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Abstract—Drowsiness in drivers is a condition that can 

manifest itself at any time, representing a constant challenge for 

road safety, especially in a context where artificial intelligence 

technologies are increasingly present in driver assistance systems. 

This paper presents a comparative evaluation of convolutional 

neural network (CNN) architectures for drowsiness detection, 

focusing on the identification of signals such as eye state and 

yawning. The research was of an applied type with a descriptive 

level, comparing the performance of LeNet, DenseNet121, 

InceptionV3 and MobileNet under challenging conditions, such as 

lighting and motion variations. A non-experimental design was 

used, with two datasets: a public dataset from Kaggle that 

included images classified into two categories (yawn and no yawn) 

and another created specifically for this study, which included 

images classified into three main categories (eyes open, eyes closed 

and undetected). The results indicated that, although all 

architectures performed well in controlled conditions, MobileNet 

stood out as the most accurate and consistent in challenging 

scenarios. DenseNet121 also showed good performance, while 

LeNet was effective in eye-state detection. This study provided a 

comprehensive assessment of the capabilities and limitations of 

CNNs for applications in drowsiness monitoring systems, and 

suggested future directions for improving accuracy in more 

challenging environments. 
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I. INTRODUCTION 

Drowsiness at the wheel is a common problem that 
negatively impacts road safety worldwide. It is defined as the 
biological need for sleep, which can be caused by fatigue, sleep 
deprivation or medical conditions, affecting the driver's 
concentration and reaction time [1]. This condition poses a 
considerable danger to drivers, as it severely limits their ability 
to respond, increasing the risk of accidents, especially during 
long or night-time journeys. Moreover, it compromises not only 
the safety of the driver, but also that of passengers and other road 
users [2]. This problem is more serious in situations such as long 
working hours or lack of sleep. 

According to the World Health Organization (WHO), road 
traffic accidents are responsible for approximately 1.19 million 
deaths each year, with men being three times more likely than 
women to lose their lives in these incidents [3]. An analysis of 
208,727 passenger vehicle records involved in fatal crashes in 
the United States between 2017 and 2021 revealed that 17.6% 
of the cases were related to drowsy drivers [4]. In Spain, the 
Dirección General de Tráfico (DGT) stated that between 15% 
and 30% of vehicle accidents are directly or indirectly caused by 

drowsiness [5]. This problem is not only evident in developed 
countries, but also generates concern in Latin American 
countries such as Peru, which according to the National Institute 
of Statistics and Informatics (INEI) of Peru, 116,659 traffic 
accidents were recorded in 2016, of which 0.97% (1,131 
accidents) were attributed to driver tiredness or fatigue, with 
Lima being the most affected region with 813 accidents, 
followed by Puno with 38 and Arequipa with 34 [6]. These data 
highlight the need to implement preventive measures, especially 
in areas with high accident rates due to fatigue. 

To address this problem, recent advances in artificial 
intelligence have enabled the development of automated driver 
monitoring systems, Convolutional Neural Networks (CNNs) 
are advanced artificial intelligence models widely used in tasks 
such as image classification, segmentation, object detection and 
video processing. Such models are composed of several layers, 
such as the convolution layer, the clustering layer and the fully 
connected layer, which allow extracting essential features from 
the input data [7], these deep learning networks have gained 
recognition for their ability to process images with high 
efficiency and detect complex patterns [8], which makes them 
particularly suitable for drowsiness detection applications. 

The objective of this research project was to evaluate and 
compare different CNN architectures for drowsiness detection 
in drivers. In particular, we sought to determine which of these 
architectures offered the best performance in the identification 
of drowsiness cues, such as the state of the eyes (open, closed or 
undetected) and the presence of yawning. For the yawning state, 
images of drivers in different states were used according to the 
dataset in the Kaggle database [9], and a new dataset specific to 
the state of the eyes was constructed, which included images in 
a wide variety of situations. The training was performed with 4 
convolutional neural network architectures: LeNet [10], 
DenseNet121 [11], InceptionV3 [12], MobileNet [13]. The 
architectures were selected for their diversity, ranging from 
simple and efficient models to more advanced and specialized 
ones. 

All research has its limits, and this study is no exception. 
Although the models evaluated have demonstrated high 
performance in drowsiness detection in stable conditions, their 
effectiveness can be affected by external factors, such as abrupt 
changes in lighting and extreme variations in the driver's 
posture, which can reduce their accuracy in more challenging 
scenarios. In addition, the availability of computational 
resources was a determining factor in the training process, as the 
use of a Google Colab Pro account was practically indispensable 
for reasonable processing times. 
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The main contributions of this study consist of the 
comparative evaluation of four CNN architectures to determine 
their strengths and limitations in drowsiness detection. In 
addition, two datasets have been worked with the purpose of 
improving generalization and robustness in various driving 
conditions. Finally, real-time tests were carried out to analyze 
the practical applicability of the models in real-world scenarios. 

The remainder of this paper is organized as follows: Section 
II discusses related work on drowsiness detection using CNN 
and other artificial intelligence techniques. Section III describes 
the methodology, including details of the datasets, preprocessing 
steps, and training setup. Section IV presents the experimental 
results and performance comparisons. Section V discusses the 
findings and their implications. Finally, Section VI concludes 
the study and raises possible future directions for improving 
drowsiness detection systems. 

II. RELATED WORKS 

Recent studies have extensively explored the use of artificial 
intelligence for traffic accident prevention. For example, Ma, 
Chau, and Yap [14] focused on developing a fatigue detection 
system for nighttime driving conditions using in-depth video 
sequences, overcoming the limitations of RGB video-based 
systems in low-light environments. Their goal was to leverage 
Kinect sensor data to detect signs of fatigue such as yawning and 
posture changes. They used a Two-stream CNN architecture that 
includes a spatial stream to capture static features, such as driver 
posture, and a temporal stream to analyze changes between 
frames, using motion vectors instead of dense optical flow. The 
results of both flows were combined using an SVM classifier. 
The system achieved an accuracy of 91.57%, significantly 
outperforming systems using only RGB video in daylight 
environments. 

Zhao et al. [15] designed a CNN-based algorithm to detect 
driver fatigue by analyzing the state of the eyes and mouth using 
the Eye and Mouth CNN (EM-CNN) network. The 
methodology included face and facial point detection using 
Multitask Cascaded Convolutional Network (MTCNN) to 
extract the regions of interest (ROI) of eyes and mouth. 
Subsequently, EM-CNN classified whether the eyes and mouth 
were open or closed, and the indicators percent eye closure time 
(PERCLOS) and percent mouth opening (POM) were calculated 
to assess fatigue. The results showed an accuracy of 93.623%, 
with a sensitivity of 93.643% and a specificity of 60.882%, 
demonstrating high effectiveness in detecting fatigue in a real 
driving environment. 

Li, Gao and Suganthan [16] developed an advanced system 
for driver fatigue recognition using electroencephalography 
(EEG) signals, which reflect brain activity and exhibit high 
inter-subject variability, complicating cross-recognition tasks. 
Their goal was to improve the ability of the models to extract 
more distinguishable features from the decomposed EEG 
signals. The proposed methodology included decomposing the 
signals into components of different frequency bands using 
techniques such as discrete wavelet transform (DWT), empirical 
wavelet (EWT), empirical mode decomposition (EMD) and 
variational mode decomposition (VMD). These components 
were processed by independent CNNs with a Component-
Specific Batch Normalization (CSBN) layer for each component 

to reduce inter-individual variability. The model, a hybrid 
ensemble of CNNs, was evaluated on cross-recognition tasks, 
achieving an average accuracy of 83.48%, with the DWT-based 
model being the most effective, outperforming existing 
approaches by more than 5%. 

Chirra, Uyyala y Kolli [17] designed a system based on Deep 
CNN with the aim of detecting drowsiness in drivers based on 
the analysis of the state of the eyes. To achieve this, they used 
the Viola-Jones algorithm to detect the face and extract the eye 
region as the ROI. Subsequently, they applied a stacked CNN 
architecture including four convolution layers, each followed by 
normalization, ReLU activation and MaxPooling, which 
allowed them to extract relevant features from the images. 
Finally, a SoftMax layer classified the driver as drowsy or non-
drowsy. The model was trained with 1200 images and evaluated 
with 1150, reaching an accuracy of 96.42%. This approach 
overcame the limitations of traditional CNN methods, which 
presented difficulties in pose accuracy during regression, thus 
demonstrating high effectiveness in accurately detecting 
drowsiness in drivers. 

Flórez [18] designed a real-time drowsiness detection 
system using computer vision, using CNN to analyze visual 
features such as eye closure and yawning. The goal of his 
research was to develop an efficient model for drowsiness 
detection in drivers. He evaluated several CNN architectures, 
such as InceptionV3, VGG16 and ResNet50V2, as well as two 
custom models, DD-AI and DD-AI-G, adapted for 
implementation on an NVIDIA Jetson Nano device. The results 
obtained in simulated and real environments showed an 
accuracy of 91.48% in simulations and 86.28% in real driving 
conditions, with the DD-AI-G model standing out for its 
superior performance. 

III. METHODOLOGY 

A. Type and Level 

This research was of an applied type, as it focused on 
implementing and evaluating CNN architectures for drowsiness 
detection in drivers. It was descriptive, since it evaluated and 
compared the performance of different CNN architectures 
without developing new theories, using quantitative metrics for 
its evaluation Study design. 

B. Study Design 

This study employed a non-experimental design, since the 
independent variables were not manipulated, but observed in 
their performance under controlled conditions. Likewise, a 
cross-sectional design was used, collecting and analyzing the 
data at a specific moment in time. A quantitative approach was 
used, measuring the performance of the models through metrics 
such as accuracy, recall and F1-score. 

C. Sample 

Two datasets were used for the research. The first was a 
public dataset from the Kaggle platform, which contains images 
classified in the categories of yawning ('yawning') and non-
yawning ('no_yawning') drivers. The second dataset was created 
specifically for this research, with images classified into three 
main categories: eyes open ('open'), eyes closed ('closed') and 
images where the eyes were not detected ('no_detected'). 
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The images collected for the second dataset include a variety 
of features, such as eyes with makeup, eyes of different 
ethnicities (Caucasian, Asian, Afro-descendant and Latin 
American), with lenses (cool, warm or neutral colors) and 
without lenses, as well as different eye colors (very dark, 
medium dark, warm dark, warm light, and cool light). In 
addition, variations such as irritated eyes, aged eyes and eyes 
looking away from the eye were included. 

On the other hand, images classified as 'non-detected' 
comprise cases in which the eyes were not detected due to 
factors such as dark or reflective lenses, obstructions by hair, 
hats, caps or hands, inadequate lighting (very bright or dark), 
blurring (total or slight), or artistic make-up that confuses the 
processing. 

The inclusion criteria for both datasets were images of 
acceptable quality for neural network processing. 

The sample size includes two datasets: a public dataset from 
Kaggle, consisting of 2892 images distributed in 2083 for 
training, 519 for validation and 290 for testing; and a proprietary 
dataset, with a total of 4593 images, of which 3307 are for 
training, 825 for validation and 461 for the test set. 

D. Procedure 

This study started with data preprocessing, where the 
original dataset of the yawning state, represented in Fig. 1, was 
modified by duplicating the images by flipping them vertically 
and converting them to black and white. The conversion to black 
and white helped to improve performance on nighttime images 
by removing the color ranges present during the day and 
allowing CNNs to perform better predictions of both daytime 
and nighttime images. In addition, a green facial mesh was 
applied to the drivers' faces using the MediaPipe library and its 
FaceMesh function, which allowed the image to be cropped and 
focused exclusively on the facial region. These modifications 
were implemented after evaluating that this format offered better 
results in previous tests. 

  
Fig. 1. Images of the original yawning state dataset: yawn and no_yawn. 

General preprocessing was performed for the eye status 
dataset and the yawning status dataset as shown in Fig. 2 and 
Fig. 3. This process included normalizing the pixel values, 
scaling them from 0 to 1, and resizing the images to 224x224 
pixels. In addition, the data were organized into batches of 64 
and sorted. For eye status (“open”, “closed” and “no_detected”), 
categorical classification was used, while for yawning status 
(“yawn” and “no_yawn”), binary classification was employed. 

For eye and yawning status, approximately 70.0% of the 
images were separated for training, 20.0% for validation, and 
10.0% of the images for testing. 

   
Fig. 2. Images of the preprocessed dataset of the eye status: open, closed and 

no-detected. 

  
Fig. 3. Images of the preprocessed yawning state dataset: yawn and 

no_yawn. 

For the configuration of architectures, we used the optimizer 
Adam, using a learning rate of 0.001, and the loss function 
categorical_crossentropy for the eye state and 
binary_crossentropy for the yawning state. For evaluation, the 
accuracy metric was used to monitor performance in each epoch. 
In addition, the L2 regularization technique 
(kernel_regularizer=l2(0.01)) was applied to the fully connected 
layers and a 50% dropout layer was added to prevent over-
fitting. 

The modifications implemented in each architecture are 
illustrated in Fig. 4, Fig. 5, Fig. 6 and Fig. 7, showing the 
structure of LeNet, DenseNet121, InceptionV3 and MobileNet 
with the optimization techniques applied. 

In order to optimize the training process, the Early Stopping 
technique was applied, which ended the training if the loss in the 
validation set did not improve after five consecutive epochs. 
And in case the training was terminated, the weights 
corresponding to the best performance were restored. 

 

Fig. 4. Structure of the LeNet architecture with optimization techniques. 

 
Fig. 5. Structure of the DenseNet121 architecture with optimization 

techniques. 
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Fig. 6. Structure of the InceptionV3 architecture using optimization 

techniques. 

 
Fig. 7. Structure of the MobileNet architecture with optimization techniques. 

Next, each convolutional neural network architecture was 
trained: LeNet, DenseNet121, InceptionV3 and MobileNet. In 
the case of DenseNet121, InceptionV3 and MobileNet, pre-
trained models were used with the weights of ImageNet. 

The training was carried out on Google Colab Pro using an 
A100 GPU, which allowed processing time to be optimized. 
Without this configuration, training the heavier architectures 
would have taken 4 to 5 days, requiring continuous connection. 
The trained models were stored in .h5 and tflite formats for 
future evaluation. 

Subsequently, the trained models were stored in .h5 and.tflite 
formats to facilitate their evaluation and further use. A prototype 
was developed in Google Colab to perform the corresponding 
evaluations, which activated the camera and processed the video 
in real time. Each captured frame was preprocessed and sent to 
each trained model, allowing the driver's status to be displayed 
immediately. 

IV. RESULTS 

This section presents the results obtained from the evaluation 
of the LeNet, DenseNet121, InceptionV3 and MobileNet 
architectures in drowsiness detection. The results are structured 
in the following analyses: 

A. Training and Validation Curves 

Fig. 8 shows the accuracy and loss curves for yawning 
detection. MobileNet and InceptionV3 achieved fast 
convergence and maintained stability during training. 
DenseNet121 completed its training in fewer epochs with 
competitive performance. In contrast, LeNet exhibited greater 
variability in accuracy and difficulties in generalization. 

Fig. 9 illustrates the performance in eye state detection. 
MobileNet and DenseNet121 demonstrated rapid convergence, 
with a steep reduction in loss from the earliest epochs. 
InceptionV3, although progressively improving, showed a less 

pronounced decrease in loss. LeNet exhibited fluctuations in 
both accuracy and loss, evidencing instability in training. 

 
Fig. 8. Accuracy and loss curves during training for yawning state detection 

using LeNet, DenseNet121, InceptionV3 and MobileNet architectures. 

 
Fig. 9. Accuracy and loss curves during MobileNet, InceptionV3, 

DenseNet121 and LeNet training for the eye state. 

B. Accuracy in Validation, Training and Testing 

Fig. 10 presented the performance of the models in each 
phase of the training, validation and testing process. 
DenseNet121 and MobileNet achieved accuracies of 99.66% 
and 99.31%, respectively, in the testing phase for yawning 
detection, with minimal variations with respect to validation. In 
eye state detection, DenseNet121 achieved an accuracy of 
96.53%, while MobileNet recorded 93.28% in the test phase. 

InceptionV3 showed an accuracy of 100% in the training 
phase for eye state detection, with a reduction to 59.87% in the 
test phase. LeNet obtained an accuracy of 97.24% in yawning 
detection in the test phase, with lower values than those obtained 
by DenseNet121 and MobileNet. 

 
Fig. 10. Comparative performance of CNN architectures in the training, 

validation and testing phases for yawning and eye states. 
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C. Confusion Matrix 

Fig. 11 shows the confusion matrices of LeNet, 
DenseNet121, InceptionV3 and MobileNet in the classification 
of ‘Yawn’ and ‘No Yawn’ states. It was observed that 
DenseNet121 performed the best, with high accuracy and 
minimal error incidence. InceptionV3 and MobileNet showed 
balanced performance, with similar error rates. In contrast, 
LeNet presented greater difficulty in detecting ‘Yawn’, 
registering more false negatives compared to the other 
architectures. 

 
Fig. 11. Confusion matrices of LeNet, DenseNet121, InceptionV3 and 

MobileNet architectures in yawning state classification (Yawn and No-Yawn). 

The confusion matrices of the LeNet, DenseNet121, 
InceptionV3 and MobileNet architectures for the classification 
of eye states (‘Open’, ‘Closed’ and ‘No-Detected’) are presented 
in Fig. 12. 

 
Fig. 12. Confusion matrices for the LeNet, DenseNet121, InceptionV3 and 

MobileNet architectures in the classification of eye states (Open, Closed and 

No-Detected). 

DenseNet121 performed best, with high true positive values 
and minimal errors, with no false positives in the ‘No-Detected’ 

class. LeNet showed adequate performance, although it recorded 
false negatives in ‘Open’ and ‘Closed’. MobileNet presented a 
balance between accuracy and sensitivity, with moderate 
confusions between ‘Open’ and ‘No-Detected’. In contrast, 
InceptionV3 had the highest number of false negatives in ‘Open’ 
and ‘Closed’, reflecting a lower ability to correctly classify these 
categories. 

D. Ranking Metrics 

Table I presents the classification metrics obtained for each 
architecture in yawning state detection. DenseNet121 achieved 
an F1-Score of 1.00 in both classes, with precision of 0.99 and 
recall of 1.00 in “Yawn”. InceptionV3 and MobileNet recorded 
an F1-Score of 0.99, with balanced accuracy and recall in both 
categories. LeNet obtained an F1-Score of 0.97, with an 
accuracy of 0.99 in “Yawn” and a recall of 0.95 in the same 
class. In the yawning state. 

TABLE I.  YAWNING STATE CLASSIFICATION REPORTS 

Architecture Class Accuracy Recall F1-Score 

LeNet 

Yawn 0.99 0.95 0.97 

No Yawn 0.95 0.99 0.97 

Macro AVG 0.97 0.97 0.97 

DenseNet121 

Yawn 0.99 1 1 

No Yawn 1 0.99 1 

Macro AVG 1 1 1 

InceptionV3 

Yawn 0.99 0.99 0.99 

No Yawn 0.99 0.99 0.99 

Macro AVG 0.99 0.99 0.99 

MobileNet 

Yawn 0.99 0.99 0.99 

No Yawn 0.99 0.99 0.99 

Macro AVG 0.99 0.99 0.99 

TABLE II.  EYE CONDITION CLASSIFICATION REPORTS 

Architecture Class Accuracy Recall F1-Score 

LeNet 

Closed 0.95 0.95 0.95 

Open 0.96 0.97 0.97 

No-detected 0.95 0.93 0.94 

Macro AVG 0.95 0.95 0.95 

DenseNet121 

Closed 0.93 1 0.96 

Open 1 0.94 0.97 

No-detected 0.97 0.96 0.96 

Macro AVG 0.97 0.97 0.97 

InceptionV3 

Closed 0.98 0.4 0.57 

Open 1 0.39 0.56 

No-detected 0.46 1 0.63 

Macro AVG 0.81 0.6 0.59 

MobileNet 

Closed 1 0.9 0.95 

Open 1 0.89 0.94 

No-detected 0.83 1 0.91 

Macro AVG 0.94 0.93 0.93 
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Table II presents the ranking metrics for each architecture. 
DenseNet121 obtained the best performance with an average 
F1-Score of 0.97. MobileNet showed a balanced performance 
with an F1-Score of 0.93. LeNet showed consistent values 
across all classes with an F1-Score of 0.95. InceptionV3 
recorded the lowest performance, with a noticeable reduction in 
recall for “Closed” and “Open”. 

E. Real-Time Testing 

The prototype created at Google Colab prepared each frame 
to meet the input requirements of the architectures, such as 
image size and format. Subsequently, each model generated its 
prediction and the level of certainty expressed as a percentage. 
This level of certainty indicates the model's confidence in its 
prediction: 

 Close to 100%: High prediction confidence. 

 Near 50% or less: Low confidence, suggesting doubt or 
ambiguity in the prediction. 

The tests were carried out under real conditions, as shown in 
Fig. 13, where the models faced different situations such as 
subject movements, light variations and facial expressions. 

1) Yawning state predictions: 

a) LeNet: Its level of certainty varies between 56% and 

100%, remaining at 100% in stable conditions (with little light 

variation and minimal user movements). However, in extreme 

scenarios, such as constant user movements or environments 

with low illumination, its transparency decreases significantly, 

leading to incorrect predictions on several occasions. 

b) DenseNet121: Its accuracy level ranges between 90% 

and 100%, remaining at 99% in stable conditions. In extreme 

scenarios it maintains excellent accuracy, showing great 

robustness to environmental variations. 

c) InceptionV3: Its accuracy fluctuates between 60% and 

100%, stabilizing around 91% under normal conditions. It is the 

model with the greatest variability in its level of certainty, but 

even so it adapts well to changes in illumination and extreme 

conditions, offering reliable predictions. 

d) MobileNet: With a range of certainty between 95% 

and 100%, it remains practically 99% in optimal conditions. In 

extreme scenarios, it shows an outstanding performance, 

standing out for its accuracy and high reliability. 

2) Eye condition predictions: 

a) LeNet: Although its performance in yawn detection 

was the lowest, it surprises with decent results in eye status, 

even in low light environments. Its performance is almost 

comparable to MobileNet and even becomes better in some 

cases, showing a very solid behavior in stable conditions. It 

could be considered as the second best model for this condition. 

b) DenseNet121: In challenging environments, it shows 

greater instability, with notable fluctuations in its predictions. 

However, in standard conditions, it achieves a satisfactory 

performance, although it lags behind other more consistent 

models. 

c) InceptionV3: It shares similar characteristics with 

DenseNet121 in terms of instability in difficult scenarios. 

Although it achieves very good results in controlled 

environments, its variability also places it among the least 

reliable models in this test. 

d) MobileNet: It stands out as the most robust and 

consistent model for the eye condition, maintaining outstanding 

performance even in difficult or low-light environments. Its 

ability to adapt to adverse conditions clearly positions it as the 

best model for this condition. 

 

Fig. 13. Images of the prototype executed in real time. 

V. DISCUSSIONS 

The results obtained in this study showed that the 
DenseNet121 and MobileNet architectures significantly 
outperformed the models used in previous research, achieving 
accuracies of over 99% in yawn detection and 93% in eye 
detection. 

Unlike the model of Zhao et al [15], which used EM-CNN 
and MTC-CNN for face detection, this evaluation identified 
MobileNet and DenseNet as the best performing architectures. 
MobileNet achieved 99.31% test accuracy for yawn detection 

and 93.28% for eye classification, while DenseNet obtained 
99.66% and 96.53%, respectively. These results exceed the 
93.62% reported in their study, evidencing the stability of 
MobileNet and DenseNet in diverse scenarios. Furthermore, 
unlike PERCLOS and POM-based approaches, the landmark-
based classification enabled a more accurate segmentation of 
facial regions, optimizing the detection of fatigue-relevant facial 
states. 

The study by Chirra, Uyyala, and Kolli [17] used a stacked 
CNN together with the Viola-Jones algorithm, obtaining an 
accuracy of 96.42% in eye state detection. In the present work, 
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DenseNet121 achieved an accuracy of 96.53% without the need 
for additional face detection algorithms, demonstrating its 
ability to extract relevant features efficiently. The improved 
performance can be attributed to the preprocessing techniques 
applied, such as normalization, grayscale conversion and face 
segmentation with MediaPipe, in addition to the implementation 
of L2 regularization and dropout, which contributed to reduce 
overfitting and improve the generalization capability of the 
model. 

Also, unlike the study by Ma, Chau, and Yap [14], which 
employed a Two-stream CNN with Kinect sensors to improve 
fatigue detection in nighttime conditions, this study evaluated 
real-time CNN architectures without the need for additional 
sensors. While the video stream-based approach achieved 
91.57% accuracy, MobileNet and DenseNet121 achieved up to 
99% in yawning and eye state detection, while maintaining 
stability in the face of illumination and motion variations. These 
results suggest that optimized models can be an efficient 
alternative for drowsiness detection without requiring 
specialized hardware. 

On the other hand, in the study by Li, Gao and Suganthan 
[16] they achieved an accuracy of 83.48% when combining 
CNN with EEG signals, a methodology that, although useful, is 
more complex and less accurate than the visual feature analysis 
performed in this study. The results obtained with LeNet, 
DenseNet121 and MobileNet in both states evaluated reflect that 
facial image-based techniques are more accurate and practical 
for vehicular implementations. 

Finally, the study by Florez [18] used CNN in a real-time 
system with InceptionV3, VGG16, ResNet50V2, obtaining an 
accuracy of 91.48% in simulations and 86.28% in real driving. 
In this study, InceptionV3 showed 99.31% in test, but its real-
time certainty ranged from 60% to 100%, with a drop to 59.87% 
in eye-state detection. MobileNet and DenseNet121 were more 
stable, with 99% real-time certainty. This confirms that, 
although the models achieve high accuracy in controlled tests, 
their performance in real environments can be affected, with 
MobileNet standing out as the most robust. 

VI. CONCLUSIONS AND RECOMMENDATIONS 

In this study, different convolutional neural network 
architectures were evaluated and compared for drowsiness 
detection in drivers, focusing on two key aspects: eye state and 
yawning state. For yawning state, the architectures that topped 
the list in accuracy upon training were InceptionV3 with a 
validation accuracy of 98.84%, followed by MobileNet with 
98.46%, DenseNet121 with 97.88% and finally LeNet with 
91.33%. For eye status, InceptionV3 stood out with a validation 
accuracy of 97.94%, followed by MobileNet with 97.58%, then 
InceptionV3 with 95.52%, and finally LeNet with 90.79%. 

The results of the confusion matrices and the classification 
report clearly reflect this superior performance. LeNet, 
DenseNet121, InceptionV3 and MobileNet achieved 

outstanding classifications in the yawning and eyes state having 
very few errors with the exception of InceptionV3 which 
showed less consistent performance in the eyes state, especially 
in the 'Open' class, where a significant number of errors were 
observed. 

Finally, in real-time testing with the prototype, MobileNet 
proved to be the most robust and reliable architecture for both 
yawning and eye detection. Its outstanding accuracy remained 
consistent even under challenging conditions. LeNet, although 
it came in last place in yawning state detection, surprised by 
showing solid performance in eye state detection, obtaining 
comparable or even better results to MobileNet in some 
scenarios. DenseNet121 showed solid and consistent 
performance in yawning state detection, positioning itself as a 
reliable alternative to MobileNet. However, its performance in 
eye state detection was more unstable in challenging 
environments. For its part, InceptionV3, while achieving 
acceptable results in stable conditions, presented the greatest 
variability between architectures in both tasks. Its performance 
was less consistent in challenging environments, especially in 
eye-state detection, where it showed a higher number of errors 
compared to the other models. 

In conclusion, when comparing the architectures, MobileNet 
stood out as the best choice for its consistency and accuracy, 
even in challenging conditions such as low illumination or 
constant user movements. Although DenseNet121 and 
InceptionV3 also offered good performance in stable 
environments, MobileNet stood out for its adaptability and 
comprehensive performance. On the other hand, LeNet, 
although the simplest architecture in this study, showed 
surprisingly good performance in eye detection, despite its lack 
of optimization compared to more modern architectures. It is 
important to note that the architectures were not modified, as the 
goal was to evaluate them as they are, respecting their internal 
structure. Although it is possible to improve the architectures by 
adding layers, in this study we chose to add the same layers at 
the beginning and at the end of all the architectures, maintaining 
their original shape and respecting the design with which they 
were built. 

For future research, the integration of other types of data, 
such as heart rate or electromyographic activity, could be 
explored to improve accuracy and robustness in the detection of 
physiological states. It would be interesting to develop a 
prototype that combines these new instruments with the data 
obtained in this study, offering a more complete analysis. This 
approach could open new possibilities for more personalized 
and effective health monitoring systems. 

Finally, based on the evaluations, an application called 
'Drowse Alert' was developed using the MobileNet model, 
which obtained the best performance. The app is currently in 
closed testing on Google Play, available only to selected users. 
The link to access the application is as follows: 
https://play.google.com/store/apps/details?id=com.invoryan.dr
owse, as shown in Fig. 14. 
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Fig. 14. Screenshot of the “Drowse Alert” application in Google Play. 
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