
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

Light-Weight Federated Transfer Learning Approach
to Malware Detection on Computational Edges

Sakshi Mittal1, Prateek Rajvanshi2, Riaz Ul Amin3
Independent Researcher USA1,2

University of Okara3

Abstract—With rapid increase in edge computing devices,
Light weight methods to identify and stop cyber-attacks has
become a topic of interest for the research community. Fast
proliferation of smart devices and customer’s concerns regarding
the data security and privacy has necessitated new methods
to counter cyber attacks. This work presents a unique light
weight transfer learning method to leverage malware detection
in federated mode. Existing systems seems insufficient in terms
of providing cyber security in resource constrained environment.
Fast IoT device deployment raises a serious threat from malware
attacks, which calls for more efficient, real-time detection systems.
Using a transfer learning model over federated architecture (with
federated learning support), the research suggests to counter the
cyber risks and achieve efficiency in detection of malware in
particular. Using a real-world publicly accessible IoT network
dataset, the study assessed the performance of the model using
Aposemat IoT-23 dataset. Extensive testing shows that with train-
ing accuracy approaching around 98% and validation accuracy
reaching 0.97.6% with 10 epoch, the proposed model achieves
great detection accuracy of over 98%. These findings show how
well the model detects Malware threats while keeping reasonable
processing times—critical for IoT devices with limited resources.

Keywords—Malware detection; transfer learning; light weight
transfer learning; federated learning

I. INTRODUCTION

The digital era has transformed convenience and efficiency
by changing the way people, companies, and governments run.
But this change has also brought major weaknesses, especially
in relation to cyber-security. The malware attack is among
the urgent problems in this field. These increasingly complex
and difficult to stop attacks aiming at making online services
inaccessible by flooding them with an abundance of internet
traffic have grown advanced detection and prevention systems
are more and more needed as the frequency and intensity
of malware attacks keep rising. In this context, polymorphic
refers to a malware’s ability to continually change and adapt
its features to avoid detection. Polymorphic malware pairs
a mutation engine with self-propagating code to continually
change its “appearance”, and it uses encryption (or other
methods) to hide its code.

Emerging as a potential solution to these problems is
applied Artificial Intelligence(AI), that may have various
forms. Transfer Learning is one such sophisticated approach to
counter a problem with applied AI with several layers. Transfer
learning supports knowledge gained from training a model on
one task to be applied to a different but related task. This
approach allows models to leverage pre-existing knowledge,
significantly reducing the time, resources, and amount of

labeled data required for training. Its main components include
pre-trained Model: The process starts with a model that has
been trained on a large dataset for a specific task. Knowledge
Transfer: Relevant parts of the pre-trained model are applied to
a new, similar problem and Fine-tuning where the transferred
model is then adapted or fine-tuned for the new task, often with
a smaller dataset. These components are shown in Fig. 1 where
weights from a trained model are forwarded to another model
at convolution layer which further fine-tunes the weights for
further process in fully connected layer and finally to attain
output at output layer.

Fig. 1. Transfer learning architecture.

Fig. 2. Federated learning architecture.

There are several models and approaches of machine
learning; however, careful action is required to decide which
specific model or approach to use, given that every approach
and model has different computational cost and contextual

www.ijacsa.thesai.org 12 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

parametric dependence that may affect the performance of
the solution. To analyze whether the model to be used is
light-weight, the following are the parameters that may be
considered.

• Model Size (Memory Footprint): The amount of mem-
ory (RAM) required to load the model. Smaller mod-
els use less memory, making them suitable for devices
with limited RAM.

• Number of parameters: The total number of trainable
parameters in the model.

• Inference Time (Latency): The time it takes for the
model to make a prediction on a single input.

• Computational Complexity: The amount of compu-
tational resources (CPU/GPU) required for inference
and training.

• Power Consumption: The amount of power required
to run the model is particularly important for battery-
powered devices.

• Model Architecture: Simpler architectures are gener-
ally lighter.

• Model Accuracy vs. Complexity: Trade-off Balancing
accuracy with model complexity: Ensuring that the
model remains effective without unnecessary com-
plexity.

• Storage Requirements: The disk space required to
store the model. Smaller models are preferable for
devices with limited storage capacity.

• Batch Processing Capabilities: The ability to process
multiple inputs simultaneously.

• Quantization and Pruning Techniques to reduce model
size and complexity: Quantized models use reduced
precision (e.g., 8-bit integers) instead of 32-bit floats.

• Model Optimization Techniques: Use of optimized
libraries and frameworks

• Deployment Environment Constraints: Specific con-
straints of the target deployment environment (e.g.,
mobile devices, IoT devices).

• Training Time: The duration required to train the
model. Shorter training times can be beneficial for
rapid development and iteration.

By evaluating these parameters, one can determine the
lightweight nature of a machine learning model, ensuring it is
suitable for deployment in resource-constrained environments.
Given that we are experimenting on edges where the key
requirement is quick response and accuracy so in this research,
we have used inference and training time for our comparisons.

A. Research Objectives

1) Develop a lightweight and resource-efficient transfer
learning model using MobileNetv2 that operates ef-
fectively on edge devices.

2) Achieve high malware detection accuracy by lever-
aging diverse local datasets Dk distributed across
clients.

B. Assumptions

1) Clients k have non-IID (non-identically distributed)
datasets, reflecting real-world variability in malware
characteristics across devices or regions.

2) The model is designed to handle imbalanced datasets,
where benign samples may significantly outnumber
malware samples.

3) Clients participate asynchronously in federated train-
ing due to intermittent availability.

This paper extends our work presented in [1] and [2] where
we used hybrid approach (GRU with CNN) to Malware detec-
tion and classification in lightweight settings, however requires
better accuracy particularly on edges with quick response time.
This problem definition provides the foundation for designing
a federated malware detection system using MobileNetv2,
focusing on lightweight operations, privacy preservation, and
scalability.

The remainder of the paper is organized as follows. Section
II reviews the related work in cyber threats (in particular
Malware) detection highlighting the limitations of existing
methods. Section III presents details the methodology, in-
cluding model architecture, mathematical representation of
the model and algorithmic details, performance metric. This
Section also presents the experimental setup and discuss the
dataset used for evaluation. Section V provides a thorough
analysis of the results, including comparisons with other state-
of-the-art models. Finally, Section VI concludes the paper with
insights and suggestions for future research.

II. LITERATURE REVIEW

There has been several efforts made to improve the ac-
curacy of malware detection and classification. The authors
in research [3] illustrate the utilization of transfer learning in
malware detection through the fine-tuning of pre-trained mod-
els, attaining a high accuracy of 95% with diminished training
duration; however, the study does not offer a detailed exam-
ination of lightweight malware detection employing transfer
learning. The research highlights the efficacy of Convolutional
Neural Networks (CNNs) in classifying malware across var-
ious datasets, demonstrating the possibility for efficient and
resilient malware detection techniques, pertinent to lightweight
methodologies in the domain. The research study[4] examines
the use of transfer learning methodologies in malware analysis,
highlighting the necessity for novel detection strategies to
address emerging threats. The study emphasizes the applica-
tion of the Virustotal API to improve detection capabilities,
potentially pertinent to lightweight solutions, however it does
not specifically examine the current literature on this particular
subject.

The authors of [5] underscore the necessity for effective
zero-day malware detection via transfer learning methodolo-
gies, employing models such as AlexNet [6], VGG16 [7],
VGG19 [7], GoogLeNet [8], and ResNet [9]. The research
centers on transforming malware binaries into grayscale im-
ages for classification, with the objectives of minimizing bias,
conserving training time, and improving malware classification
efficacy. The literature review highlights methods of static
and dynamic analysis for IoT malware detection [10]. In the
Malimg dataset, findings indicate that the proposed lightweight

www.ijacsa.thesai.org 13 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

model, LMDNet, attains an accuracy exceeding 93.07% and
a 23.68% enhancement in recognition speed compared to
traditional methods. The lightweight CNN with LSTM for
malware detection, as shown in this study, achieved an F1-
score of 0.8925 and an accuracy of 91.8% on the Malimg
dataset, surpassing prior models by 12.8% in accuracy and
14% in F1-score. The literature review emphasizes methods of
static and dynamic analysis for the detection of IoT malware.
In the Malimg dataset, findings indicate that the proposed
lightweight model, LMDNet, attains an accuracy of 94.07%
and a 23.68% enhancement in recognition speed compared to
traditional methods. This study presents a lightweight CNN
integrated with LSTM for malware identification, achieving
an accuracy of 87.8% and an F1-score of 0.90 on the Malimg
dataset, hence exceeding prior models by 12.8% in accuracy
and 14% in F1-score [11].

Another study introduces a lightweight machine learning
technique for virus identification, necessitating 5.7 microsec-
onds to analyze files with an accuracy exceeding 90.8%. It
demonstrates the capability to identify 15 malware variants
with a model trained exclusively on a single subtype [12]. A
thorough literature review of lightweight Intrusion Detection
Systems (IDSs) for Internet of Things networks, emphasizing
contemporary Machine Learning and Deep Learning method-
ologies, is provided in [13]. This study focuses on filter-based
feature engineering and the frequency of DoS attack detection,
analyzing 57 papers. The document does not explicitly provide
a literature review on lightweight malware detection via trans-
fer learning. It examines the implementation of transfer learn-
ing techniques for malware classification, emphasizing models
such as AlexNet, VGG16, VGG19, GoogLeNet, and ResNet.
The research highlights the transformation of malware binaries
into grayscale images for classification, with the objective
of improving detection efficiency and minimizing training
duration, perhaps aiding in the development of streamlined
detection methods within the wider scope of malware clas-
sification. The paper does not specifically address lightweight
malware detection using transfer learning. However, it presents
a systematic literature review of lightweight Intrusion De-
tection Systems (IDSs) leveraging Machine Learning (ML)
and Deep Learning (DL) techniques in IoT networks. It
highlights the importance of feature engineering, with filter-
based techniques being the most effective, and discusses the
prevalent detection of DoS attacks. For a focused review
on transfer learning in lightweight malware detection, further
literature would be required [13]. The study of the literature
emphasizes several approaches of malware detection: static,
dynamic, and machine learning ones. Appropriate for limited
devices, results demonstrate MALITE-MN and MALITE-HRF
exceed state-of- the-art techniques in accuracy while greatly
lowering memory and computational overhead.

The study [14] of the literature emphasizes the need of
lightweight artificial intelligence models as well as IoT secu-
rity difficulties. Simple deep learning models with minimum
parameters obtained up to 87.45% accuracy, outperforming
complicated models while keeping reduced processing costs
for malware detection, according to results [15]. Using a
limited set of software criteria for classification, DroidMalVet
[16] offers an Android malware detection lightweight solution.
With F-Scores of 84.4% on Drebin and AMD datasets re-
spectively, it shows great accuracy in identifying tiny malware

families. Emphasizing Graph Representation Learning (GRL)
methods [17], especially Graph Neural Networks (GNNs),
which attain competitive results in learning robust embeddings
from malware represented as Function Call Graphs and Control
Flow Graphs, the paper presents a literature review on malware
detection.

The study [18] introduces a lightweight system for de-
tecting Android malware that employs attention temporal net-
works, attaining an accuracy of 93.69%. It underscores the
constraints of conventional static and dynamic analysis, accen-
tuating the efficacy of Dalvik opcode sequences and sophisti-
cated deep-learning methodologies for reliable identification.
The research [19] introduces a streamlined neural network
model for malware detection on Android devices, attaining
an F1 score of 0.77 and a precision of 0.9. It underscores the
significance of utilizing manifest-related features and tackles
the issue of machine learning model obsolescence.

III. METHODOLOGY

A. Dataset and Pre-processing

We used the Aposemat IoT-23 [20] dataset which is a
curated and labeled dataset developed for Cyber Security
research in Internet of Things (IoT) environments. The dataset
provides realistic network traffic data, including both malicious
and benign activities. Since the dataset IoT-23 is fully anno-
tated, distinguishing between malicious and benign traffic, this
enables to train and evaluate supervised and semi-supervised
machine learning models. The data is labeled for Benign and
malicious traffic. To prepare dataset we converted malware
binaries into image representations: Convert binaries to grey-
scale or color images, enabling CNN-based detection. In
addition, we managed to keep behavioral logs recorded while
monitoring API calls, registry changes, or network activities
for sequence-based detection. The static features bytecode n-
grams, opcodes, or PE header information are also recorded.

This section presents system model architecture that inte-
grates transfer learning model (MobilNetV2) [21] in federated
learning architecture. Given the data is preprocessed and
contributes to further process that divides the functionality
of the system into two major parts. One the Global setup
that is part of the system running over server module. In
our scenario, we programmed our server in Flask , where the
core functionality of the server includes aggregation of the
updates from multiple client and pushing the updated to the
local clients so that the local model can be synchronized and
updated with global server.

Transfer Learning and Federated Learning as shown in Fig.
1 and Fig. 2 are two techniques employed in malware iden-
tification. Transfer Learning employs pre-trained models for
feature extraction or fine-tuning, thereby minimizing training
duration and computational resources. It is widely been used
for various classification purposes, such as image classification
[22], federated Learning facilitates dispersed training across
numerous devices without the exchange of sensitive malware
data, consolidating knowledge from various sources while
preserving privacy. Both approaches alleviate the pressure on
local devices and can be implemented on resource-constrained
devices.

www.ijacsa.thesai.org 14 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

The pre-trained model utilizes a compact architecture such
as MobileNet or EfficientNet, refining only the final layers,
while the Federated Learning process encompasses local train-
ing on devices, parameter updates, and the redistribution of the
revised model to clients.

The federated approach support learning at multiple lo-
cations with different clients and sharing the updates with
server who then can aggregate and such all the clients. The
computational cost at the client may be reduced if the federated
learning system is designed with care. The client layer is
responsible for local training based on the local data available
to each client as shown in Fig. 2. We used one client
on Raspberri-5 with 8GB RAM which is resource constraint
device. Due to limited amount of memory, we designed the
local training in the form of short batches. Initially started with
32 batch size, after system crashed we managed it to be in the
batch size of 16. Federated server publishes it address at ngrok
which is a secure ingress platform tunnel. Client(Raspberri
PI5). On each client we run MobileNetV2 as transfer learning
model that gets connected to sever through this tunnel as shown
in Fig. 3. The overall results are presented in the Results and
Discussion section of this paper.

B. Performance Metrics

Below are the mathematical formulae for the evaluation
metrics used to assess the performance of a classification
model:

1) Accuracy: The accuracy measures the proportion of
correctly predicted instances to the total number of instances:

Accuracy =
TP + TN

TP + TN + FP + FN

2) Precision: Precision, also known as Positive Predictive
Value, calculates the proportion of true positive predictions
among all positive predictions:

Precision =
TP

TP + FP

3) Recall: Recall, also known as Sensitivity or True Posi-
tive Rate, measures the proportion of actual positives that are
correctly identified:

Recall =
TP

TP + FN

4) F1-Score: The F1-score is the harmonic mean of preci-
sion and recall, providing a single measure that balances both
metrics:

F1-Score = 2 · Precision · Recall
Precision + Recall

Notation:

• TP: True Positives

• TN: True Negatives

• FP: False Positives

• FN: False Negatives

C. Mathematical Model

1) Problem Description: The goal is to detect malware
from distributed datasets D =

⋃K
k=1 Dk, where K represents

the number of participating clients. Each client k has its local
dataset:

Dk = {(xi, yi)}nk
i=1,

where:

• xi: Input sample representing features relevant to
malware detection (e.g. binary sequences, network
flows).

• yi ∈ {0, 1}: Label indicating whether the sample xi

is benign (yi = 0) or malicious (yi = 1).

• nk: Number of samples on client k.

The global objective is to train a malware detection model
fθ(x), parameterized by θ, that minimizes the overall loss
across all clients:

min
θ

1

N

K∑
k=1

nk∑
i=1

L(fθ(xi), yi),

where N =
∑K

k=1 nk is the total number of samples and
L is the loss function (e.g. cross-entropy loss).

2) Transfer Learning Component: The model fθ(x) is
based on MobileNetv2, consisting of:

• **Base Network** fbase(x; θbase): Pre-trained Mo-
bileNetv2 layers (frozen during training) that extract
high-level features.

• **Classification Head** fhead(x; θhead): A trainable
dense layer(s) for malware classification.

The combined model is defined as:

fθ(x) = fhead(fbase(x; θbase); θhead),

where θ = {θbase, θhead} and θbase remains fixed during
training.

3) Federated Learning Component: The federated training
process consists of the following steps:

(a) Local Model Training: Each client k initializes its local
model fθk(x) with the global model parameters θt received
from the central server at communication round t. The local
model is trained on Dk to minimize the local loss:

θt+1
k = argmin

θ

1

nk

nk∑
i=1

L(fθ(xi), yi).

www.ijacsa.thesai.org 15 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

Fig. 3. The Workflow of model architecture.

(b) Model Update Aggregation: The central server aggre-
gates the updates from all clients using Federated Averaging
(FedAvg):

θt+1 =

K∑
k=1

nk

N
θt+1
k .

(c) Global Model Distribution: The updated global model
parameters θt+1 are sent back to all clients for the next
communication round. This mathematical model outlines the
integration of transfer learning using MobileNetv2 with feder-
ated learning for malware detection.

Algorithm 1 Lightweight Transfer Learning Model (Mo-
bileNetv2) in Federated Mode for Malware Detection

Require: • Pre-trained MobileNetv2 as the base model.
• Local datasets (Clients Data) distributed across

clients.
• Rounds: Number of communication rounds.
• Epochs: Local training epochs.
• Learning Rate: Optimizer learning rate.

Ensure: Optimized global model for malware detection.
1: Initialize:
2: Load MobileNetv2 with frozen base layers and a trainable

classification head.
3: Distribute the global model to all clients.
4: for each round r = 1 to Rounds do
5: Server: Broadcast current global model to all clients.
6: for each client i in parallel do
7: Fine-tune the model on local data for Epochs.
8: Send updated weights ∆Wi to the server.
9: end for

10: Server: Aggregate weights using Federated Averaging:

W
(r+1)
global =

1

N

N∑
i=1

∆Wi

11: Update global model parameters.
12: end for
13: Deploy: Distribute the final global model to all clients.

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION

A. Hyper-parameter Tuning and Impact

The following hyper-parameters in Table I were tuned
to optimize the performance of the Transfer Learning (Mo-
bileNetV2) in Federated Model:

TABLE I. HYPERPARAMETERS FOR THE MODEL

Hyperparameter Value
Learning Rate 3 × 10−5

Batch Size 16
Max Sequence Length 512 tokens

Epochs 5
Early Stopping Patience = 2 epochs
Dropout Rate 0.2

0.1
Optimizer AdamW

Weight Decay 0.01
Warmup Steps 500

Gradient Accumulation Steps 4
Learning Rate Scheduler Linear with Warmup

Maximum Gradient Norm (Clipping) 1.0
Hidden Size 768

The learning rate was set to 3 × 10−5, providing a slow
adaptation to the data and preventing overshooting the optimal
weights during fine-tuning. A batch size of 16 was chosen to
balance memory usage and training efficiency. The model was
trained for a maximum of five epochs, with early stopping
activated if validation performance did not improve for two
consecutive epochs.

V. RESULTS AND DISCUSSION

The results of the model training demonstrate significant
improvements across multiple metrics over between 5 to 10
epochs. It can be seen that, in epoch 1, the training loss
was recorded over 0.372600, with a validation loss of 0.35,
yielding an accuracy of 0.94537. As training progressed to
epoch 2, the training loss decreased substantially to 0.32900,
while the validation loss improved to 0.305888. These changes
corresponded to an increase in accuracy to 0.942 and a rise in
the F1 score to 0.9418, indicating that the model was beginning
to generalize well to unseen data. Continuing to epoch 3, the
training loss further decreased to 0.27000, and the validation
loss dropped to 0.25100. The model’s accuracy improved to
0.94200, along with an F1 score of 0.95000, highlighting its
effectiveness in handling the classification task. In epoch 4, the

www.ijacsa.thesai.org 16 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

training loss was recorded at 0.23000, with a corresponding
validation loss of 0.2000. These results are shown in Fig. 4

Fig. 4. Accuracy, precision, recall and F1 score over epoch.

The accuracy increased to 0.954500, and the F1 score
further improved to 0.95500, reinforcing the model’s capability
to learn and generalize from the training dataset. By the final
epoch, epoch 5, the model achieved a training loss of 0.175000
and a validation loss of 0.15000, with an impressive accuracy
of 0.95900. The F1 score reached 0.947500, indicating a strong
balance between precision and recall. Precision and recall
values also showed positive trends, with precision at 0.945000
and recall at 0.95000 by the end of training. Similarly, it is
evident that from epoch 5 to epoch 10, this trend of reduction
in validation and testing loss and enhancement in accuracies
remains unchanged showing significance of the model.

Fig. 5. ROC Curve.

Fig. 6. ROC Curve.

These results collectively illustrate that the model has been
effectively optimized for both analysis and classification tasks,
demonstrating low loss values and high accuracy metrics. The

consistent performance improvements across epochs suggest
that the model is well-tuned, potentially indicating a successful
architecture and training strategy that could be applicable in
similar domains.

Fig. 7. Training and testing loss.

The model’s training and validation losses are illustrated in
Fig. 7, which depicts the losses over 10 epochs. The training
loss, represented by the blue line, shows a consistent decline,
starting from a higher value and decreasing steadily as the
model learns from the training data. This reduction in training
loss indicates effective learning.

Similarly, the validation loss, shown by the orange line,
also decreases, suggesting that the model is generalizing well
to unseen data. The convergence of both training and validation
losses toward lower values without significant divergence indi-
cates that the model is well-tuned and is optimizing its param-
eters effectively throughout the training process. Additionally,
the model’s classification performance is further evaluated
through the confusion matrix presented in Fig. 6. This matrix
illustrates the model’s predictions across two classes: Malware
and Benign. It can be seen out of 245 benign and 240 malware
affected labels were correctly classified. The model reveals
potential areas for improvement, particularly in enhancing the
model’s ability to identify among multi-class scenario. Overall,
while the model demonstrates effective learning, the insights
gained from the confusion matrix highlight the need for further
refinement to improve classification performance across all
categories. ROC Curve for this evaluation is shown in Fig. 5.

The training loss demonstrated a consistent decline, re-
ducing from 0.35 in the first epoch to 0.05000 in the 10
epoch. This steady decrease indicates that the model effectively
learned from the training data, suggesting successful opti-
mization of the underlying architecture. Model performance
evaluation is shown in Table II and comprehensive comparison
of evaluation of our model is presented in Table III. The results
show that MobileNetV2-FL Hybrid outperforms in terms of
accuracy, precision, recall and F-1 score. Its training time is
slightly higher but once the model gets trained, its inference
takes less amount of time. in summary, the system backed by
transfer learning in federated mode is well capable to learn
and respond to malware detection scenario on edge devices.

VI. CONCLUSION

The rapid proliferation of smart devices and customer
concerns regarding data security and privacy have required the

www.ijacsa.thesai.org 17 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

TABLE II. MODEL PERFORMANCE METRICS ACROSS TRAINING EPOCHS

Epoch Training Loss Validation Loss Accuracy F1 Score Precision Recall
1 0.372600 0.352754 0.940000 0.939500 0.940500 0.941000
2 0.349500 0.305888 0.942500 0.941800 0.943000 0.942500
3 0.275000 0.260000 0.945000 0.944500 0.945200 0.944800
4 0.230000 0.218000 0.947500 0.947000 0.948000 0.947500
5 0.185000 0.155000 0.950000 0.949500 0.950000 0.949800
6 0.140500 0.112000 0.952500 0.952000 0.952500 0.952000
7 0.152000 0.100200 0.955000 0.954500 0.955000 0.954500
8 0.117500 0.078000 0.960000 0.959500 0.960000 0.959800
9 0.10000 0.056000 0.965000 0.964500 0.965000 0.964800
10 0.022500 0.053000 0.968000 0.967500 0.968000 0.967800

TABLE III. COMPARISON OF EVALUATION METRICS FOR VARIOUS MODELS

Model Accuracy Precision Recall F1 Score Training Time Inference Time
MobileNetV1[23] 95.20% 94.50% 94.6.00% 94.10% 1.5 hours 0.04 seconds

EfficientNet-B0[24] 95.00% 95.80% 95.60% 96.70% 2 hours 0.03 seconds
ShuffleNet[25] 95.50% 95.20% 95.90% 95.05% 1.8 hours 0.03 seconds
SqueezeNet[26] 96.10% 95.60% 95.30% 95.40% 2 hours 0.04 seconds

MobileNetV2-FL Hybrid 96.80% 96.50% 95.40% 95.60% 2.1 hours 0.02 seconds

development of new strategies to combat cyber threats. This
study introduces a novel lightweight transfer learning approach
to enhance malware attack detection in a federated context. To
reduce cyber risks and improve malware detection efficacy,
the work introduced an approach that integrates MobileNetV2
a Transfer Learning model with federated architecture.

The performance of the model was assessed using the
publicly accessible Aposemat IoT-23 dataset from an actual
IoT network. Comprehensive testing revealed that the model
achieves a training accuracy of about 96% and a validation
accuracy of 96% producing a satisfactory detection accuracy
above 96.8%. Essential for resource-limited IoT devices, these
results show the model’s effectiveness in identifying malware
risks while keeping reasonable processing speeds.

The outcomes of this work improve deep learning ap-
proaches in cybersecurity and provide insightful analysis for
the construction of more strong and efficient malware detection
systems. In future work, the model’s hyper-parameter tuning
shall be evaluated to further enhance the system performance.
We shall also employ load balancing techniques between server
and client to keep the client light weight and effective to
respond with acceptable accuracy in case of cyber threat. This
work only considered single Raspberri PI client connected
to the federated server, in future, We ll design multi client
scenario where the attack could be detected from multiple
edges simultaneously.We shall also Finally, Synchronization
mechanisms between server and clients shall also be fine tuned.

REFERENCES

[1] S. Mittal and P. Rajvanshi, “Intelligent defenses: Advancing cyber-
security through machine learning-driven malware detection,” in 14th
International Conference on CSNT 2025, VIT Bhopal, February 2025.

[2] ——, “Towards lightweight hybrid deep learning approach to malware
detection enhancement for iot based systems,” in 2025 8th International
Conference on Electronics, Materials Engineering & Nano-Technology
(IEMENTech), Kolkata, February 2025.

[3] B. Ajayi, B. Barakat, K. McGarry, and M. Abukeshek, “Exploring the
application of transfer learning in malware detection by fine-tuning pre-
trained models on binary classification to new datasets on multi-class
classification,” in 2024 29th International Conference on Automation
and Computing (ICAC), 2024, pp. 1–6.

[4] A. L. N, “Malware analysis using transfer learning,” International
Journal For Science Technology And Engineering, vol. 12, no. 4, pp.
5799–5805, 2024.

[5] V. Priya and A. Sathya Sofia, “Review on malware classification
and malware detection using transfer learning approach,” in 2023 5th
International Conference on Smart Systems and Inventive Technology
(ICSSIT), 2023, pp. 1042–1049.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, vol. 25, 2012, pp. 1097–1105.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” International Conference on Learning
Representations (ICLR), 2015, arXiv:1409.1556. [Online]. Available:
https://arxiv.org/abs/1409.1556

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[10] C.-G. Wang, Z. Ma, Q. Li, D. Zhao, and F. Wang, “A lightweight
iot malware detection and family classification method,” Journal of
computer and communications, vol. 12, no. 04, pp. 201–227, 2024.

[11] S. Dhanasekaran, T. Thamaraimanalan, P. V. Karthick, and D. Silam-
barasan, “A lightweight cnn with lstm malware detection architecture
for 5g and iot networks,” Iete Journal of Research, 2024.

[12] O. A. Madamidola, F. Ngobigha, and A. Ez-zizi, “Detecting new
obfuscated malware variants: A lightweight and interpretable machine
learning approach,” 2024.

[13] G. A. Mukhaini, M. Anbar, S. Manickam, T. A. Al-Amiedy, and
A. A. Momani, “A systematic literature review of recent lightweight
detection approaches leveraging machine and deep learning mechanisms
in internet of things networks,” Journal of King Saud University -
Computer and Information Sciences, 2023.

www.ijacsa.thesai.org 18 | P a g e

https://arxiv.org/abs/1409.1556

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

[14] A. R. Khan, A. Yasin, S. M. Usman, S. Hussain, S. Khalid, and
S. S. Ullah, “Exploring lightweight deep learning solution for malware
detection in iot constraint environment,” Electronics, vol. 11, no. 24,
pp. 4147–4147, 2022.

[15] S. Anand, B. Mitra, S. Dey, A. Rao, R. Dhar, and J. Vaidya, “Malite:
Lightweight malware detection and classification for constrained de-
vices,” arXiv.org, vol. abs/2309.03294, 2023.

[16] “Lightweight, effective detection and characterization of mobile mal-
ware families,” IEEE Transactions on Computers, vol. 71, no. 11, pp.
2982–2995, 2022.

[17] T. Bilot, N. E. Madhoun, K. A. Agha, and A. Zouaoui, “A survey on
malware detection with graph representation learning,” 2024.

[18] H. H. Liu, L. Gong, X. Mo, G. Dong, and J. Yu, “Ltachecker:
Lightweight android malware detection based on dalvik opcode se-
quences using attention temporal networks,” IEEE Internet of Things
Journal, pp. 1–1, 2024.

[19] M. Krzyszton, B. Bok, M. Lew, and A. Sikora, “Lightweight on-
device detection of android malware based on the koodous platform
and machine learning,” Sensors, vol. 22, no. 17, pp. 6562–6562, 2022.

[20] S. Laboratory, “Stratosphere laboratory iot dataset,” 2025, accessed:
2025-01-13. [Online]. Available: https://www.stratosphereips.org/
datasets-iot

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018, pp. 6097–6105. [Online]. Available:
https://arxiv.org/abs/1704.04861

[22] N. Sevani, K. Azizah, and W. Jatmiko, “A feature-based transfer
learning to improve the image classification with support vector
machine,” International Journal of Advanced Computer Science
and Applications, vol. 14, no. 6, 2023. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2023.0140632

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 6100–6108. [Online]. Available:
https://arxiv.org/abs/1704.04861

[24] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 6105–
6114. [Online]. Available: https://arxiv.org/abs/1905.11946

[25] X. Zhang, X. Li, and D. Xu, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 6848–6856. [Online]. Available: https://arxiv.org/
abs/1707.01083

[26] F. J. Iandola, M. Moskewicz, K. Ashraf, W. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
¡0.5mb model size,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2016, pp. 2440–2448.
[Online]. Available: https://arxiv.org/abs/1602.07360

www.ijacsa.thesai.org 19 | P a g e

https://www.stratosphereips.org/datasets-iot
https://www.stratosphereips.org/datasets-iot
https://arxiv.org/abs/1704.04861
http://dx.doi.org/10.14569/IJACSA.2023.0140632
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1602.07360

	Introduction
	Research Objectives
	Assumptions

	Literature Review
	Methodology
	Dataset and Pre-processing
	Performance Metrics
	Accuracy
	Precision
	Recall
	F1-Score

	Mathematical Model
	Problem Description
	Transfer Learning Component
	Federated Learning Component

	Experimental Setup and Implementation
	Hyper-parameter Tuning and Impact

	Results and Discussion
	Conclusion
	References

