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Abstract—During the COVID-19 pandemic, the precise 

evaluation of lung impairments using computed tomography (CT) 

scans became critical for understanding and managing the 

disease; however, specialists faced a high workload and the urgent 

need to deliver fast and accurate results. To address this, deep 

learning models offered a promising solution by automating lung 

identification and lesion localization associated with COVID-19. 

This study employs the semantic segmentation technique Mask R-

CNN, integrated with a ResNet-50 backbone, to analyze CT scans 

of COVID-19 patients. The model was trained using an annotated 

dataset, enhancing its ability to accurately segment and delineate 

the lung parenchyma in CT images. The results showed that Mask 

R-CNN achieved a Dice Similarity Coefficient (DSC) of 93.4%, 

demonstrating high concordance between the segmented areas 

and clinically relevant regions. These findings highlight the 

effectiveness of the proposed approach for precise lung tissue 

segmentation in CT scans, enabling quantitative assessments of 

lung impairments and providing valuable insights for diagnosis 

and patient monitoring. 
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I. INTRODUCTION 

The COVID-19 pandemic posed significant challenges in 
the diagnosis and management of respiratory diseases, 
particularly in the accurate assessment of lung conditions. In 
this context, medical imaging has become a fundamental tool, 
as its primary objective is to generate meaningful data to 
analyze the physiology and anatomy of various organs or areas 
of the human body. Among the most prominent modalities 
addressing these needs is simple computed tomography (CT). 
Based on X-ray emission, this technique, considered the oldest 
within medical imaging, enables non-invasive analysis of the 
internal structures of the human body with high precision and 
accuracy [1], [2], [3]. 

Medical imaging emerged as an indispensable tool to 
address these challenges. Unlike previous viral pandemics, 
where its use was more limited, imaging modalities have taken 
on a central role by enabling the rapid and accurate 
identification of lung patterns characteristic of the disease [4]. 
Furthermore, medical imaging is essential for detailed follow-
up in cases where the disease becomes complicated, allowing 
for monitoring of progression and evaluation of the response to 
clinical interventions [5]. 

X-rays were one of the tools that emerged during the 
COVID-19 pandemic due to the limitations in the sensitivity of 
PCR tests and their lack of immediate availability. Their use 
enabled early diagnoses. Meanwhile, computed tomography 

(CT), widely available in developed countries, proved to be 
highly effective in precisely detailing the condition of the lung 
parenchyma [6]. Particularly, CT has been fundamental in 
evaluating lung changes such as ground-glass opacities (GGO), 
consolidations, and pleural thickening. These features 
significantly enhance diagnostic accuracy when combined with 
RT-PCR tests [7] and also allow for monitoring the progression 
of the disease [7], [8]. 

However, the manual inspection of these images requires a 
high level of expertise, specialized human resources, and 
considerable time, which poses a significant challenge during 
high-demand situations. In this context, deep learning 
techniques, particularly convolutional neural networks (CNNs), 
have emerged as highly effective tools for automating disease 
detection through the analysis of medical images [9]. 

The main objective of this study is to segment the 
pulmonary parenchyma in COVID-19 patients using the Mask 
R-CNN technique, evaluating the performance of the ResNet50 
backbone under different learning rate hyperparameter 
configurations. Additionally, the impact of data augmentation 
on the model's accuracy is analyzed, implementing various 
augmentation techniques to optimize results. This work aims to 
provide an accurate and efficient tool to assist specialist doctors 
in identifying and assessing affected areas in lung tissue, thus 
contributing to a more precise diagnosis and better clinical care. 

This article is organized as follows: Section II - Literature 
Review, Section III - Methodology, Section IV – Results and 
Discussion, and the final Section V presents conclusions and 
future work. 

II. LITERATURE REVIEW 

The authors in study [10] used Mask R-CNN for the 
diagnosis of COVID-19 through chest X-ray images. This deep 
learning approach achieved an accuracy of 96.98%, standing 
out for its efficiency and superiority compared to other artificial 
intelligence techniques, proving to be accurate and robust in 
identifying the disease from these images. 

D. Suganya and R. Kalpana (2023) [11] employed Mask R-
CNN to classify chest CT images and differentiate between 
COVID-19 positive and negative patients. This model, 
designed to identify infection regions in the lungs, achieved a 
mean average precision (mAP) of 91.52% and a classification 
accuracy of 98.60%, making it an effective solution for the 
accurate diagnosis of COVID-19. 

S. Aparna, et al. (2021) [12], introduced a Mask R-CNN-
based model with the ResNet50 architecture to analyze dental 
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X-rays and estimate the level of filling performed on teeth. 
Using a dataset of different types of fillings, they trained the 
model, which performs pixel-level classification, improving the 
accuracy in diagnosing dental treatments. This approach 
enables machines to perform automated dental procedures by 
understanding in more detail the exact region and position of 
the treatment. 

The study by Al Masarweh and colleagues [13] proposed a 
Mask R-CNN-based method to autonomously generate 
reference data in MRI images through instance segmentation. 
Their model achieved a mean average precision (mAP) of 98% 
for locating and identifying discs, along with a 70% accuracy 
in classifying regions of interest. This approach allows 
radiologists to automate the detection of relevant areas in MRI 
images, improving efficiency and reliability in medical 
diagnoses, as well as advancing automatic medical image 
segmentation with cutting-edge neural network technologies. 

In study [14] used the ResNet-50 deep learning architecture 
to classify and detect human sperm heads, achieving an 
accuracy of 96.66%. This proposed model proved to be 
efficient in identifying healthy sperm, which are used in the 
process of intracytoplasmic sperm injection (ICSI). The 
automation of the process allows for faster and more accurate 
results, minimizing human errors and improving success rates 
in infertility treatment. 

S. Suriyavarman and A. X. A. R. Annie proposed an 
algorithm based on the combination of U-Net and Efficient-Net 
neural networks for the segmentation and classification of lung 
nodules in CT images (2023) [15]. Using semi-supervised 
learning with a feature pyramid network (FPN) and the ResNet-
50 model for feature extraction, they were able to predict 
unlabeled nodules. The U-Net technique, with its skip 
connections, allows for precise nodule localization, while 
Efficient-Net optimizes the scaling of depth, width, and 
resolution. Evaluated on the LIDC-IDRI dataset, the model 
achieved an accuracy of 91.67%, outperforming most existing 
methods and addressing issues such as high false positive rates 
and variability in longitudinal data. 

In study [16], an improved Mask R-CNN model is 
proposed, specifically tailored for multi-organ segmentation in 
the medical field. This model introduces two major 
enhancements to the original framework: a multi-scale region 
of interest (ROI) generation method within the region proposal 
network (RPN) and a pre-background classification 
subnetwork to enhance segmentation accuracy. Experimental 
results on an esophageal cancer dataset demonstrated the 
model's effectiveness, achieving accurate segmentation of 
organs such as the heart, lungs, and clinically relevant volumes. 

The study by E. Dandıl and M. S. Yıldırım (2021) [17] 
highlights the significance of computer-aided tools for 
automatic lung segmentation in diagnosing lung diseases. 
Manual segmentation by experts can introduce errors and 
inefficiencies. Their research proposed a Mask R-CNN-based 
approach, leveraging publicly available datasets like HUG-ILD 
and VESSEL12. The method demonstrated high performance, 
achieving a Dice similarity coefficient of 95.95% and a 
volumetric overlap error of 7.65% for the HUG-ILD dataset, 
and 96.80% and 6.12% for the VESSEL12 dataset. These 

results validate the effectiveness of the proposed method for 
precise lung segmentation (Dandıl & Yıldırım, 2021). 

Mask R-CNN is a deep learning model that extends Faster 
R-CNN to perform instance segmentation, classifying objects 
and generating pixel-level masks for each detected instance. It 
introduces the RoIAlign method to improve accuracy when 
processing regions of interest. Its design, which combines 
detection and segmentation, makes it ideal for applications such 
as medical computer vision and autonomous driving [18]. Fig. 
1 shows the Mask R-CNN framework for instance 
segmentation 

 

Fig. 1. The Mask R-CNN framework for instance segmentation. 

III. METHODOLOGY 

A. Database 

A total of 20 computed tomography (CT) scans from 
patients, comprising 3,520 slices, were used for the training and 
testing phases. Of these, 10 patients were diagnosed with 
Covid-19 infection pathologies, and 10 patients were diagnosed 
as healthy or showed no evidence of pulmonary disease. 

The number of CT scans used for the training phase 
included 18 patients, representing 90% of the patients, with a 
total of 3,126 slices. The number of CT scans for the testing 
phase included two patients, with a total of 394 slices per image, 
as shown in Table I. 

TABLE I. DATASET FOR TRAINING AND TESTING 

Data Set % 
Nro 

Patient 
Slides Health Covid 

Training 90 18 3126 9 9 

Test 10 2 394 1 1 

For the Testing phase, a total of eight computed tomography 
(CT) scans were used, comprising 259 chest images, as shown 
in Table II. 

TABLE II. DATASET OF HEALTHY AND COVID-19 PATIENTS 

Data Set % Nro Patient Slides 

Covid-19 75 6 167 

Healthy 25 2 92 

All CTs for the training and testing phases were obtained 
from the Zenodo repository in NIFTI format [19]. The CTs for 
the evaluation phase were obtained from the Research, 
Technology Transfer, and Software Development Center 
(CiTeSoft) at the National University of San Agustín. 
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B. Preprocessing 

The images for training, validation, and testing were 
obtained from medical files in NIFTI format. These slices were 
converted to PNG format with three channels to preserve the 
information, scaled to a size of 512 x 512 pixels, and their 
values were normalized to a range of 0 to 256. 

C. Data Augmentation 

To avoid overfitting and lack of information, four data 
augmentation techniques were applied: rotation, horizontal 
flipping, grid distortion, and elastic transformation. These 
techniques increased the dataset by 50%, reaching a total of 
1760 images distributed between training and testing data, as 
shown in Table III. 

TABLE III. DATASET WITH DATA AUGMENTATION 

Data Set +% Data Augmentation 

Training 50 1563 

Testing 50 197 

D. Mask RCNN Architecture 

1) Pre-training: In this study, a transfer learning strategy 

has been adopted by using pre-trained weights from the 

ImageNet database in the training process of Mask R-CNN. The 

ImageNet database contains a wide variety of images from 

different categories, allowing the pre-trained weights to capture 

general and meaningful visual features. Leveraging these pre-

trained weights from ImageNet provides our model with weight 

initializations that already have a deep understanding of visual 

patterns, textures, and details in images. This significantly 

accelerates and improves the training process of Mask R-CNN 

for our specific task of instance segmentation in medical images 

of chest CT scans from COVID-19 patients 

2) Learning rate: Within the Mask R-CNN architecture, 

the learning rate is an important hyperparameter that controls 

the size of the steps the SGD (Stochastic Gradient Descent) 

optimization algorithm takes to adjust the weights in the model 

during the training process. This hyperparameter determines 

how quickly the model converges to a local minimum in the 

loss function and is responsible for finding a balance between 

fast and stable model fitting. 

3) Implementation: For the implementation of the Mask R-

CNN architecture, this study relied on the implementation 

available in the 'Mask_RCNN' repository by Matterport [9]. 

This repository provides a Python implementation using 

TensorFlow, which allowed us to develop and train our instance 

segmentation model on medical images of chest CT scans from 

COVID-19 patients. 

To carry out the experiments and training of the proposed 

model, the Mask R-CNN architecture was used with an 

NVIDIA TITAN RTX graphics card with 24 GB of GDDR6 

memory. 

The Mask R-CNN parameter configuration was adapted to the 

specific characteristics of our medical CT image dataset from 

chest scans of COVID-19 patients. A total of three classes were 

defined: a) Background and the class corresponding to the areas 

of interest in the images of the lung regions, b) left, and c) right. 

For the neural network, 'resnet50' was chosen as the backbone, 

which leverages the ResNet architecture for feature extraction. 

The input image dimensions were defined, setting both the 

minimum and maximum size at 512x512 pixels to ensure 

consistency in processing. Anchor selection for the Region 

Proposal Network (RPN) was done using anchor scales of (32, 

64, 128, 256, 512) to address different object sizes in our 

images. During training, a maximum of 200 regions of interest 

(ROIs) per image and a maximum of 5 true instances for 

instance detection were established. 

For the inference phase, the maximum number of ROIs after the 

non-maximum suppression (NMS) process was set to 1000, and 

for training, it was set to 2000. Additionally, a minimum 

detection confidence threshold of 0.7 was established to ensure 

the accuracy of the predictions. To mitigate overlap, an NMS 

threshold of 0.3 was applied to filter redundant detections and 

improve the consistency of the resulting instance segmentation. 

E. Evaluation 

For each of the different pre-trained models with a Resnet50 
backbone, using different learning rates (0.001, 0.0001, 
0.00001) and different epochs, they were evaluated with the 
following metrics: a) Jaccard Index (1) and b) Dice Coefficient 
(2).  

The equations corresponding to these metrics are presented 
below. 

𝐽(𝐴, 𝐵) =
𝐷(𝐴,𝐵)

2+𝐷(𝐴,𝐵)
     (1) 

𝐷(𝐴, 𝐵) =
2.𝐽(𝐴,𝐵)

1+𝐽(𝐴,𝐵)
     (2) 

IV. RESULTS AND DISCUSSION 

Results were evaluated under two scenarios: with and 
without Data Augmentation. The best performance was 
achieved with a learning rate of 0.001. Metrics such as Jaccard 
Index and Dice Coefficient highlighted the model's 
segmentation capabilities, which are shown in Table IV. 

TABLE IV. SUMMARY OF THE BEST RESULTS 

Metric 
With 

Augmentation 

Without 

Augmentation 

Jaccard Index 0.8794 0.8901 

Dice Coefficient 0.9266 0.9340 

Pixel-level analysis showed high sensitivity (93.39%), 
specificity (99.56%), and accuracy (98.84%) with 
augmentation, underscoring the model’s reliability in 
identifying lung regions and lesions. 

A. Training with Data Augmentation 

In relation to the results obtained for the Jaccard Index 
metric, better results were achieved with a learning rate of 
0.001, with maximum and minimum values of 0.8600 and 
0.8794, respectively. Regarding the Dice Coefficient metric, 
minimum and maximum values of 0.9105 and 0.9266 were 
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recorded, as shown in Fig. 2. Table V details the results 
corresponding to each data subset used for training (Fold). 

 
Fig. 2. Learning rate with Jaccard metrics and dice coefficient with data 

augmentation technique and learning rate of 0.001. 

TABLE V. JACCARD METRICS AND DICE COEFFICIENT WITH DATA 

AUGMENTATION AND LEARNING RATE OF 0.001 

Folds Jaccard Coef. Dice 

Fold 1 0.8730 0.9215 

Fold 2 0.8794 0.9266 

Fold 3 0.8742 0.9218 

Fold 4 0.8600 0.9105 

Fold 5 0.8639 0.9142 

In the context of pixel analysis, the metrics of Accuracy, 
Sensitivity, Specificity, and Precision were evaluated. These 
metrics provide a detailed understanding of how the model 
performs in the classification and precise segmentation of 
pixels in the images. The results corresponding to this 
evaluation are presented in Fig. 3, Table VI, offering a 
comprehensive view of the model's effectiveness at the pixel 
level. 

 
Fig. 3. Learning rate with pixel-level metrics with data augmentation and 

learning rate of 0.001. 

TABLE VI. PIXEL-LEVEL METRICS WITH DATA AUGMENTATION AND 

LEARNING RATE OF 0.001 

Folds Sensitivity Specificity Accuracy Precision 

Fold 1 0.9175 0.9956 0.9879 0.9406 

Fold 2 0.9339 0.9950 0.9884 0.9357 

Fold 3 0.9298 0.9947 0.9885 0.9337 

Fold 4 0.9196 0.9946 0.9872 0.9289 

Fold 5 0.9113 0.9949 0.9877 0.9390 

B. Training without Data Augmentation 

In relation to the results obtained for the Jaccard Index 
metric, better results were achieved with a learning rate of 
0.001, with minimum and maximum values of 0.8787 and 
0.8901, respectively. Regarding the Dice Coefficient metric, 
minimum and maximum values of 0.9226 and 0.9339 were 
recorded, as shown in Fig. 4. Table VII details the results 
corresponding to each data subset used for training (Fold). 

 
Fig. 4. Learning rate without Jaccard metrics and dice coefficient with 

technique without data augmentation and learning rate of 0.001. 

TABLE VII. JACCARD METRICS AND DICE COEFFICIENT WITHOUT DATA 

AUGMENTATION AND LEARNING RATE OF 0.001 

Folds Ind. Jaccard Coef. Dice 

Fold 1 0.8839 0.9302 

Fold 2 0.8808 0.9260 

Fold 3 0.8901 0.9340 

Fold 4 0.8787 0.9226 

Fold 5 0.8901 0.9339 

In the context of pixel analysis, the metrics of Accuracy, 
Sensitivity, Specificity, and Precision were evaluated. These 
metrics provide a detailed understanding of how the model 
performs in the classification and precise segmentation of 
pixels in the images. The results corresponding to this 
evaluation are presented in Fig. 5, Table VIII, offering a 
comprehensive view of the model's effectiveness at the pixel 
level. 

 
Fig. 5. Learning rate with pixel-level metrics without data augmentation and 

learning rate of 0.001. 
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TABLE VIII. PIXEL-LEVEL METRICS WITHOUT DATA AUGMENTATION AND 

LEARNING RATE OF 0.001 

Folds Sensitivity Specificity Accuracy Precision 

Fold 1 0.8969 0.9952 0.9877 0.9005 

Fold 2 0.8936 0.9954 0.9874 0.9103 

Fold 3 0.8947 0.9953 0.9874 0.9064 

Fold 4 0.8885 0.9957 0.9872 0.9140 

Fold 5 0.8956 0.9954 0.9879 0.9110 

In Table XI and Fig. 6, the most notable results regarding 
the Jaccard Index and Dice Coefficient metrics are presented. 

TABLE IX. PIXEL-LEVEL METRICS WITHOUT DATA AUGMENTATION AND 

LEARNING RATE OF 0.001 

Learning Rate Ind. Jaccard Coef. Dice 

0.001 0.8901(3) 0.9340(3) 

0.0001 0.8777(5) 0.9234(5) 

0.00001 0.8264(5) 0.8788(4) 

 
Fig. 6. Learning rate with pixel-level metrics without data augmentation and 

learning rate of 0.001. 

Thorough tests were conducted to optimize the 
configuration of the semantic segmentation model. In order to 
explore different approaches, experiments were carried out with 
the approach a) With data augmentation and b) Without data 
augmentation, and learning rates were adjusted to 0.001, 
0.0001, and 0.00001. After a thorough analysis, the most 
promising results were obtained by combining the absence of 
Data Augmentation with a learning rate of 0.001. These 
findings highlight the importance of precisely and custom 
tailoring the hyperparameters to maximize the performance of 
our model. Table IX and Fig. 6, presents the performance 
metrics under different learning rate configurations, 
demonstrating that a rate of 0.001 yielded the highest Dice 
Coefficient and Jaccard Index values. 

One of the main limitations of this research was the need to 
work with all the computed tomography images due to the 
knowledge provided by the specialists. According to them, 
COVID-19 could manifest both in the upper and lower images, 
which complicated the analysis and reduced our detection rate, 
as the affected areas were very small and difficult to identify. 
Additionally, we faced the challenge of accurately segmenting 
the pulmonary parenchyma due to the pathologies caused by 

COVID-19 in the lungs, which added significant complexity to 
the analysis process. 

The study by Shu, Nian, Yu, and Li (2020) [16] employed 
Mask R-CNN for lung segmentation, reporting high Dice 
similarity coefficients (98.1% for the right lung and 97.6% for 
the left lung). However, the images used do not specify whether 
the lungs had any pathologies, and the tests were conducted on 
a range of CT scan slices that included complete organs as well 
as the lungs, which could influence the model’s accuracy when 
segmenting the lungs exclusively. 

In contrast, our research addresses a more complex scenario 
by working exclusively with CT scan images from patients with 
COVID-19. This approach not only ensures that the images 
include clear cases of the disease but also utilizes all slices of 
the CT scans, including those with smaller or limited affected 
lung regions. Despite these additional challenges, our model 
achieved a Dice coefficient of 93.4%, demonstrating its 
effectiveness in real clinical scenarios related to COVID-19. 

Additionally, the work by Dandıl and Yıldırım (2021) [17] 
also used Mask R-CNN but focused exclusively on lung images 
with interstitial lung diseases. This study reported Dice 
coefficients of 95.95% and 96.80% on the HUG-ILD and 
VESSEL12 datasets, respectively. However, these datasets do 
not include specific cases of COVID-19, which limits their 
direct applicability in diagnosing and managing this disease in 
clinical settings. 

In summary, our research stands out by directly addressing 
lung segmentation in images from patients with COVID-19 and 
utilizing all the available slices in the CT scans. This ensures a 
more detailed and relevant approach to the specific challenges 
posed by this disease. 

V. CONCLUSION 

This study demonstrates the effectiveness of Mask R-CNN 
with a ResNet-50 backbone for segmenting lung parenchyma 
in COVID-19 chest CT scans. Optimal performance was 
achieved with a learning rate of 0.001 and without Data 
Augmentation, achieving a Dice Similarity Coefficient (DSC) 
of 93.4%. Future work will focus on expanding the dataset, 
exploring alternative backbone architectures, and enhancing 
segmentation in heterogeneous clinical settings. 

Additionally, the use of pre-trained ImageNet weights 
significantly enhanced the model's performance. By capturing 
general visual features, these weights accelerated the training 
process and improved segmentation accuracy. This highlights 
the importance of transfer learning in specialized tasks, such as 
the segmentation of medical images from COVID-19 patients. 

When evaluating the impact of data augmentation, the study 
found that while this technique achieved a maximum DSC of 
92.7%, training without data augmentation outperformed it, 
yielding a higher DSC of 93.4%. These results suggest that, for 
this specific task, excluding data augmentation contributes to 
better segmentation performance, challenging common 
assumptions about the universal benefits of augmentation. 

Extensive experiments were conducted using a public 
dataset for training and a custom dataset from Arequipa, Peru, 
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provided by the Research, Technology Transfer, and Software 
Development Center I+D+i - CiTeSoft. The findings validated 
the adaptability of the Mask R-CNN method, demonstrating its 
effectiveness even when applied to a regional population with 
potentially different characteristics from the training data. 

This study opens new opportunities for improving and 
expanding the application of the proposed method. Future work 
will focus on experimenting with different backbone 
architectures, comparing models trained from scratch versus 
those using pre-trained weights, and determining the optimal 
number of epochs to achieve well-trained models without 
overfitting. Furthermore, testing will be extended to medical 
images of other anatomical regions to evaluate the method’s 
adaptability and robustness across diverse clinical scenarios. 
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