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Abstract—This study explores the transformative potential of
machine learning (ML) algorithms in optimizing the Routing
Protocol for Low-Power and Lossy Networks (RPL), addressing
critical challenges in Internet of Things (IoT) networks, such
as Expected Transmission Count (ETX), latency, and energy
consumption. The research evaluates the performance of Random
Forest, Gradient Boosting, Artificial Neural Networks (ANNs),
and Q-Learning across IoT network simulations with varying
scales (50, 100, and 150 nodes). Results indicate that tree-based
models, particularly Random Forest and Gradient Boosting,
demonstrate robust predictive capabilities for ETX and latency,
achieving consistent results in smaller and medium-sized networks.
Specifically, for 50-node networks, Neural Networks achieved the
best performance with the lowest latency (2.43862 ms) and the best
ETX (5.29557), despite slightly higher energy consumption. For
100-node networks, Q-Learning stood out with the lowest energy
consumption (1.62973 J) and competitive ETX (2.70647), though
at the cost of increased latency. In 150-node networks, Q-Learning
again outperformed other models, achieving the lowest latency
(0.68 ms) and energy consumption (2.21 J), though at the cost
of higher ETX. Neural Networks excel in capturing non-linear
dependencies but face limitations in energy-related metrics, while
Q-Learning adapts dynamically to network changes, achieving
remarkable latency reductions at the cost of transmission efficiency.
The findings highlight key trade-offs between performance metrics
and emphasize the need for algorithmic strategies tailored to
specific IoT applications. This work not only validates the
scalability and adaptability of ML approaches but also lays the
foundation for intelligent and efficient IoT network optimization,
laying the groundwork for future advancements in sustainable
and scalable IoT networks.

Keywords—IoT; RPL; machine learning; routing efficiency;
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I. INTRODUCTION

The Internet of Things (IoT) has revolutionized modern
technological paradigms, enabling seamless connectivity and
interaction between billions of devices, ranging from consumer
electronics to industrial machinery [1]. This explosion of
interconnected systems has catalyzed advancements in diverse
fields, including smart cities, healthcare, agriculture, and
industrial automation [2]. At the core of 10T systems lies the
Routing Protocol for Low-Power and Lossy Networks (RPL), a
pivotal framework designed to support the unique challenges of
Wireless Sensor Networks (WSNs) operating under constrained
resources [3]. Despite its widespread adoption, RPL’s default
mechanisms often fall short in optimizing key performance
metrics such as ETX, latency, and energy consumption—metrics
critical for ensuring scalability and reliability in large, dynamic
IoT environments [2],[4].
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The rapid growth of IoT devices has increased the complex-
ity of network management, particularly in dynamic topologies
with resource constraints. Traditional heuristic and rule-based
optimization methods, while effective in static environments,
lack the adaptability and precision needed to address the
complex challenges of real-world IoT deployments. These
limitations underscore the necessity for innovative solutions
that leverage data-driven insights to optimize network behavior
dynamically and efficiently [5].

Machine learning (ML), with its unparalleled ability to
analyze complex datasets and extract actionable insights,
emerges as a transformative solution for optimizing IoT
networks. Unlike conventional methods, ML models can adapt
to evolving network conditions, predict performance trends, and
optimize resource allocation intelligently. Supervised learning
techniques such as Random Forests and Gradient Boosting
have demonstrated exceptional accuracy in predicting ETX
and latency by effectively capturing feature interactions and
avoiding overfitting. Similarly, Artificial Neural Networks
(ANNSs) excel in modeling non-linear dependencies within
high-dimensional datasets, enabling precise energy consumption
predictions. Reinforcement learning approaches like Q-Learning
introduce an adaptive framework, allowing IoT networks to
learn optimal routing policies through continuous interaction
with the environment [6], [7].

This study delves into the application of ML techniques for
enhancing RPL [26] performance in IoT networks, focusing on
the evaluation of Random Forests, Gradient Boosting, ANNSs,
and Q-Learning across varying network sizes. By analyzing the
scalability and adaptability of these models through extensive
simulations, this work offers a comprehensive comparison of
their strengths and limitations. The results demonstrate that
ML-based optimization not only improves energy efficiency
and reduces latency but also enhances network reliability,
laying the groundwork for the development of intelligent, self-
optimizing IoT systems.This research connects theory with
practice, demonstrating how machine learning can revolutionize
IoT network [28] management. The insights gained provide a
roadmap for leveraging ML to overcome the critical challenges
of energy efficiency, scalability, and adaptability in RPL-based
IoT systems, thereby setting a benchmark for next-generation
IoT deployments.The remainder of this paper is structured
as follows: Section II presents related works, Section III
formulates the problem statement, and Section IV describes the
machine learning [29] algorithms applied. Section V discusses
experimental results, and Section VI concludes the paper with
key findings and future directions.
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II. RELATED WORK

The Internet of Things (IoT) [2] has emerged as a transfor-
mative domain, enabling interconnected devices to communi-
cate, sense and transmit data across diverse environments. At
the heart of this ecosystem lies the Routing Protocol for Low-
Power and Lossy Networks (RPL), established by the Internet
Engineering Task Force (IETF), which serves as a standardized
protocol to facilitate efficient data exchange in IoT networks
[4]. RPL effectively addresses key limitations of IoT devices,
such as constrained computing power, limited memory capacity,
and high energy consumption. However, optimizing RPL to
enhance energy efficiency, reduce latency, and extend network
lifetime remains an ongoing research challenge. In this context,
machine learning (ML) [7] has emerged as a powerful tool for
addressing these challenges, providing a robust framework for
analyzing complex data patterns, enabling predictive insights,
and supporting adaptive decision-making.

Supervised learning models, such as Random Forests and
Gradient Boosting [19], have shown exceptional promise in
predicting key network metrics like ETX and latency, leveraging
ensemble approaches to improve routing decisions while avoid-
ing overfitting. Similarly, Artificial Neural Networks (ANNs)
[20], with their ability to model non-linear dependencies,
have demonstrated potential in optimizing energy consumption
and resource allocation in IoT environments. Reinforcement
learning techniques, such as Q-Learning, introduce a dynamic
approach to routing optimization, enabling IoT[24] systems to
autonomously learn and adapt to changing network conditions
while balancing exploration and exploitation. Empirical studies
confirm the effectiveness of ML algorithms in reducing energy
consumption while maintaining communication performance.
Approaches such as dynamic sleep scheduling and intelligent
data aggregation have been shown to significantly extend
network lifetimes, while deep learning architectures have
excelled in extracting intricate patterns from high-dimensional
datasets, enhancing network performance.

The comparative evaluation of ML algorithms [6] highlights
their unique capabilities, applications, strengths, and limitations,
providing a comprehensive understanding of their utility in
optimizing IoT networks. Random Forests [23], robust and
interpretable ensemble methods, are particularly effective in
avoiding overfitting and are widely applied in domains like
astronomy and energy prediction [8], [9], [10], [11]. However,
they can occasionally underperform compared to Gradient
Boosting in tasks requiring higher precision [7]. Decision
Trees, valued for their simplicity and transparency, are effective
in applications such as medical diagnostics and crop disease
classification [8], [9], [10], [12], [13], but their propensity
to overfit makes them less reliable as standalone models [1],
[6], [7], [14], [15]. Gradient Boosting, a sequential learning
method, achieves high accuracy by iteratively correcting errors,
making it well-suited for diverse tasks [8], [9], [10], [16],
[17], though its computational demands and tuning complexity
can pose challenges [1], [2], [4], [6], [18], [19], [20], [21],
[22]. Q-Learning, a reinforcement learning technique, excels in
dynamic decision-making environments such as IoT network
optimization [8], [9], [10], while Neural Networks demonstrate
unparalleled ability to handle high-dimensional and non-linear
data patterns, making them indispensable for complex domains
like image recognition and medical diagnostics [8], [9], [10],
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[23], [24]. However, their reliance on large datasets and
high computational requirements can limit their application in
resource-constrained settings [25].Together, these observations
underscore the transformative potential of machine learning in
IoT network optimization [27], emphasizing the importance
of aligning algorithmic selection with specific application
requirements. By dynamically evolving and adapting to real-
time data, ML algorithms are positioned at the forefront of
contemporary IoT [30] research, paving the way for intelligent,
sustainable, and resilient network systems that address the
pressing demands of scalability, efficiency, and adaptability.

III. PROBLEM STATEMENT

In this section, we formulate the problem of optimized
routing RPL-based IoT network[30] considering the following
metrics: ET X, the latency (LT1') and the energy consumption
(EC). The objective function integrating these criteria is defined
as follows.

Minimize F = wi.ETX + wo. LT + w3.EC (1)

Where w, wo and ws are weights assigned to ET'X, LT and
EC respectively.

A. Define the Metrics

ETX measures the number of expected transmissions,
including retransmissions, required to successfully deliver a
packet over a link.

1
Where P;; is the probability of successful packet transmission
from node % to node j, and P;; is the probability of successful
acknowledgment.

LT represents the time required for a packet to travel from the
source to the destination.

LT;; = dij + Z ProcessingTime,,
3

ETX,; =

Where d;; is the propagation delay between nodes ¢ and j, and
the sum represents the processing delays at intermediate nodes.
EC is the of energy consumed to transmit a packet from the
source to the destination.

EC;; = TE;; + Z ProcessingEnergy,,
k

Where T'E;; is the energy consumed for transmission between
nodes ¢ and j, and the sum represents the energy consumed at
intermediate nodes for processing.

B. Formulate the Constraints

The connectivity constraint ensures that the selected path
maintains network connectivity.

Z Tij = 1, Vi € N

JEN
Where zij is a binary variable indicating whether the link
between nodes ¢ and j is part of the path (1) or not (0). The
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Loop-Free constraint ensures that routing path does not exceed
the available energy at any node.

d mij=1, Vi € N

JEN
The energy constraint ensures that the energy consumption
does not exceed the available energy at any node.

EC,»J» < FE;, Vi e N

Where [E; is the available energy at node .

C. Optimization Problem Formulation

Minimize F = Z (w1 ETX ;j+wa LT, ; +w3.EC,;) .45
i,jEE
Subject to:
d mij=1, Vi €N
JjEN
Ti; + T < 1, VZ,] e N
ECy < E;, Vi e N
Ti5 € 0,1

IV. MACHINE LEARNING ALGORITHMS

The application of Machine Learning (ML) in IoT networks
represents a paradigm shift in optimizing routing protocols,
particularly the Routing Protocol for Low-Power and Lossy
Networks (RPL) [3]. Unlike traditional heuristic-based ap-
proaches, ML algorithms provide data-driven solutions that
dynamically adapt to the ever-changing conditions of IoT
networks. By leveraging the vast amounts of data generated
within IoT systems, these algorithms can predict network
behaviors, optimize performance metrics, and enable intelligent
decision making.

In the context of RPL optimization [26], ML techniques
offer significant advantages in addressing critical metrics
such as Expected Transmission Count, latency, and energy
consumption. Various ML models have been successfully
applied, each offering unique strengths and capabilities:

1) Random forests: This ensemble learning method com-
bines the predictive power of multiple decision trees to deliver
robust and accurate results. Random Forests are particularly
effective in predicting ETX and latency while avoiding over-
fitting. Their ability to generalize well across diverse datasets
makes them a reliable choice for IoT network optimization,
especially in scenarios with high-dimensional data [8], [9], [10],
[11], [29], [29].

2) Gradient boosting: As a sequential ensemble technique,
Gradient Boosting iteratively refines weak models to achieve
high accuracy. Its ability to capture complex interactions
between features allows it to excel in predicting network
performance metrics. Gradient Boosting has demonstrated
remarkable efficiency in balancing ETX, latency, and energy
consumption, making it a powerful tool for IoT network
optimization [8], [9], [10], [16], [17].
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3) Artificial Neural Networks (ANNs): Renowned for their
capacity to model non-linear relationships, ANNs are well-
suited for analyzing and predicting energy consumption patterns
in IoT networks. Their multi-layered architecture enables
them to learn intricate patterns and dependencies in the data,
providing insights that drive more efficient routing and resource
management [8], [9], [10], [23], [24].

4) Q-Learning: A reinforcement learning approach, Q-
Learning introduces an adaptive mechanism for optimizing
routing decisions. By interacting with the network environment,
Q-Learning dynamically learns the best routing policies while
balancing exploration and exploitation. This makes it highly
effective in minimizing latency and energy consumption in
dynamic IoT scenarios [8], [9], [10].

Machine learning algorithms stand out for their scalability
and flexibility, making them well-equipped to handle the
complexities of RPL-based networks. Simulations conducted
on IoT networks of varying sizes (50, 100, and 150 nodes) have
consistently highlighted the superior performance of ML models
[27], [29] compared to traditional optimization techniques.
For instance, Random Forests and Gradient Boosting have
been shown to maintain balanced performance across metrics,
while Q-Learning offers exceptional adaptability in dynamic
environments.

ML algorithms enhance predictive capabilities and adaptive
decision-making, optimizing key network metrics while foster-
ing the development of intelligent and resilient IoT systems
[26], [28]. The integration of these algorithms into RPL-
based networks underscores their critical role in advancing the
state-of-the-art in IoT optimization, paving the way for more
efficient and sustainable IoT deployments. Through rigorous
evaluation and continuous improvement, ML techniques are
poised to revolutionize [oT network management, addressing
the challenges of energy efficiency, latency reduction, and
enhanced connectivity in real-world applications.

A. Dataset Configurations for Machine Learning Algorithms
Simulations

In this section, we delve into the application of vari-
ous machine learning algorithms—Random Forests, Gradi-
ent Boosting, Artificial Neural Networks (ANNs), and Q-
Learning—to optimize routing within IoT networks. These
algorithms are tested across different network configurations,
with simulations conducted on data sets of varying sizes
representing IoT networks with 50, 100, and 150 nodes. Each
configuration is designed with specific training and testing
data shapes to accurately reflect the complexity and scale
of the simulated network environment. Table II provides an
overview of the data set shapes used for each simulation
size, ensuring a comprehensive evaluation of the machine
learning models across diverse network scenarios.This table
provides an overview of the datasets used to evaluate the
performance of various machine learning algorithms across
different network sizes. The number of features and instances
in the training and testing sets reflects the complexity of the
network configurations, ensuring a thorough analysis of each
algorithm’s predictive accuracy, adaptability, and scalability.
This structured evaluation highlights the capacity of machine
learning techniques to address the diverse challenges inherent

www.ijacsa.thesai.org

1374 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

in IoT networks, including energy efficiency, latency reduction,
and routing optimization.

TABLE I. SHAPES OF DATA SETS FOR DIFFERENT SIMULATIONS

Simulation Train Data Shape Test Data Shape
50 nodes (440, 7) (110, 7)

100 nodes (80, 3) (20, 3)

150 nodes (3539, 4) (885, 4)

B. Implementation of Machine Learning Algorithms

This section presents a machine learning framework for
minimizing transmission and energy costs in IoT networks.
Algorithm 1 uses Q-Learning for multi-objective optimization,
balancing exploration and exploitation with parameters like
learning rate («), discount factor (), and exploration rate (e).
Q-values are iteratively updated using ETX, latency, and energy
consumption, ensuring robust and efficient routing policies.

Algorithm 1 employs a Random Forest model to predict
ETX, latency, and energy consumption in IoT networks. It
includes data preprocessing, dataset splitting, and training
regressors for each metric. Performance is evaluated using
R2, MSE, and MAE, demonstrating the model’s robustness for
IoT optimization.

Algorithm 1 Random Forest for Multi-Objective Optimization

Input : Dataset with features: X;
Target variables: YETXa YLatencya YEnergy;
Number of estimators Ny, ces;
Maximum depth of trees MaxDepth,;
Metrics: ET X, Latency (ms), Consumed Energy (J);
Output: _ Predicted values for metrics:
YETX» YLatency7 YEnergy;
Model performance scores (e.g., R?, MSE).
Begin Random Forest Algorithm
/* Data Preprocessing */
Split dataset into training and testing sets:
Xtraivu Xtesta Ytrain7 thest <~

TRAIN_TEST SPLIT(X,Y);

foreach metric € {ETX, Latency, Energy} do

/* Train Random Forest Regressor for each metric */
Initialize model: RF, ciric —
RANDOM_FOREST (Niyees, MaxDepth);
Train model: RE,ctric FIT(Xtrain, Yerain[metricl);

/* Evaluate the model */
Ymetric — RFmetric-PREDICT(Xtest);
Compute performance metrics: R?, MSE, MAE;,

/* Return Results */ .
Return YETX; YLatency; YE’nergy;
End Random Forest Algorithm

Algorithm 2 uses Gradient Boosting to optimize ETX,
latency, and energy consumption in IoT networks. It involves
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preprocessing, dataset splitting, and training with hyperparam-
eters (Nestimators> 7, MaxzDepth). Performance is evaluated
using R%, MSE, and MAE, ensuring accurate predictions and
robust optimization.

Algorithm 2 Gradient Boosting for Multi-Objective Optimiza-
tion

Input : Dataset with features: X;
Target variables: Yerx, Yratency, YEnerqgys
Number of estimators Nestimators:
Learning rate n;
Maximum depth of trees MaxDepth;
Metrics: ET X, Latency (ms), Consumed Energy (J);
Output: _ Predicted values for metrics:
YETX7 YLatencgp YEnergy;
Model performance scores (e.g., R, MSE).
Begin Gradient Boosting Algorithm
/* Data Preprocessing */
Split dataset into training and testing sets:
Xtrain7 Xtesta thrainy Yrtest —

TRAIN_TEST _SPLIT(X,Y);

foreach metric € {ETX, Latency, Energy} do

/* Train Gradient Boosting Regressor for each metric
*/
Initialize model: G Betric —
GRADIENT_BOOSTING(Nestimators, 1, MaxDepth);
Train model: GBetric- FIT(Xtrain, Yerain|metric]);

/* Evaluate the model */
Ymetm'c — GBmetrioPREDICT(Xtest);
Compute performance metrics: R, MSE, M AE;

/* Return Results */ A
Return Yerx, YLatencya YE’nergy;
End Gradient Boosting Algorithm

Algorithm 3 employs a Neural Network to optimize ETX,
latency, and energy consumption in IoT networks. The process
includes data preprocessing (normalization and dataset splitting)
and initializing neural networks for each metric with parameters
such as layers (L), neurons (Nycurons), activation function (f),
optimizer, learning rate (1), epochs (E), and batch size (B).
Training utilizes backpropagation and gradient descent, with
predictions evaluated via R?2, MSE, and MAE. By modeling
nonlinear relationships, the algorithm ensures accurate predic-
tions. The results include predictions and evaluation scores,
demonstrating the neural network’s effectiveness for loT multi-
objective tasks.
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Algorithm 3 Neural Network for Multi-Objective Optimization
Input

: Dataset with features: X;
Target variables: Yerx, Yiatency, YEnergy:
Neural network structure: Number of layers L, Neu-
rons per layer Nycurons:
Activation function f;
Optimizer Optimizer with learning rate 7;
Number of epochs E, Batch size B;

Metrics: ET X, Latency (ms), Consumed Energy (J);

Output: _ Predicted values for metrics:

)A/ETXv YLatency: YEne’rgy;
Model performance scores (e.g., R, M SE).

Begin Neural Network Training

/* Data Preprocessing */
Normalize input features: X <~ NORMALIZE(X);
Split dataset into training and testing sets:
Xtra'm7 Xtesta 1/trai’m Y;fest <
TRAIN_TEST SPLIT(X,Y);

foreach metric € {ETX, Latency, Energy} do

/* Neural Network Initialization */
Build model: NN, etric —
INITIALIZE_NN(L, Npeurons, f, Optimizer,n);

E, batch_size = B);

/* Evaluate the model */
Ymetric — NNmetric-PREDICT(Xtest);
Compute performance metrics: R?, MSE, MAE;,

/* Return Results */ .
Return YETX; YLatencya YEnergy;
End Neural Network Training

Algorithm 4 applies Q-Learning to optimize routing in IoT
networks by minimizing ETX, latency, and energy consumption.
The process begins with initializing the Q-table (Q(s,a)) to
zero. Over MaxEpisodes, the algorithm explores the state
space (S) using an e-greedy policy to balance exploration
and exploitation. Actions (a) are executed, resulting in state
transitions (s’) and rewards (r). Q-values are updated using
the Bellman equation with learning rate (), discount factor
(), and maximum future rewards. After training, the optimal
routing policy (w) is derived by selecting the action with
the highest Q-value for each state. The algorithm outputs
the optimized Q-table and routing policy, demonstrating Q-
Learning’s effectiveness in improving routing efficiency and
reducing energy consumption and latency in IoT networks.

Train model: N Npyetric- FIT(Xtrain, Yirain[metric], epochs =

Algorithm 4 Q-Learning for Routing Optimization in IoT
Networks
Input : State space S,

Action space A;

Learning rate «;

Discount factor 7;

Exploration probability e;

Maximum episodes M ax Episodes;

Metrics: ET X, Latency (ms), Consumed Energy (J);

Output : Optimized Q-table Q;
Optimal routing policy .

Begin Q-Learning Algorithm

/* Initialize Q-table */
Q(s,a) < 0,Vs € S,a € A;

for episode <— 1 to MaxEpisodes do

Initialize state s <~ INITIAL_STATE();
while not terminal state do

/* Choose action using e-greedy policy */
a < if random() < € then
RANDOM_ACTION() else argmax, Q(s,a);
Execute action a, observe reward r and next state s’;

/* Update Q-value */

Q($7 a) A Q(Sa CL)—FCY [T+7 maXg Q(S/a CL)—Q(S, CL)] >
s+ s';

/* Extract optimal policy */
7(s) < argmax, Q(s,a),Vs € S;

/* Return Results */
Return @, 7;
End Q-Learning Algorithm

V. RESULTS AND DISCUSSION
A. Experiment Environment

The tests were conducted on a device with an Intel(R)
Core(TM) i5-7200U CPU @ 2.50GHz, 8 GB RAM, and
a 64-bit Windows system. Python was used to implement
categorization methods on Jupyter Notebook, with libraries
such as pandas (1.5.3), Pulp (2.6.0), Deap (1.3.1), and seaborn.
Dependencies and tools were managed using Anaconda, which
facilitates the implementation and management of machine
learning algorithms.

B. Performance of Algorithms Across All Simulations

This study simulated IoT networks with 50, 100, and 150
nodes to evaluate the impact of machine learning algorithms on
network optimization. The algorithms effectively predicted ETX,
latency, and energy consumption, allowing for performance
comparisons. Tables II, III, and IV highlight the potential of
machine learning in optimizing IoT networks and driving future
advancements.
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TABLE II. COMPARISON OF PERFORMANCE OF ALGORITHMS FOR
SIMULATION 50

Algorithm ETX Latency (ms)  Energy Consumption (J)
Random Forest 5.63656 2.63308 2.62552
Decision Trees 5.34587 2.52793 2.63175
Gradient Boosting  5.56853 2.64258 2.61170
Neural Networks 5.29557 2.43862 2.72135
Q-Learning 5.53092 2.65587 2.70280

TABLE III. COMPARATIVE PERFORMANCE OF ALGORITHMS ON THE
100-NODE SIMULATION

Algorithm ETX Latency (ms)  Energy Consumption (J)
Random Forest 2.84176 64.19442 3.22043
Gradient Boosting ~ 2.72260 63.31554 3.19787
Decision Trees 276172 66.95224 3.37378
Neural Networks 2.88632 43.04571 2.89517
Q-Learning 2.70647 1507.45000 1.62973

TABLE IV. COMPARATIVE PERFORMANCE OF ALGORITHMS ON THE
150-NODES SIMULATION

Algorithm ETX Latency (ms)  Energy Consumption (J)
Random Forest 5.39482 2.51740 2.78374
Decision Trees 5.33565 2.44747 2.76888
Gradient Boosting  5.14449 2.83902 2.77862
Neural Networks 5.84716 2.52902 2.95446
Q-Learning 7.50000 0.68000 2.21000

C. Results of 50 Nodes

1) Random forest: The results in Fig. 1 reveal high accuracy
for ETX and Latency, closely aligning with ideal predictions,
but show challenges in predicting Consumed Energy, with
greater deviations from actual values. This indicates a need
for further tuning or advanced techniques, such as feature
engineering or ensemble methods, to enhance energy prediction
accuracy. The analysis highlights the model’s strengths while
identifying areas for improvement.

Real Values vs Predicted for ETX Real Values vs Predicted for Latency (ms)

Real Values vs Predicted for Consumed Energy (J)

a5 w7 2 s
Real Values Real Values

Fig. 1. Actual vs. Predicted values for Regression Analysis (RF).

2) Decision trees: Fig. 2 shows high accuracy for ETX
and Latency but scattered deviations for Consumed Energy.
Refinement through feature engineering, alternative algorithms,
or more energy-focused data is needed for broader optimization.
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Real Values vs Predicted for Consumed Energy (J) Real Values vs Predioted for ETX Real Values vs Predicted for Latency (ms)
algs ¥ . T ~e

o oo Y
IR

0 25 20 s 15 is s 2 s
Real Values Real Values Real Values

Fig. 2. Actual vs. Predicted values for Regression Analysis (DT).

3) Gradient boosting: The plots in Fig. 3 shows accurate
ETX and Latency predictions, with tight clustering near the
ideal line. Scattered Consumed Energy points suggest the need
for refinement through feature engineering, non-linear models,
or more data to improve energy prediction. Strengths and
improvement areas are evident.

Real Values vs Predicted for ETX Real Values vs Predicted for Latency (ms)

Real Values vs Predicted for Consumed Energy (J)

N\

/}"

Predicted Val

i s e 2 3
Real Values Real Values

Fig. 3. Actual vs. Predicted values for Regression Analysis (GB).

Gradient Boosting curves in Fig. 4, 5 and 6 for a 50-node
network show the trade-off between precision and recall as
thresholds change. The F1 score peaks at the optimal threshold,
balancing both. This flexibility allows optimization based on
system priorities, enhancing detection or reliability.

Metric Curves for ETX (Gradient Boosting)

10- — pécsin
Ragpel
— F1Score

ﬁ

0l [ 03 0 03 06 07 08
Tovesnold

Fig. 4. Curves of ETX metric.

Metric Curves or Latency (Gradient Boosting)

10- — Précision
apoe
— Flscore

01 02 [} 0 15 16 07 03
Tovesnold

Fig. 5. Curves of the Latency metric.
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Metric Curves for Consumed Energy (Gracient Boosting)

10- — Prcision
Rappel
— Flsore

01 02 3 0 05 ] o1 03 09
Threshold

Fig. 6. Curves of the consumed energy metric.

4) Neural networks: The analysis in Fig. 7 shows strong ETX

and Latency predictions but scattered Consumed Energy results.

Minor ETX and Latency deviations suggest the need for better
tuning, feature engineering, or more data to capture complex
patterns. Strengths are evident, with areas for improvement
noted.

Real Values vs Predicted for Consumed Energy (J)

Real Values vs Predicted for ETX

Real Values vs Predicted for Latency (ms)

™
Rt

s s 1 2 )
Real Values Real Values

Fig. 7. Actual vs. Predicted values for Regression Analysis (Neural Networks).

5) Q-Learning: The confusion matrix in Fig. 8 and Fig. 9
shows that Q-learning effectively predicting low ETX and
latency but struggling with consumed energy (Fig. 10) due
to misclassifications. Refinement is needed to improve energy
prediction accuracy.

Confusion Matrix for ETX

o 1
Predicced

Fig. 8. Confusion Matrix of Etx.

Confusion Matrix for Latency

o
precicted

Fig. 9. Confusion Matrix of latency.
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Confusion Matrix for Consumed Energy

° i 2
Predicted

Fig. 10. Confusion Matrix of consumed energy.

6) Evolution of metrics: The graphs in Fig. 11 and Fig.12
shows ETX decreasing rapidly, Latency remaining stable, and
Energy Consumption leveling off higher than ETX. This reflects
a trade-off, with the system stabilizing at good connectivity,
moderate latency, and low energy use.

Evolution of Marics Over lferations
®

0

0 2 r & @ 100

Fig. 11. Evolution of metrics over iterations.

Evolution of Melrics Over lterations (Normalized)

Fig. 12. (a) and (b) Evolution of Metrics over iterations (normalized).

D. Results of 100 Nodes
1) Random forest: The Random Forest model in Fig. 13
performs well for ETX and Latency with accurate clustering
but struggles with Consumed Energy. Adding energy-specific
features or advanced models could improve balance across
metrics.

Actual vs Predicted Values for ETX Actual vs Predicted Values for Latency

o s va
. y «
. D - @ ¥
. o ! y
e
P . A f W
L , - EQ) P
Yoo - . | Tw -
. o e 3 S~
& o 4 & &
. A M -
. o o
by
15 . o £l
. 7 ,‘A{
! o 2 W

35 a0 45 2 x

o 2 w0 now w
Actual Values

25 w0 s 4 % ®
Actual Values Actual Values

Fig. 13. Actual vs. Predicted values for Regression Analysis (RF).

2) Decision trees: The Decision Tree model n Fig. 14 performs
well for ETX and Latency in a 100-node simulation but
struggles with Consumed Energy due to non-linear limitations.
Ensemble methods or energy-specific features could improve
its balance across metrics.
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Fig. 14. Actual vs. Predicted values for Regression Analysis (DT)

3) Gradient boosting: Gradient Boosting excels in Fig. 15 with
ETX and Latency but shows variance in Energy predictions,
requiring refinements or energy-specific features for balanced
performance.
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Fig. 15. Actual vs. Predicted values for Regression Analysis (GB).

4) Neural networks: The Neural Network performs in Fig. 16
well for Latency and moderately for ETX, but struggles with
Consumed Energy, showing significant spread. Improvements
may require tuning, targeted features, or hyperparameter
optimization to achieve balanced accuracy across metrics.
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Fig. 16. Actual vs. Predicted values for Regression Analysis (Neural
Networks).

The ROC curves and AUC in Fig. 17 values (0.87-0.92) show
strong Neural Network performance in multiclass classification,
with class 1 achieving the highest AUC (0.92). However, the

lowest AUC (0.87) for class O indicates a performance gap.

Model tuning or addressing class imbalances could improve
discrimination for class 0.
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Fig. 17. ROC Curves of Neural Networks

5) O-Learning: Fig. 18,19 and 20 shows that the model
mainly classifies energy and ETX as “Medium,” suggesting a
learning bias. For latency, some distinction between ‘“Medium”
and “High” is observed, but no “Low” classifications appear,
indicating possible limitations in detecting lower values.
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Fig. 18. Confusion Matrix of Q-learning(ETX).
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Fig. 19. Confusion Matrix of Q-learning(Latency).
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Fig. 20. Confusion Matrix of Q-learning(Consemd Energy).

E. 150 Nodes

1) Random forest: In the 150-node simulation, Fig. 21 show
the Random Forest model excels in ETX and Latency, with
predictions tightly clustered around the ideal line, reflecting
effective feature representation. However, significant scatter
in Consumed Energy predictions highlights challenges with
complex patterns. Adding granular energy features or advanced
ensemble methods could improve performance.
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Fig. 21. Actual vs Predicted values for Regression Analysis (RF).

2) Gradient boosting: Fig. 22 shows that the Gradient Boosting
model demonstrates high accuracy for ETX and Latency, with
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predictions closely aligning with the ideal line in a 150-node
network, reflecting well-represented features. However, broad
scatter in Consumed Energy predictions highlights challenges in
modeling complexities, suggesting the need for energy-focused
features or ensemble techniques.
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Fig. 22. Actual vs. Predicted values for Regression Analysis (GB).

3) Decision trees: Fig. 23 shows that the Decision Tree model
performs well for ETX and Latency, with predictions aligning
closely with the ideal line in a 150-node simulation, indicating
ease of generalization. However, it struggles with Consumed
Energy, showing broad scatter around the ideal line. Employing
ensemble methods like Random Forest could enhance energy
predictions.
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Fig. 23. Actual vs. Predicted values for Regression Analysis (DT).

4) Neural networks: Fig. 24 shows that the Neural Network
model performs well for ETX and Latency, closely aligning
with the ideal line in a 150-node network. However, its weak
performance in Consumed Energy, marked by constant predic-
tions, suggests oversimplification. Refining features, tuning
the architecture, or applying regularization could improve
sensitivity to energy variations.
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Fig. 24. Actual vs. Predicted values for Regression Analysis neural network.

5) O-Learning: Fig. 25,26 and 27 shows that the confusion
matrices indicate that the model excels at predicting the “No”
class for ETX, Latency, and Consumed Energy, effectively
identifying unaffected tasks. However, it struggles with the
“Yes” class, potentially due to class imbalance or difficulty in
capturing subtle differences. Further investigation is needed to
identify the cause and enhance performance.

Vol. 16, No. 2, 2025
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Fig. 25. Confusion Matrix of Q-learning(ETX).
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Fig. 26. Confusion Matrix of Q-learning(Latency).
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Fig. 27. Confusion Matrix of Q-learning(Consumed Energy).

Fig. 28, 29, and 30 compare ML algorithms in IoT based on
ETX and latency, and energy consumption for 50, 100, and
150 nodes. Low ETX reflects better transmission efficiency. In
50-node networks, one algorithm shows high ETX, indicating
challenges, while larger networks reveal variations, with some
optimizing retransmissions. Latency is generally low in smaller
networks, though inefficiencies appear for some algorithms.
In larger networks, certain algorithms maintain low latency,
while others increase due to overhead or longer paths. Energy
consumption stabilizes in larger networks for most algorithms,
though some struggle with scalability, highlighting differences
in efficiency.
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Fig. 28. Comparison for all simultaion 50,100,150 nodes with ML Algorithms.
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Comparison of Performance Metrics for Simulation 100
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Fig. 29. Comparison for all metrics in 50 nodes with ML Algorithms.
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Fig. 30. Comparison for all metrics in 150 nodes with ML Algorithms.

VI. DISCUSSION OF THE RESULTS
This study provides a detailed evaluation of machine learn-
ing algorithms for optimizing IoT networks using the RPL
protocol, focusing on ETX, latency, and energy consumption
in simulations of 50, 100, and 150 nodes. Tree-based mod-
els like Random Forest and Gradient Boosting consistently
demonstrated strong performance. For instance, Random Forest
achieved an ETX of 5.63656, latency of 2.63308 ms, and
energy consumption of 2.62552 J in the 50-node simulation,
excelling in balancing accuracy and efficiency. Gradient Boost-
ing performed well in 100-node simulations, with an ETX of
2.72260 and latency of 63.31554 ms, though energy predictions
require further refinement.Energy consumption remains a chal-
lenging metric across all models. Neural Networks struggled
significantly in the 150-node simulation, emphasizing the need
for advanced architectures and tailored features. Q-Learning
showed adaptability with low latency (0.68 ms) in the 150-
node simulation but at the cost of higher ETX (7.50000),
illustrating trade-offs between adaptability and transmission
efficiency.These findings highlight the strengths of Random
Forest and Gradient Boosting across multiple metrics, while
Neural Networks and Q-Learning excel in specialized scenarios.
The findings emphasize the need for algorithm selection based
on network requirements and suggest exploring hybrid models
to balance performance.While Q-Learning achieves low latency,
it has a higher ETX, leading to potential inefficiencies in
data transmission. Similarly, Neural Networks require sig-
nificant computational resources, limiting their deployment
in energy-constrained IoT environments.Incorporating real-
world constraints into simulations could further enhance the
practical applicability of these approaches, enabling more

Vol. 16, No. 2, 2025

tailored optimization strategies for diverse IoT configurations.

VII. CONCLUSION

This study investigates how machine learning algorithms can
optimize the RPL protocol in IoT networks. It focuses on three
key performance metrics:ETX, latency, and energy consumption.
By simulating networks of varying scales (50, 100, and 150
nodes), the research comprehensively evaluated the capabilities
and limitations of several algorithms, including Random Forest,
Gradient Boosting, Artificial Neural Networks (ANNSs), and Q-
Learning.The findings revealed that tree-based models, such as
Random Forest and Gradient Boosting, excel in robustness and
adaptability, showing exceptional predictive performance for
ETX and latency in small and medium-sized networks. However,
their energy consumption predictions require improvements,
such as advanced feature engineering and enhanced ensemble
techniques. Artificial Neural Networks, while capturing nonlin-
ear dependencies effectively, struggled with energy consumption
metrics in larger networks, underscoring the need for refined
architectures and expanded datasets. Conversely, Q-Learning
demonstrated remarkable adaptability, achieving significant
latency reductions in larger networks, albeit at the cost of
higher ETX, illustrating trade-offs between adaptability and
transmission efficiency.A key insight from this research is the
inherent trade-offs needed to address IoT network constraints.
No single algorithm excels across all metrics, highlighting the
necessity of hybrid approaches that combine the strengths of
multiple models. For instance, integrating tree-based models
for robustness with reinforcement learning techniques like Q-
Learning for adaptability could lead to more efficient solutions
in dynamic IoT environments. Beyond technical findings, this
study establishes a foundation for future research, incorporating
real-world constraints such as hardware limitations, dynamic
network conditions, and application-specific requirements.
Additionally, analyzing algorithm performance in real-time
scenarios can refine their practical applicability and expand
their utility.In conclusion, this work establishes a foundational
methodology for IoT network optimization. By combining
advanced simulations, machine learning models, and hybrid
frameworks, this study paves the way for a new generation of
intelligent, sustainable, and scalable [oT systems. The insights
gained provide a robust foundation for future innovations in IoT
networks, addressing challenges in performance optimization,
energy efficiency, and resource management.
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