin in terms of accuracy, precision, recall,
and AUC-ROC. An economic analysis highlights substantial
cost savings and increased crop yields, demonstrating the
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financial benefits of the proposed model. The findings un-
derscore practical implications for farmers and policymakers,
suggesting potential improvements in agricultural practices and
crop management.

Further research directions include scaling the model to
generalize deployments and integrating it with IoT and Big
Data analytics.

The rest of the paper is organized as follows: Section II
reviews relevant literature on plant disease detection tech-
niques, fuzzy logic, and deep learning. Section III describes
the methodology, including data collection, model develop-
ment, and economic analysis. Section IV presents the results,
highlighting the EFDNN model’s performance and economic
benefits. It also discusses the findings, their implications,
and limitations. Finally, Section V concludes the paper and
suggests future research directions.

II. LITERATURE REVIEW

The accurate detection of plant diseases in important not
only for agricultural productivity but also for sustainable
development. In the recent past, many studies have proposed
developed models and techniques to contribute to the subject
area. The techniques include traditional visual inspection to
advanced machine and deep learning models with varying
levels of success and their own limitations.

A. Overview of Plant Disease Detection Techniques

It is a very important area of research that, if the detection
is timely and accurate, it can negate the crop loss. How-
ever, visual inspection by experts is a time-consuming, labor-
intensive process with high human errors [5]. However, these
methods are based on visual inspection, and a large knowledge
base is required, and they are not suitable for large-scale
agricultural fields [6]. Laboratory-based diagnostic methods,
such as polymerase chain reactions (PCR) and enzyme-linked
immunosorbent assay (ELISA), are effective, though often
expensive and time-consuming [7]. The researchers in [8]
proposed a CNN and transfer learning models to enhance
disease prediction significantly. Similarly, [9] used machine
learning techniques to provide an effective model for disease
prediction.

The revolution of plant disease detection using remote
sensing technology is that it allows aerial and satellite obser-
vation over a wide area of crop health. Early disease detection
is possible through hyper-spectral and multi-spectral imaging
techniques, with the data being captured in a timely manner
[3], [6]. In addition to the rapid development of ML, an
automated plant disease detection system has also arisen based
on image processing to analyze plant images and detect plant
disease symptoms. For instance, convolutional neural networks
(CNNs) have achieved high accuracy in disease detection and
classification [10].

Fuzzy logic systems are particularly effective in managing
uncertainty and imprecision in data, making them suitable for
plant disease detection. These systems use rules mimicking
human inference to diagnose diseases based on observed
symptoms. Integrating remote sensing data with ML models
enhances accuracy and efficiency, leveraging the strengths of

both approaches [11]. This fusion forms the foundation of
modern plant disease detection systems, which are accurate,
scalable, and cost-effective.

Plant disease detection is a good application of fuzzy logic
systems because they are particularly good at dealing with
uncertainty and imprecision in data. Rules that mimic human
inference are used to diagnose diseases based on observed
symptoms in these systems. The ML models can be integrated
with the remote sensing data to increase the accuracy and
efficiency, bringing the strengths of both approaches together
[11]. Modern plant disease detection systems are accurate,
scalable and cost effective, and this fusion is the basis of these
systems.

B. Fuzzy Deep Neural Networks (FDNN)

Fuzzy Deep Neural Networks (FDNNs) are formed by
combining the fuzzy logic systems and deep neural networks
(DNNs) to handle uncertainties and data imprecision. Because
it is approximate reasoning rather than fixed, fuzzy logic is
appropriate for dealing with variability in agricultural environ-
ments [12]. ML algorithms, in the form of DNNs, gradually
extract higher level features through a set of multiplies layers
to learn complex relations [13].

Input data is preprocessed in FDNNs into fuzzy values by
means of membership functions. The neural network learns
patterns by adjusting neuron connections, and these values are
passed to it. Since the real world of agricultural use is noisy,
imprecise, or even incomplete, FDNNs are very good for it
[14]. The architecture of most of their systems usually consists
of a fuzzy input layer, hidden layers that implement fuzzy
rules, and an output layer for classification or prediction [15].

FDNNs are shown to be effective in agricultural applica-
tions. For example, FDNNs have been applied for multi plant
disease classification [16] and crop yield prediction [17], all of
which were demonstrated in improving plant disease detection
and management. As such, FDNNs are a robust plant disease
detection solution to variability in symptoms in response to
environmental conditions or plant variety.

C. Economic Implications of Technological Interventions in
Agriculture

With the development of technological advancements, such
as precision agriculture, biotechnology, and technology, pro-
duction productivity and sustainability have increased. GPS,
sensors, and drones are used to perform micro-level crop
monitoring to make the best use of inputs such as water,
fertilizers, and pesticides, lowering waste. The input costs are
reduced by up to 20% and the yields are raised by 5 to 10%
[18]. Genetically modified organisms (GMOs) and gene editing
via CRISPR have ushered in biotechnological advancements
for crops that are stress resistant; this leads to higher yields
and a decrease in chemical input cost [19].

These tools increase the levels of transparency in the supply
chain and market access [20]. Specifically, FDNNs can detect
the disease on time and accurately for the resulting reduction in
crop losses and management costs, which, in turn, improves
agricultural productivity and profitability [21]. At the same
time, they also opt for resource use more effectively, cutting
specific costs while ensuring that they remain sustainable [4].
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Despite the economic benefits, challenges such as high
initial costs, lack of technical expertise, and resistance to
change impede the widespread adoption of these technologies.
Supportive policies, education, and training can address these
challenges [22].

D. Comparison of Plant Disease Detection Techniques

Table I summarizes the attributes of various plant disease
detection techniques, including traditional visual inspection,
remote sensing, and ML techniques.

Technological innovations in agriculture enhance produc-
tivity, reduce costs, and promote sustainability. Continued
innovation and investment in these technologies are essential
to meet the growing global demand for food sustainably and
economically.

III. METHODOLOGY

This section describes the methodology for developing
and evaluating the EFDNN model for plant disease detection,
which includes the data collection process, model architecture
design, training and validation process, and economic analysis
to test the model’s financial sustainability.

A. Research Framework for EFDNN

The EFDNN research framework focuses on integrating the
fuzzy logic of DNNs to improve plant disease detection. This
methodology uses the benefits of both methods, effectively
handling uncertainties and imprecise data. Fig. 1 depicts the
research framework of EFDNN.

B. Data Collection

Effective data collection is necessary to develop and val-
idate the EFDNN model for plant disease detection and eco-
nomic impact evaluation. This section describes the types of
data collected and the methods used.

1) Remote sensing data: Remote sensing data are helpful in
monitoring plant health over large agricultural areas without
causing damage to plants. These data are acquired through
satellites, drones, and ground-based sensors. Therefore, getting
good coverage and detail in crop conditions is possible. In
this work, the Plant Village dataset [23] was used, as it is
a well-accepted and comprehensive dataset for plant disease
detection, as outlined in Table II.

Sentinel-2 and Landsat 8 satellites can acquire multi-
spectral and hyper-spectral data with resolutions between 10
and 30 meters. These images were processed to derive vegeta-
tion indices like the Normalized Difference Vegetation Index
(NDVI) and the Enhanced Vegetation Index (EVI), which
will show plant health and stress. Unmanned Aerial Vehicles
(UAVs) or drones acquire high-resolution images on demand.
Drones mounted with multi-spectral cameras describe crop
images, thus enabling the location of disease symptoms at
the plant level [24]. This data is collected by multi-spectral
sensors across several specific wavelength bands. This data can
be used for general plant health detection and to identify pos-
sible regions of disease outbreak [25]. Hyper-spectral sensors
provide very detailed spectral information since they collect

data at hundreds of narrow wavelength bands. This spectral
data, which has a very high resolution, enables the detection of
specific changes related to disease in plant reflectance, which
are invisible to the naked eye [6].

2) Economic data: An analysis of the cost-effectiveness
and economic benefits of using EFDNN for plant disease
detection requires data on the economics of the problem. More
specifically, this data includes information on the yield of
crops, the cost of inputs, the price at which the outputs are
traded in the market, and the cost of disease management, as
summarized in Table III.

Data on crop yields have been collected from the USDA,
FAO, agricultural surveys, and field reports of past and current
times. Such information is useful in evaluating the effects of
the diseases on plant production and the improvements that can
be made by early identification and control of the disease [26].
Seed, fertilizer, pesticide, and labor costs are obtained from
farmer’s records and market surveys. The different types of
costs will be important in deriving the cost-benefit analysis of
the EFDNN system [27]. Exchange of commodities and market
reports provide data on the price of crops. Market prices are
among the data that will be used in determining the economic
returns due to increased crop yield as a result of better disease
control [19].

Agricultural expenses are presented by the costs of disease
prevention and treatment, which are reflected in farmer record
books and extension services in agriculture, as well as the
cost of pesticides and fungicides. The estimated potential
cost savings from earlier and more accurate disease detection
according to the EFDNN model are discussed in the analysis
[28]. Therefore, the efficiency of the EFDNN model and its
economic impact on detecting plant disease in agricultural
yield are highly valued based on remote sensing and economic
indications.

C. EFDNN Model for Plant Disease Detection

Incorporating fuzzy logic and DNN in developing the
EFDNN model accelerates the diagnosis of plant diseases.
This section describes the model, its training approach, and
the validation process.

1) Model architecture: In EFDNN, the proposed model is
based on a DNN architecture enhanced with fuzzy logic to ad-
dress fuzziness and noise in agricultural data. The architecture
consists of an input layer, a fuzzy logic layer, hidden layers,
and an output layer.

The input layer gathers data from various sources, such as
remote sensing imagery and sensor data. The input features are
fuzzified by applying membership functions to each feature.
Let xi be an input feature. The fuzzy membership function
µA(xi) is defined as:

µA(xi) =
1

1 + e−a(xi−b)
(1)

where a and b are parameters controlling the shape of the
membership function.
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TABLE I. PLANT DISEASE DETECTION TECHNIQUES AND THEIR ATTRIBUTES

Ref Method Accuracy TPR FPR TNR FNR Precision Benefits

[5] Visual Inspection Low - - - - - Simple, cost-effective
[6] Remote Sensing Moderate - - - - - Early detection, large area coverage
[10] CNN High 95% 5% 90% 10% 94% High accuracy, automated detection
[11] ML Integration High 92% 8% 88% 12% 90% Combines strengths of multiple techniques
[18] Deep Learning High 96% 4% 93% 7% 95% Capable of learning complex patterns

Fig. 1. Research framework of the EFDNN model.

TABLE II. TYPES OF REMOTE SENSING DATA AND THEIR CHARACTERISTICS

Data Type Source Resolution Frequency Key Parameters Measured
Satellite Imagery Sentinel-2, Landsat 8 10-30 meters 5-16 days NDVI, EVI, leaf area index, soil moisture
Drone Imagery UAVs (Drones) High (cm-level) On-demand Plant health indices, disease symptoms
Multi-spectral Cameras, Sensors Various Continuous Reflectance at multiple wavelengths
Hyper-spectral Hyper-spectral Sensors High (nm-level) Continuous Detailed spectral signature of plants
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TABLE III. TYPES OF ECONOMIC DATA AND THEIR SOURCES

Data Type Source Description
Crop Yield Data USDA, FAO, Agricultural Surveys, Field Reports Historical and current crop yields for various crops
Input Costs Farmer Records, Market Reports Costs of seeds, fertilizers, pesticides, labor
Market Prices Commodity Exchanges, Market Reports Prices of crops in local and international markets
Disease Management Costs Farmer Records, Agricultural Extension Services Costs related to disease prevention and treatment

The fuzzy logic layer applies fuzzy rules to the input
features. Each rule Rj is formulated as an IF-THEN statement.
For example:

Rj : IF x1 is A1 AND x2 is A2 THEN y is Bj (2)

where A1 and A2 are fuzzy sets, and Bj is the output fuzzy
set. The output of the fuzzy logic layer fj is calculated using
the fuzzy inference mechanism:

fj = µA1(x1)× µA2(x2) (3)

where A1 and A2 are fuzzy sets and x1 and x2 are
some input features. The hidden layers in the neural network
process the fuzzy outputs. These layers consist of multiple
neurons performing non-linear transformations using activation
functions such as the Rectified Linear Unit (ReLU):

hi = max(0,Wi · f + bi) (4)

where Wi is the weight matrix, f is the input vector from
the fuzzy logic layer, and bi is the bias term.

The output layer generates the final prediction, which
is either a disease classification or a probability score. For
classification tasks, a softmax function converts the output
logits into probability distributions:

P (y = j|h) = eWj ·h∑K
k=1 e

Wk·h
(5)

where Wj are the weights associated with class j, and h
is the input from the last hidden layer.

2) Training and validation: The EFDNN model’s training
and validation process includes training, cross-validation, and
hyperparameter tuning to optimize its efficiency in detecting
plant diseases.

The training process involves optimizing the model param-
eters to minimize prediction error. The loss function L used
for training is typically the cross-entropy loss for classification
tasks:

L = −
N∑
i=1

K∑
j=1

yij log(P (y = j|hi)) (6)

where yij is the true label for the i-th sample, and P (y =
j|hi) is the predicted probability for class j.

The model parameters W and biases b are updated using
gradient descent algorithms such as Stochastic Gradient De-
scent (SGD) or Adam:

Wnew = Wold − η
∂L

∂W
, bnew = bold − η

∂L

∂b
(7)

where η is the learning rate.

During training, a validation set monitors the model’s
performance and prevents overfitting. Validation accuracy Aval
is calculated as:

Aval =
1

M

M∑
i=1

1(ŷi = yi) (8)

where 1 is the indicator function, ŷi is the predicted label,
and yi is the true label for the i-th validation sample.

To ensure the model’s robustness, k-fold cross-validation is
employed. The dataset is divided into k subsets, and the model
is trained and validated k times, each time using a different
subset as the validation set and the remaining subsets as the
training set. The final performance metric is the average of the
k validation results:

Acv =
1

k

k∑
j=1

Aval,j (9)

Hyperparameters such as the learning rate, batch size, and
the number of hidden layers are tuned using grid search or ran-
dom search methods. The hyperparameter set that maximizes
validation accuracy is selected.

3) Algorithm configuration: Algorithm 1 describes the con-
figuration of the proposed EFDNN model.

D. Economic Analysis

Therefore, evaluating productivity gain analysis forms a
critical part of the economic analysis for identifying plant
diseases using the EFDNN model. The following section
describes the approach to working out the cost-benefit and
productivity indicators.

1) Cost-Benefit Analysis (CBA): The cost-benefit analysis
measures cost with the EFDNN model, while the economic
benefits derived are their measures. This ranges from simple
evaluations as a project’s net present value (NPV) to more
complex analyses.

NPV determines the values of all the flows of money
(benefits and costs) in the present time by discounting them.
The formula for NPV is:
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Algorithm 1: Training Process for Enhanced Fuzzy
Deep Neural Network (EFDNN)

Input: Raw data X , fuzzy membership functions
µA, pre-trained DBN weights, labeled data Y .

Output: Trained EFDNN model.
foreach xi ∈ X do

Initialize fuzzy membership function µA(xi) with
parameters a, b.

foreach xi ∈ X do
Compute fuzzy membership value:

µA(xi) =
1

1 + e−a(xi−b)
.

foreach fuzzy rule Rj do
Compute rule output:

fj = µA1(x1) · µA2(x2).

foreach Restricted Boltzmann Machine (RBM) layer l
do

Perform Gibbs sampling to update weights and
biases:

Wl,new = Wl,old − η
∂L

∂Wl
, bl,new = bl,old − η

∂L

∂bl
.

foreach input fj do
Combine fuzzy outputs with DBN activations hi:

hi = max(0,Wi · f + bi).

Apply softmax function for classification:

P (y = j|h) = eWj ·h∑K
k=1 e

Wk·h
.

while loss L does not converge do
Update weights and biases using labeled data Y :

L = −
N∑
i=1

K∑
j=1

yij log(P (y = j|hi)).

foreach validation set do
Evaluate using metrics such as accuracy,

precision, recall, and AUC-ROC.
Optimize hyperparameters (e.g. learning rate,

batch size, layers) using grid or random search.
Return trian_Model.

NPV =

T∑
t=0

Bt − Ct

(1 + r)t
, (10)

where Bt is benefits in the year t, Ct is costs in a year t,
r is the discount rate and T is time horizon.

The costs include initial setup costs (hardware and soft-
ware), training costs for personnel, and ongoing operational
costs. Let C0 represent the initial setup costs, and Cop the
annual operational costs. The total costs over time can be
represented as:

Ct = C0 +

T∑
t=1

Cop. (11)

The benefits include cost savings from reduced pesticide
use, increased crop yields, and avoided losses due to early
disease detection. Let Sp represent savings from pesticide
reduction, Yi the increase in yield, and Ad the avoided losses.
The total benefits over time can be represented as:

Bt =

T∑
t=1

(Sp + Yi +Ad). (12)

The benefit-cost ratio (BCR) is the ratio of the present value
of benefits to the present value of costs. It is calculated as:

BCR =

∑T
t=0

Bt

(1+r)t∑T
t=0

Ct

(1+r)t

. (13)

A BCR greater than 1 suggests that the benefits received
through the proceeding of the project exceed the costs, and
thus it is economically feasible.

2) Productivity metrics: Impact measurements measure the
organization’s productivity level in improving agricultural pro-
ductivity by applying the EFDNN model. These are yield
increase, optimization of inputs use, ROI, and decrease in
pesticide use.

The yield increase is the percentage of increase in crop
yield realized when the EFDNN model has been used. It is
calculated as:

Yinc(%) =
Ypost − Ypre

Ypre
× 100, (14)

where Ypost is yield after implementing EFDNN and Ypre
is yield before implementing EFDNN.

The input use efficiency measures how effectively inputs
such as water, fertilizers, and pesticides are used. It is calcu-
lated as the ratio of output (yield) to input use:

Einput =
Ypost

Ipost
, (15)

where Ipost represents the inputs used after implementing
EFDNN.

ROI is a measure of the profitability of the investment in
the EFDNN model. It is calculated as:

ROI(%) =
Bt − Ct

Ct
× 100. (16)

The reduction in pesticide use due to accurate disease
detection can be quantified as:

Pred(%) =
Ppre − Ppost

Ppre
× 100, (17)
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where Ppre is pesticide use before EFDNN implementation,
and Ppost is pesticide use after EFDNN implementation.

Thus, based on these measures, the study will be able to
express the economic effects of the EFDNN model, which
means that it will be possible to show its feasibility in terms
of profitability or financial efficiency.

IV. RESULTS

This section discusses data obtained by applying the pro-
posed EFDNN model for plant disease detection. The effec-
tiveness of the proposed model has been measured with the
required matrices and compared with the other baseline models
for evaluation. The proposed model has also been applied for
economic benefits.

A. Accuracy and Performance of the EFDNN Model

The performance of the EFDNN model was evaluated
based on the measures explained in the methodology segment.
It comprises accuracy, precision, recall, F1-score, and AUC-
ROC measures. The performance of the proposed EFDNN
model is compared to other baseline models: Basically, named
entities can be excluded in CNN, DNN, and FNN.

Using the EFDNN model, the dataset containing massive
images of plant diseases was analyzed, and the overall sum-
mary of every model, including Accuracy, Precision, Recall,
F1-Score, and AUC-ROC, is given in Table IV.

TABLE IV. PERFORMANCE METRICS OF DIFFERENT MODELS

Model Accuracy Precision Recall F1-Score AUC-ROC
EFDNN 95.2% 94.8% 95.6% 95.2% 0.978
CNN 92.3% 91.5% 92.8% 92.1% 0.941
Traditional DNN 89.7% 88.9% 90.1% 89.5% 0.912
FNN 90.4% 89.8% 90.7% 90.2% 0.920

Thus, the models examined in this study used the EFDNN
model to accurately recognize plant diseases, confirming its
higher discriminatory power than the other models. The values
of Precision and Recall mean that the model can correctly
classify true positives, yet it maintains that low positives and
high negatives are False. The density plots are represented in
Fig. 2 by comparing the distribution of actual crop yield with
the distributions predicted by four different models: EFDNN,
CNN, DNN, and FNN.

A confusion matrix gives a detailed breakdown of the
model performance using true positive, true negative, false
positive, and false negative rates. For the EFDNN model, the
confusion matrix is presented in Fig. 3.

The confusion matrix shows that the EFDNN model had
a relatively high true positive rate, whereby 475 out of 500
samples were correctly diagnosed. In contrast, the false nega-
tive rate was very low, at 25 out of 500 samples, a promising
performance in identifying diseased plants.

The EFDNN model proposed here performs much better
than the CNN, traditional DNN, and FNN models. The sta-
tistical comparison of the performance metrics is presented
in Table V. The paired t-test confirmed that these results
are statistically significant, with p-values less than 0.05 for

Fig. 2. Comparison of actual data distribution vs EFDNN, CNN, traditional
DNN, and FNN.

Fig. 3. Confusion matrix for the EFDNN model.

TABLE V. STATISTICAL COMPARISON OF PERFORMANCE METRICS

Comparison t-Statistic p-Value
EFDNN vs. CNN 3.21 0.002
EFDNN vs. DNN 4.56 0.0001
EFDNN vs. FNN 3.87 0.0003

all the comparisons; therefore, the differences are statistically
significant.

The high performance and accuracy metrics of the EFDNN
model reveal good applicability toward plant disease detection
in real-world applications. Incorporating fuzzy logic with
DNNs would help the model deal well with imprecise and
uncertain data, resulting in better classification performance.
The results show that the EFDNN model is quite robust and
generalizes very well with new unseen data, thus providing a
useful tool for farmers and agricultural professionals.
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TABLE VI. COST-BENEFIT ANALYSIS OVER FIVE YEARS

Year Initial Cost
($)

Operational Cost
($)

Total Cost ($) Annual Savings ($) Net Savings ($) Cumulative
Savings ($)

1 50,000 15,000 65,000 12,000 -53,000 -53,000
2 0 15,000 15,000 12,000 -3,000 -56,000
3 0 15,000 15,000 12,000 -3,000 -59,000
4 0 15,000 15,000 12,000 -3,000 -62,000
5 0 15,000 15,000 12,000 -3,000 -65,000

TABLE VII. ADDITIONAL REVENUE FROM INCREASED YIELD

Crop
Type

Increase in Yield
(kg/acre)

Price ($/kg) Additional
Revenue ($/acre)

Wheat 400 0.20 80
Corn 600 0.15 90
Soybean 300 0.25 75
Average 433.3 0.20 81.67

B. Economic Benefits

Implementing the EFDNN model for plant disease detec-
tion produces immense economic benefits. These benefits can
be categorized as cost savings and increases in agricultural
productivity. This section explains these economic benefits,
providing evidence in Table VI.

For an extensive understanding of the economic benefits, a
cost-benefit analysis has been done for five years, as depicted
in Table VI. This comparison was made between the initial
and running costs of implementing the EFDNN model and the
expected annual savings.

The initial cost of setting up an EFDNN model is $50,000,
while the annual cost of running an EFDNN model is $15,000.
The input saved due to reduction usage provides an annual
saving of $12,000, resulting in a net saving. Over the five
years, cumulative savings tend to reduce expenditure, which
means that it is economically justifiable to apply the EFDNN
model in the long run.

The economic impact of higher productivity in agriculture
is measured by ascertaining the additional revenue with the in-
crease in crop yield. Table VII presents the additional revenue
per acre due to increasing crop yields.

V. CONCLUSION AND FUTURE WORK

The economic analysis of the EFDNN model shows that
it greatly reduces associated costs and increases productivity
in agriculture. This improved productivity increases gains,
hence giving the EFDNN model a positive ROI by enhancing
economic sustainability in agricultural practices. The EFDNN
model greatly improves accuracy in detecting plant diseases
compared to traditional models such as CNNs, DNNs, and
FNNs. The integration of fuzzy logic with DDNs can be such
that imprecise and uncertain data are considered for better
disease classification.

Economically, the EFDNN model has afforded immense
savings with great reductions in pesticides, fertilizers, and
other inputs. Furthermore, it increases the crop yield and,
hence, the revenue for farmers. This is evidenced by the cost-
benefit analysis and ROI calculations. The robustness and
generalizability of the model provide an effective tool for

real-world agricultural applications towards helping farmers
undertake timely preventive measures to avert crop losses.

Future studies should scale the EFDNN model for greater
coverage, embed it with IoT devices to act, and analyze big
data to extend its functionality. Further research should be
conducted on advanced data augmentation techniques. Incor-
porating features of soil health and weather conditions can
make the model more predictive. Longitudinal research is
needed to track the long-term model’s impact on productivity
and sustainability; policy research could identify economic
incentives supporting its adoption. The model will further
be elaborated and fine-tuned by an in-depth assessment of
environmental benefits together with agricultural experts. In
this respect, addressing these future directions would make
the EFDNN model a better tool for improving agricultural
productivity and sustainability.
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