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Abstract—This study evaluates the performance of deep
learning-based segmentation models applied to underwater im-
ages for scallop aquaculture in Sechura Bay, Peru. Four mod-
els were analyzed: SUIM-Net, YOLOv8, DETECTRON2, and
CenterMask2. These models were trained and tested using two
custom datasets: SEG_SDS_GOPRO and SEG_SDS_SF, which
represent diverse underwater scenarios, including clear and
turbid waters, varying current intensities, and sandy substrates.
The primary aim was to automate scallop identification and
segmentation to improve the efficiency and safety of aquaculture
monitoring. The evaluation showed that SUIM-Net achieved the
highest accuracy of 93% and 94% on the SEG_SDS_GOPRO
and SEG_SDS_SF datasets, respectively. CenterMask2 performed
best on the SEG_SDS_SF dataset, with an accuracy of 96.5%.
Additionally, a combined dataset was used, where YOLOvVS
achieved an accuracy of 88 %, demonstrating its robustness across
varied conditions. Beyond scallop segmentation, the models were
extended to detect six additional marine classes, achieving a max-
imum accuracy of 39.90% with YOLOVS. This research under-
scores the potential of deep learning techniques to revolutionize
aquaculture by reducing operational risks, minimizing costs, and
enhancing monitoring accuracy. The findings contribute valuable
insights into the challenges and opportunities of applying artificial
intelligence in underwater environments.

Keywords—Image segmentation; object detection; deep learn-
ing; computer vision; aquaculture; scallop segmentation; aquatic
images

I. INTRODUCTION

Scallop cultivation has been developed in Peru since the
1970s, initially on the central coast. Due to its rapid growth, it
expanded to other regions along the Peruvian coastline. By the
early 1990s, scallop farming became an important economic
activity, generating significant employment opportunities in
aquaculture [1]. Sechura Bay, located on the northern coast of
Peru (latitude: -5.742118, longitude: -80.867822) (see Fig. 1),
is one of the largest semi-enclosed bays in the Peruvian sea,
covering approximately 89 kilometers. It is bordered by Punta
Gobernador to the north and Punta Aguja to the south, with a
cultivation area of 6,752.48 hectares (Ha). The bay has depths
of less than 30 meters within 10 kilometers of the coastline.
Numerous scallop hatcheries have been established on the
seabed in this region. During the early stages of production,
scallop seeds are classified based on their valve length, which
typically ranges from 2.5 cm to 4.0 cm. They are cultivated
at a density of 1.5 bunches per square meter, where each
bunch contains 96 seeds [2]. During hatchery cultivation,
seeds that are confined or have irregular sizes are extracted
and replanted in better-suited areas. At this stage, growth and

mortality rates are also monitored to estimate harvest levels
[3]. Scallop stock assessments in hatcheries are conducted
monthly or at least once before harvesting. These assessments
involve divers manually collecting population samples using a
Im? squared frame tool. Divers carefully place the frame on the
seabed and harvest the scallops within its boundaries. On the
support boat, the collected scallops are counted and measured
using a vernier caliper and a malacometer, and the data is
recorded. This process is repeated multiple times to estimate
the total scallop stock in units and bunches [2]. However, these
manual operations pose significant risks to divers. The average
hatchery depth is 10 meters, requiring divers to spend extended
periods underwater. While safety guidelines recommend a
maximum working time of four hours per day, divers often
exceed this limit, working up to seven or eight hours. Ad-
ditionally, divers rely on inadequate compressed air systems,
which can lead to nitrogen narcosis, posing a severe health risk,
including fatal consequences [4]. To address these challenges,
the integration of advanced methodologies and technologies for
scallop production assessment is essential. Automation in data
collection and analysis can significantly reduce operational
risks, costs, and time associated with aquaculture monitoring.

This study explores the application of deep learning and
computer vision to automate scallop segmentation, aiming to
enhance accuracy, improve efficiency, and minimize risks. Two
custom datasets (SEG_SDS_GOPRO and SEG_SDS_SF) were
developed to evaluate the performance of four segmentation
models: SUIM-Net, YOLOvS8, DETECTRON2, and Center-
Mask2. Additionally, these models were extended to detect six
marine classes, expanding their applicability in aquaculture.
This research provides valuable insights into leveraging artifi-
cial intelligence for sustainable and efficient scallop farming.

This research was carried out as part of a project (Moni-
toring platform for non-extractive sampling of hydrobiological
resources through the development of a customized underwa-
ter robot with advanced deep learning and computer vision
techniques. Application case: sea floor hatchery of scallops
(argopecten purpuratus) in Sechura bay) financed by the Peru-
vian research council FONDECYT.

This work is organized into six sections. Section II intro-
duces related works, including the methodology for perform-
ing the datasets and SUIM-Net, YOLOv8, DETECTRON?2,
and CenterMask2 models; Section III describes the datasets
and methods; Section IV describes experiments and analysis;
Section V describes discussion of Results; finally, Section VI
summarizes the work.
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Fig. 1. Left panel: Situation the study setting Sechura Bay in Secura
province in Peru. Right panel: Sechura Bay in the province of Sechura,
indicating the aquaculture concession area [3].

II. RELATED WORKS

One of the most popular underwater datasets for marine
species detection and classification is F4AK [5]. This dataset
was performed using 10 cameras between 2010 and 2013
in Taiwan and has been used for multiple detection and
classification algorithms. The F4K dataset is large and contains
videos and images with complex scenes and diversity of
marine species. Another large data set is the Electronic Library
of Deep Sea Images (J-EDI) [6] which are consistuded of
videos and images of deep-sea organisms captured by remotely
operated underwater vehicles (ROVs) [7]. This images are
labeled at the image level and have been used to interconnect
convolutional neural networks - CNN for the detection of deep-
sea hydrobiological organisms. The author in [8] considers
three objectives for collecting underwater images: (1) Broad
diversity of underwater scenes, having different quality degra-
dation characteristics and a wide range of image content (2)
Big amount of data and (3) High quality of images. The author
in [9] introduces USR-248 dataset, which is a large-scale data
set of three sets of images, which were rigorously collected
during ocean explorations, field experiments and some re-
sources are publicly available online. The UFO-120 dataset
is depicted in [10] which contains more than 1500 trining
sample. These images were captured in oceanic explorations
in many different locations and kinds of water. [9] presents
the USR-248 dataset, which main characteristic is its capability
for supervised training. The author in [11] presents a survey of
deep learning techniques for performing the underwater image
classification (see Table I).

TABLE I. UNDERSEA DATASET [11]

Name Object Class  Images
Sipper Zooplankton 81 >750K
WHOI Plankton 70 >3.4M
ZooScan Zooplankton 20 3,771
ZOOVIS Zooplankton 6 >685K
IS1S Plankton 108 >42K
PlanktonSet Plankton 121 >60K
ZooLake Plankton 35 17,943
F4K Pez tropical 23 27,370
LifeCLEF14 Pez tropical 10 19,868
LifeCLEF15 Pez tropical 15 >20K
Temperate fish ~ Temperate Fish 4 619
Fish-gres Pez 8 3248
MLC Arrecife Coral 9 2055
CADDY Gestos de buzo 16 10,322

The underwater environment is one of the most challenging
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conditions for object detection using sensors. For this, sonars
and cameras are mainly used. Sonars are sensitive to geometric
structure and provide information in an environment of very
low or no visibility, but their drawback is that they can only
measure the difference in distance between objects [12]. On
the other hand, underwater images allow colors, textures and
edges to be easily detected as long as visibility conditions exist.
However, in a real environment these conditions are altered,
resulting in degradation of image quality due to wavelength-
dependent absorption and dispersion, including forward and
backward scattering. In addition, marine snow introduces noise
and increases dispersion effects, reducing visibility, contrast
and even distorting colors. Despite this, it has more potential
to detect characteristics of objects, compared to sonar sensing
(applied for scallop production assesment). But for this it is
necessary to pre-process the images to improve their quality
and extract information [6], [8]. Object detection in computer
vision can be acquired with a single camera or multiple
cameras (stereo vision). In [13] was developed algorithms
for image detection using a stereo vision camera system for
detecting objects of sea floor without previous information.
The region of interest - ROI was determined by pixel similarity
concentrations in area, color and shape. These criteria were
applied to segment and validate the image recognition algo-
rithms. For the experimental tests [13] used three underwater
datasets: Garda, Portofino and Soller; each one has its own
characteristics and challenges, which allowed the author to
evaluate it in different underwater situations, demonstrating
that the proposed algorithm is robust to changes in lighting
and turbidity of the water, however it does not consider the
challenges of superimposing objects intermingled on top of
each other.

The UFO-120 dataset [10], it addresses the problem of
simultaneous enhancement and super-resolution (SESR) for
underwater robotic vision, providing an efficient solution for
real-time applications. It also introduces the Deep SESR
model, which is a generative model based on a residual
network that can learn to restore the perceptual qualities of
the image. The proposed Deep SESR model offers perceptually
improved FC imaging and saliency prediction through a single
efficient inference. Enhanced images restore color, contrast and
sharpness at higher scales to facilitate better visual perception.
For semantic segmentation [14] proposed to improve the
encoder and decoder structures of the DeepLabv3+ network,
in order to improve the appearance of the segmenting object
and prevent its pixels from mixing with the pixels of other
classes, improving the accuracy of the segmentation of the
object boundaries and preserving feature information. To do
this, it added the unsupervised color correction - UCM method
in the encoder structure to improve the image quality, then
added two upsampling layers to the decoder structure to obtain
greater feature information using the (backbone) Xception_65.
Regarding the data set, this was self-made, some images were
obtained from public resources on the Internet and another
part was obtained from video images taken by an underwater
laboratory robot (HUBOS-2K, Hokkaido University).

Due to the absorption of light and the deeper the water,
underwater images usually acquire a greenish-blue color. To
counteract this effect [15] applies a combination of maximum
RGB method and gray tone method to achieve underwater
vision improvement. Then it proposes a method based on
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CNN for the detection and classification of objects in real
time, using the third version of You Only Look Once network
(YOLOV3), according to the characteristics of underwater
vision, two improved schemes are applied to modify the CNN
structure. The proposed YOLOvV3 framework is divided into
three parts: feature extraction, object detection, and prediction
of bounding box coordinates and object confidence. Feature
extraction is performed using the Darknet-53 network. Object
detection is performed by detecting objects at multiple scales,
and predicting bounding box coordinates and object confidence
is performed by a fully connected neural network. The database
used for the tests was obtained from a video recorded by an
underwater robot, with approximately 18000 images. In [16]
was proposed an underwater scallop recognition algorithm
using an improved version of the YOLOvS [17] neural net-
work. The authors first designed a new lightweight backbone
model to replace the original one of YOLOVS5, using group
convolution and inverse residual block, which helps improve
the accuracy and accelerate the detection speed. The proposal
used the k-means algorithm for clustering analysis of the data
set to reduce the initial prediction layer of the model and the
enhancement module was used by the adaptive dark channel
algorithm to improve the clarity of the blurred image. The data
set used was self-constructed in a laboratory environment, with
a swimming pool and a GoPro 5 camera, 2200 labeled images
were acquired. The data was increased to 4400 using dark
channel image enhancement. The experimental results indicate
that the precision rate, recall rate, F1 and mPA of the proposed
algorithm reached 90.8%. In [18] was proposed state-of-the-art
real-time object detection algorithms are trained and inferred
on underwater images of a hypothetical inshore aquaculture
operation to investigate model selection and hyper-parameters
for object detection in underwater images. The simulation
results show that 54.2% mean average precision is achieved by
YOLOX-m and 97.1 frames per second inference processing
confirmed by YOLOX-tiny.

In [19] was proposed a detection and Classification of
Subsea Objects in Forward-Looking Sonar and Electro-Optical
Sensors for ROV Autonomy The objects of interest are
MLOs(Mine Like Objects) that need to be located, identified,
and inspected by an autonomous submersible robot. SeeByte
used Deep Learning Neural Network (DNN) on both of these
sensor feeds yielding a very robust detection and classification
system.

state-of-the-art real-time object detection algorithms are
trained and inferred on underwater images of a hypothetical
inshore aquaculture operation to investigate model selection
and hyper-parameters for object detection in underwater im-
ages. The simulation results show that 54.2% mean average
precision is achieved by YOLOX-m and 97.1 frames per
second inference processing confirmed by YOLOX-tiny.

Related work is crucial to contextualize our results within
the advancement of underwater image segmentation. Previ-
ous studies have addressed segmentation in marine environ-
ments with different approaches, from CNN-based models
to more advanced architectures such as Transformer-based
vision models. In particular, works such as [10] and [11]
have demonstrated the importance of improving image quality
to optimize detection. Our study complements these efforts
by evaluating models in real-world conditions of fan shell
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farming in Sechura Bay, an environment that presents unique
challenges of visibility and environmental variability.

III. DATASETS AND METHODS

In this study, a customized dataset of scallop images was
collected from a seabed nursery in the bay of Sechura (Peru),
under various underwater environmental conditions. The Fig. 2
illustrates the methodology, which is structured in three main
stages: Image Acquisition, Image Preprocessing, and Scallop
Training and Detection.

Data Collection Labeled

G
= |
| RO

—

Output

Scallop Class

Fig. 2. Structure of the methodology used.

A. Datasets

Unlike reference datasets in underwater image segmenta-
tion, such as F4K and UFO-120, which were collected in
previous decades, our study is based on recent images captured
in Sechura Bay. Data collection was conducted in 2023 and
2024 using high-resolution cameras, which ensures that the
dataset accurately reflects current ecosystem conditions. This
update is fundamental to improve the applicability of the
models in real aquaculture monitoring scenarios, allowing for
more accurate and adaptive detection of environmental changes
(Table 1II).

TABLE II. DESCRIPTIONS OF DATASETS

DataSet name Type Description
SEG_SDS_GOPRO Training and Vali- It uses a PVC sampling
(SEGMENTATION dation structure with a GoPro
SCALLOP H9 camera for image
DATASET WITH segmentation.

GOPRO)

SEG_SDS_SF Training and Vali- It uses a steel tube struc-
(SEGMENTATION dation ture called smartframe
SCALLOP v1.0 adapted Raspberry
DATASET WITH Pi V2.1 camera include
SMARTFRAME) enclosure.

Given the limited availability of databases featuring marine
species in the reviewed state-of-the-art literature, a custom
dataset was created to guarantee the presence of scallops
in the images. This approach also facilitates pretraining the
neural network with relevant data. Table III lists the visited
locations within Sechura Bay (see Fig. 1) where scallop
images were collected. These locations span the northern,
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central, and southern regions, capturing a variety of underwater
topographies, including sandy, rocky and mixed terrains.

TABLE III. HATCHERIES WHERE SCALLOP IMAGES WERE ACQUIRED

Zone Scallop hatchery name in Sechura bay

North Chulliyache - Caballero de los Mares, boarding at the Matacaballo
DPA

Center Las Delicias, boarding at the Parachique Zonal Fishery Terminal

South Barrancos - Amigos Unidos, boarding at the Parachique Zonal Fishery
Terminal

South Sea Corp Camp, Vichayo Aquaculture Production Center (CPAV),

Vichayo Zone

Scallop images were captured manually with the support
of a professional diver and a support boat using two types of
cameras: (1) GoPro Hero 9 and (2) Raspberry Pi V2.1. The
cameras were mounted on a square frame with a 1-meter edge,
elevating them 40 cm above the seabed. Fig. 3 illustrates the
image acquisition process.

AIR COMPRESSOR

1

The diver submerges
with the frame and
underwater camera.

Search for scallops
and place the frame
over them.

3

Take photographs and
continue along the
transect.

Fig. 3. Image acquisition process.

To ensure accurate scallop identification, the collected
images were manually labeled with the assistance of a hydro-
biology specialist from the Center for Productive Innovation
and Technology Transfer (CITE) in Piura, Peru. This labeling
process was critical for creating a reliable training dataset.

Fig. 4 and 5 present the underwater environment of Sechura
Bay, revealing the composition of the seafloor and the diversity
of its hydrobiological resources. These images provide a
detailed visual representation of the natural habitat inhabited
by scallops, along with other marine species, highlighting
the biological richness captured in the dataset. Understanding
the characteristics of this ecosystem is fundamental for the
correct annotation and classification of the images, ensuring
the accuracy and reliability of the dataset used in the training
of deep learning models.

Vol. 16, No. 2, 2025
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Seaweed
(Caulerpa filiformis)
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Sea urchin (ERI) [

Fig. 5. Marine species considered in the labeling.

Additionally, Fig. 6 shows the SEG_SDS_SF dataset ac-

quired in Sechura Bay.

-

Fig. 6. Dataset SEG_SDS_SF acquired in Sechura Bay.

In Table IV, the classes with which the training is
carried out and the labels of each of them from the
SEG_SDS_GOPRO and SEG_SDS_SF dataset are observed.

TABLE IV. DATASET CLASSES AND LABELS

DataSet name Classes Labels
SEG_SDS_GOPRO Scallop 2418
Scallop Shell 165
Duck Beak Shell 163
Snail 57
Crab 9
Clam Shell 4
SEG_SDS_SF Scallop 715
Scallop Shell 42
Duck Beak Shell 683

B. Labeling Image Process

The acquired images were labeled and reviewed by the
CITE expert for validation or correction of the labeling. For
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labeling images, seven species of scallops where considered:
(1) Scallop - CAB, (2) Scallop valve - VCA, (3) Duckbill
valve - VPP, (4) Clam valve - VAL, (5) Snails - CAR, (6) Crab
- CAN, and (7) Sea urchin - ERI, Fig 7 shows each scallop
specie image. For each one a different color was assigned. The
seaweed (Caulerpa filiformis) in labeling process is considered
as part of seabeed. The images were labeled with the “labelme”
tool.

A validation table was created to document image
characteristics, including image ID, collection day, filtering
status, species present, quantity per species, and seabed type.
This table facilitated coordination with the specialist for label
verification and served as an inventory.

¥ # &
‘#oh WA

a) Original image

b) Labeled image

Fig. 7. Results of labeling image process.

C. Models

The models selected for this study were SUIM-Net,
YOLOvS, DETECTRON?2 and CenterMask?2, due to their bal-
ance between accuracy and computational efficiency in under-
water image segmentation. Also, at the time of selection, these
models represented some of the most recent and advanced
versions of their respective architectures, which guaranteed
better performance in detection and segmentation tasks.

1) SUIM-Net: The SUIM-Net is a fully convolutional se-
mantic segmentation model (FCN) proposed by [20], which
is based on an encoder-decoder architecture with skip connec-
tions between composite layers. The network employs residual
learning and optional residual skip blocks to enhance perfor-
mance. The encoder extracts features from input images, and
the decoder generates binary pixel labels per channel for each
object category. It utilizes a proprietary dataset called SUIM
(Semi-supervised Underwater Image Manipulation) which is
presented in Fig. 8. For training, it applies various image trans-
formations for data augmentation. The results obtained show
that SUIM-Net exhibits improved execution time compared
to FCN models, SegNet, UNet, VGG-based encoder-decoders,
DeepLab, and PSPNet

2) YOLOvS: YOLOVS, developed by Ultralytics, builds
upon YOLOVS with key improvements, the model is shown
in Fig. 9 where it uses a similar backbone with modifications
in the CSPLayer, now called the C2f module, to combine
high-level features and contextual information, enhancing de-
tection accuracy. YOLOVS adopts an anchor-free design with
a decoupled head, allowing separate processing of objectivity,
classification, and regression tasks for improved accuracy.
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B . dec-3 dec-2 dec-1
3120 x 256 % 3
= = =
> ™ — = = =
Output c )
enc-1 enc-2 enc-3 enc-4

Pool 1
Pool 2
Pool 3
Pool 4

ha

Input Block 2 ( Block 4 (F=512)
Fig. 8. SUIM-Net model [20].The end-to-end architecture of
SUIM-Nety ga: first four blocks of a pre-trained VGG-16 model are used
for encoding, followed by three mirrored decoder blocks and a deconv layer.

The output layer applies the sigmoid function for objectiv-
ity scores and softmax for class probabilities [21]. YOLOvS
also includes a semantic segmentation variant, YOLOvVS-Seg,
which uses CSPDarknet53 as the backbone and C2f for fea-
ture extraction. It features two segmentation heads for mask
prediction and detection heads with five modules for bounding
box prediction [22].

Backbone

convixt | 3
26,3(ke5) | ¢ !

256, 1284

L oo ;
ConvBlock  Upsample Bloc PN Head YOLO loss

Fig. 9. YOLOv8 model [23].

3) DETECTRON2: DETECTRON?2 [24] allows us to im-
plement models of different architectures. These pretrained
models in the DETECTRON2 Zoo Model have a structure
that follows the meta-architecture provided by the base code.
It is a framework that includes high-quality implementation
of state-of-the-art instance segmentation algorithms, such as
Faster R-CNN and Mask R-CNN. The architecture of the
DETECTRON?2 model in Fig. 10, consists of three main parts:
the backbone network, region proposal network (RPN), and
ROI (Region of Interest) head. Given an input image, the
backbone network extracts feature maps at various scales with
different receptive fields. The RPN detects object regions from
feature maps and various scales by default. Finally, the box
head crops the feature maps into different sizes and finds the
location of the boxes and classification labels in addition to
fully connected layers. In our tests, we used ResNet with
transformers. ResNets are convolutional neural networks that
utilize skip connections enabling a deep architecture with many
layers.

4) CenterMask2: The CenterMask2 model is an instance
segmentation approach that decomposes this task into two
main parallel subtasks [26]. The model is shown in Fig. 11,
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Fig. 10. DETECTRON2 model [25].

where first it performs a local prediction to separate instances
even under overlapping conditions. Secondly, it carries out
global prominence generation to segment instances in the
complete image, pixel by pixel. Subsequently, the outputs of
these two branches are assembled to form the final instance
mask. It utilizes four types of backbone networks such as
MobileNetV2, VoVNetV2-19, VoVNetV2-39, and ResNet-50.
It is noteworthy that the accuracy of this model surpasses that
of other instance segmentation methods.

Backbone + FPN

g g5 o
% |

=
N

Fig. 11. CenterMask2 model [26].

IV. EXPERIMENTS AND ANALYSIS

The experiments aimed to evaluate the performance of four
deep learning models—SUIM-Net, YOLOvS, DETECTRON?2,
and CenterMask2—in scallop segmentation and multi-class
detection using two custom datasets: SEG_SDS_GOPRO and
SEG_SDS_SF. Each dataset represents different underwater
conditions to assess model robustness. These models were se-
lected based on their capabilities in segmentation and detection
tasks in challenging environments. SUIM-Net was chosen for
its specialization in underwater image segmentation, particu-
larly in low-visibility conditions. YOLOvV8 was included due
to its high-speed detection and strong generalization in real-
time applications. DETECTRON?2, provides advanced segmen-
tation architectures optimized for complex object detection,
while CenterMask2 enhances instance segmentation with high
precision in intricate visual scenes.

A. Training and Validation Scallop

The four models demonstrated varying segmentation ca-
pabilities on the two datasets. SUIM-Net performed well on

P2 P3 Pa Ps | 4
£ Box Head ':class: ) “'. 4
§ {box | = RN
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SEG_SDS_GOPRO, accurately identifying scallops in chal-
lenging conditions. CenterMask2 excelled on SEG_SDS_SF,
showing strong segmentation results in clearer underwater
settings. YOLOv8 and DETECTRON?2 provided balanced per-
formance across both datasets, effectively handling scallop
detection under diverse environmental conditions.

To provide a clear understanding of their performance,
Fig. 12 presents a visual comparison of segmentation results
for a representative sample across all four models. This vi-
sualization effectively highlights each model’s strengths and
limitations in detecting scallops, offering valuable insight into
their accuracy and adaptability.

YOLOv8 CenterMask2 DETECTRON2

Input image

SUIM_Net

- "ol g
- v

Fig. 12. Comparison of the 4 trained models.

B. Training and Validation of Six Classes

Three different models, SUIM_Net, YOLOv8 and DETEC-
TRON?2, are used for the detection of six specific marine-
related classes in images. Each model employs different
segmentation methodologies and detection strategies, making
them suitable for different contexts and scenarios. These mod-
els have been trained to identify six marine-related classes:
scallop, scallop shell, duckbill shell, snail, crab, and clam
shell. Each model independently processes a set of images,
predicting and delineating instances of these classes based on
their unique capabilities and detection approach. Leveraging
their individual strengths, the models aim to provide compre-
hensive and accurate identification of target objects within the
images. The results obtained from each model are shown in
the following images, allowing a direct comparison of their
predictions. Fig. 13, 14, and 15 show the detections performed
by SUIM_Net, YOLOvS, and DETECTRON?2, respectively.

www.ijacsa.thesai.org

189 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

CAB

a) Input image VCA

Fig. 13. Prediction of 6 classes using the SUIM_Net model.

a) Input image b) Output Image

Fig. 14. Prediction of 6 classes using the YOLOv8 model.

a) Input image

b) Output Image

Fig. 15. Prediction of 6 classes using the DETECTRON2 model.

V. DISCUSSION OF RESULTS

The results obtained in the SEG_SDS_GOPRO and
SEG_SDS_SF datasets present significant variations due to
differences in environmental conditions and characteristics of
each dataset. SEG_SDS_GOPRO was captured with a GoPro
Hero 9 mounted on a PVC structure, which allowed obtaining
high-resolution images, although with possible optical distor-
tions due to water refraction. In contrast, SEG_SDS_SF used
a Raspberry Pi V2.1 camera integrated into a smartframe,
resulting in lower-resolution images and greater variability
in lighting. These differences in capture conditions directly
impact the performance of the models, as they influence the
accuracy of object segmentation and detection.

1) Results of the 2 datasets with the Scallop class: The
SUIM-Net model was applied to the SEG_SDS_GOPRO and
SEG_SDS_SF datasets for scallop segmentation, achieving
accuracies of 93% and 94%, respectively. The loss plots shown
in Fig. 16 illustrate the model’s performance during training.
In Graph (a), corresponding to the SEG_SDS_GOPRO dataset,

Vol. 16, No. 2, 2025

the loss steadily decreases across epochs, with minor fluctu-
ations, indicating consistent learning and optimization during
training. Similarly, Graph (b), for the SEG_SDS_SF dataset,
the loss drops sharply at first and then stabilizes, demonstrating
effective learning and optimization in both cases.

ssssss

ssssss

Fig. 16. Loss graphs SUIM_Net SEG_SDS_GOPRO (a) and SEG_SDS_SF
(b) datasets.

While the YOLOvS8 model was applied for the scal-
lop images collected in Sechura bay. The accuracy of the
a) SEG_SDS_GOPRO data set was 82%, and for the b)
SEG_SDS_SF data set, its The accuracy was 95% Like-
wise, training was carried out with ¢) SEG_SDS_GOPRO +
SEG_SDS_SF (Fig. 17) which obtained an accuracy of 88%.
The following images refer to the experiments with each of
the data sets.

In our research, we evaluated the performance of DE-
TECTRON2. We use different data sets: SEG_SDS_GOPRO
and SEG_SDS_SFE. Our goal is to understand how this
model performs in different environments and imaging con-
ditions. We start by evaluating the model trained on the
(a) SEG_SDS_GOPRO dataset. He The results revealed an
accuracy of 82% using DETECTRON?2. This figure represents
the model ability to correctly identify objects present in test
images. On the other hand, when evaluating the model trained
with the (b) SEG_SDS_SF data set, We see a noticeable
improvement in accuracy. We achieved 96% accuracy using
DETECTRON?2. Likewise, the evaluation was carried out with
the (c) SEG_SDS_GOPRO + SEG_SDS_SF data set, which
obtained an accuracy of 80%. It is important to note that
these results provide an initial view of the performance of our
models with DETECTRON?2.

In the following Fig. 18 you can see the loss function
graphs of the datasets, where we can see that our function
is decreasing which indicates that our model is efficient.

In Fig. 19, the performance of the CenterMask2 instance
segmentation model was evaluated on different different data
sets: SEG_SDS_GOPRO and SEG_SDS_SF. Results were
visualized using average precision (mAP50) graphs, which
represent the highest detection precision at 50%. The mAP50
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Fig. 17. Segmentation results with YOLOv8 model.
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Fig. 18. Segmentation result with DETECTRON2 model.

plots for the (a) SEG_SDS_GOPRO set showed an accuracy
score of 81% for the CenterMask2 model. On the other hand, in
the set (b) SEG_SDS_SF, CenterMask2. The model achieved
a noticeably higher accuracy of 96% based on mAP50 charts.
Finally, the data set of both datasets gave an accuracy of 83%.

TABLE V. DATASET AND PRECISION RESULTS FOR EXPERIMENTS

ScALLOP
Modelo DataSet F-Score mAP
SUIM-Net SEG_SDS_GOPRO + SEG_SDS_SF 5245%  82.04%
SEG_SDS_GOPRO 5947%  93.06%
SEG_SDS_SF 60.64%  94.05%
— SEG_SDS_GOPRO + SEG_SDS_SF_ 83.00%  88.50%
SEG_SDS_GOPRO 76.00%  82.30%
SEG_SDS_SF 91.00%  95.80%
SEG_SDS_GOPRO + SEG_SDS_SF  71.44%  80.84%
DETECTRON2 o 5™ sps_GOPRO 75.62%  82.51%
SEG_SDS_SF 85.60%  9640%
Comorvtaka _ SEG_SDS_GOPRO + SEG_SDS_SF _ 7446%  8335%
SEG_SDS_GOPRO 7215%  8123%
SEG_SDS_SF 8169 %  96.56%

2) Results of the 2 datasets with the 6 classes: The Fig. 20
shows the precision and loss metrics of the SUIM_Net model
with the SEG_SDS_GOPRO + SEG_SDS_SF dataset, which
was trained with the 6 classes in the image. You can see how
the precision increases, giving greater reliability to the model
and the loss decreases. which indicates that the model makes
more accurate predictions.

Fig.
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19. Segmentation result with CenterMask2 model.
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Fig. 20. Segmentation result with SUIM_Net model SEG_SDS_GOPRO +
SEG_SDS_SF data set.

In Fig. 21, the performance of the model was evaluated
using the Average Precision (AP) metric for six different
classes. The precision results for each class are as follows: For
the Crab class, the AP was 0.0, while for the Snail class it was
3.06%. The Scallop class demonstrated significantly higher
accuracy, with an AP of 60.22%. Likewise, the Clam Shell
class obtained an AP of 0.0, while for the Scallop Shell class it
was 26.26% and for the Duck Beak Shell class it was 52.45%.
These AP values provide a measure of the model’s accuracy
in detecting objects for each specific class, with higher values
indicative of better detection.

AP
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Fig. 21. Segmentation result with DETECTRON2 model SEG_SDS_GOPRO
+ SEG_SDS_SF data set.

In Fig. 22, the performance of the model was evaluated
using the mean precision (mAP) metric for six different
classes. The precision results for each class are as follows:
For the Crab class, the mAP was 0.0, while for the Snail class
it was 1.93%. The Scallop class demonstrated significantly
higher accuracy, with a mAP of 88.50%. Likewise, the Clam
Shell class obtained a mAP of 0.0, while for the Scallop Shell
class it was 45.50% and for the Duck Beak Shell class it was
86.40%. These mAP values provide a measure of the model’s
accuracy in instance segmentation for each specific class.
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Fig. 22. Segmentation result with YOLOv8 model SEG_SDS_GOPRO +
SEG_SDS_SF data set.

TABLE VI. DATASET AND PRECISION RESULTS FOR EXPERIMENTS 6

CLASSES
Modelo DataSet F-Score mAP
SUIM-Net SEG_SDS_GOPRO + SEG_SDS_SF  38.02%  35.23%
YOLOvVS SEG_SDS_GOPRO + SEG_SDS_SF  40.00%  39.90%
DETECTRON2  SEG_SDS_GOPRO + SEG_SDS_SF  37.01%  36.58%

The results obtained in our experiments reflect a high
level of accuracy in the segmentation of scallops and other
elements of the underwater environment. Rather than just
referencing previous studies, we highlight that SUIM-Net
achieved 94% accuracy on SEG_SDS_SF, while CenterMask2
reached 96.5%, which validates the effectiveness of our pro-
posal. Compared to other works in underwater segmentation,
our models demonstrated better adaptation to low visibility
conditions and lighting variations, highlighting the importance
of the collected dataset and the architecture of the selected
models. Detailed metrics can be found in Tables V and VI.

VI. CONCLUSIONS

The SEG_SDS_GOPRO and SEG_SDS_SF datasets were
designed to address the challenges of scallop segmentation in
diverse underwater environments. SEG_SDS_GOPRO repre-
sents more complex conditions, including turbid waters and
heterogeneous seabeds, while SEG_SDS_SF captures clearer
and more structured environments. The combination of both
datasets enhances model robustness by providing a balance
between variability and specificity. However, the use of dif-
ferent camera devices (GoPro Hero 9 vs. Raspberry Pi V2.1)
introduces variability in image quality, lighting conditions, and
resolution, which may have impacted the model’s performance.

The application of deep learning-based segmentation mod-
els demonstrated strong performance, highlighting their poten-
tial for automating aquaculture monitoring. Among the tested
models, SUIM-Net achieved the highest accuracy 93% in the
challenging SEG_SDS_GOPRO dataset, while CenterMask2
excelled 96.5% in the structured SEG_SDS_SF dataset, show-
casing their adaptability to different underwater conditions.
These results emphasize the importance of dataset-specific
model selection for underwater segmentation tasks.
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In addition to scallop segmentation, the models were
extended to detect six additional marine classes, expanding
their applicability. YOLOv8 achieved the highest accuracy
39.90%, followed closely by DETECTRON2 36.58%, while
SUIM-Net had the lowest performance 35.23%. These results
suggest that YOLO-based architectures, originally designed for
object detection, can be effective alternatives for underwater
segmentation tasks.

A key limitation was the small dataset size, constrained
by logistical challenges in marine data collection and man-
ual annotation times. Future research should integrate semi-
automated labeling, data augmentation, and synthetic data
generation to improve scalability.

Additionally, while this study focuses on dataset collection
and segmentation performance, a more in-depth analysis of
underwater image characteristics is necessary. Factors such as
image noise, light distortions, and water turbidity can have
a significant impact on model robustness and segmentation
accuracy.

This research demonstrates the potential of deep learning
models for real-time underwater aquaculture monitoring, em-
phasizing the importance of dataset diversity, environmental
adaptability, and model selection. Further improvements in
dataset size, validation methods, and robustness analysis in
challenging underwater conditions will be crucial for develop-
ing more reliable Al-driven solutions for sustainable aquacul-
ture.
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