
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

194 | P a g e

www.ijacsa.thesai.org

Performance Optimization with Span<T> and

Memory<T> in C# When Handling HTTP Requests:

Real-World Examples and Approaches

Daniel Damyanov, Ivaylo Donchev

Department of Information Technologies, Veliko Tarnovo University, Bulgaria

Abstract—Optimization of application performance is a

critical aspect of software development, especially when dealing

with high-throughput operations such as handling HTTP

requests. In modern C#, structures Span<T> and Memory<T>

provide powerful tools for working with memory more

efficiently, reducing heap allocations, and improving overall

performance. This paper explores the practical applications of

Span<T> and Memory<T> in the context of optimizing HTTP

request processing. Real-world examples and approaches that

demonstrate how these types can minimize memory

fragmentation are presented, avoid unnecessary data copying,

and enable high-performance parsing and transformation of

HTTP request data. By leveraging these advanced memory

structures, developers can significantly enhance the throughput

and responsiveness of their applications, particularly in resource-

constrained environments or systems handling many concurrent

requests. This paper aims to provide developers with actionable

insights and strategies for integrating these techniques into their

.NET applications for improved performance.

Keywords—NET; C#; optimization; memory optimization;

span; memory; development; HTTP requests; data structures

I. INTRODUCTION

As software applications evolve and network
communications become increasingly complex, code efficiency
and performance are becoming key. In .NET, types such as
Span<T> [1] and Memory<T> [2] provide powerful memory
management and data processing tools that can play an
essential role in optimizing performance when handling HTTP
requests [3]. Efficient memory management is a critical
concern in modern high-performance applications, especially
when dealing with high volumes of HTTP requests and
responses. In scenarios such as web servers, API gateways, and
microservices, where throughput and responsiveness are
paramount, excessive memory allocations and garbage
collection (GC) [4] overhead can severely impact performance
and scalability. Traditional approaches to handling HTTP data,
like using StreamReader or working directly with strings and
arrays, often lead to unnecessary memory copying and
fragmentation, which increases the load on the garbage
collector (GC) and reduces the overall efficiency of the system.
To address these issues, modern versions of C# introduced
Span<T> and ReadOnlySpan<T> – lightweight, stack-
allocated types designed to operate directly on memory without
allocations. These types allow developers to access and
manipulate slices of memory, buffers or arrays without creating

new objects, thereby minimizing memory allocations and
avoiding costly GC operations. Span<T> enables mutable
operations on memory, while ReadOnlySpan<T> provides
safe, immutable access, making them ideal for handling both
mutable and immutable HTTP request and response data. This
paper explores how these advanced memory constructs can be
applied in real-world HTTP request handling scenarios to
optimize performance. We demonstrate practical examples of
using Span<T> and ReadOnlySpan<T> to efficiently parse,
modify, and process HTTP request and response data,
highlighting the performance improvements gained from
reduced memory usage and minimized garbage collection. By
leveraging these tools, developers can significantly improve
the throughput and scalability of their .NET applications,
particularly in resource-constrained or high-load environments.

The following sections are organized as follows:

Section II comments on typical use cases of the Span and
Memory structures. It points out their advantages, proven by
test results. Emphasis is placed on the optimization of HTTP
requests, sorting algorithms and parallel data processing.

Section III summarizes the comparison of the different
memory management techniques in C#.

Section IV discusses the results of similar studies; focuses
on the advantages of new memory management structures,
including reducing memory allocation and optimizing GC
operations. Attention is paid to trade-offs and limitations
related to the use of Span and Memory, practical implications
for HTTP request handling and similar features in other
programming languages.

The conclusion motivates once again developers to use the
new memory management structures to achieve higher
performance of their applications.

II. COMMON USE CASES OF SPAN AND MEMORY IN

APPLICATIONS AND REAL TESTS

When working with large text data, like reading content
from files or HTTP responses, the traditional approach
involves loading all the content into memory as a string. This
can lead to a significant memory load, especially when the data
is large. One of the common problems when dealing with
HTTP requests is the incorrect handling of large JSON
responses [5]. When receiving a large JSON response from a
server, trying to desearilize the entire response at once can lead
to memory and performance problems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

195 | P a g e

www.ijacsa.thesai.org

The following example shows one such problematic JSON
response that is handled incorrectly, and this leads to a large
memory load.

One common problem when dealing with data from HTTP
requests is the inefficient handling of large text data, which can
lead to unnecessary data copying and increased memory usage.

Span<T> can help optimize data processing by allowing us
to work directly on arrays of bytes without copying. Span<T>
comprises just two fields, a pointer and a length. For this
reason, it can represent only contiguous blocks of memory [6].
Span by nature is mutable and allows for modifications to the
underlying data. This example shows how a large text response
is handled inefficiently, resulting in high memory overhead and
latency.

Fig. 1. Getting a response and taking the result from the null index.

The problem with the code above (Fig. 1) is the large and
inefficient use of memory: the entire textual response is held in
memory as a string. Therefore, unnecessary data copying is
also performed. The Split() method creates new arrays of
strings. To avoid these problems, Span<T> can be used to
work directly on the byte arrays and to extract the necessary
information efficiently. Using Span is only synchronous, and it
should be noted that implementation in asynchronous methods
requires additional code writing, since using synchronous
methods in asynchronous ones would lead to unpredictable
results or thread blocking.

Avoiding asynchronous disadvantages, another fast data
processing can be used and the use of asynchronous operations
without accompanying difficulties that can be achieved using
Memory<T>, which allows working with subsets of data
without additional copying.

Processing large text data from HTTP responses can be
inefficient if the data is behaved like strings. Memory<T> can
help optimize this process by working directly with the byte
arrays. In .NET, Memory<T> and ReadOnlyMemory<T>
provide powerful memory tools that enable efficient data
processing without unnecessary copying and reduce memory
load. These structures can be used in both synchronous and
asynchronous methods (Fig. 2), making them suitable for a
wide range of applications.

Fig. 2. Use of memory in http requests.

A. Benefits of Memory<T> and ReadOnlyMemory<T>

 Efficient memory usage: Memory<T> and
ReadOnlyMemory<T> allows processing of parts of
arrays without creating new objects, which reduces
memory load.

 Flexibility: They can be used in both synchronous and
asynchronous methods, providing a safe way to work
with data between await points.

 Improved data processing code: By using Memory<T>,
efficiency of applications can be improved when
dealing with large amounts of data, such as text
responses from HTTP requests or binaries.

B. Test Performance When Reading Query Data

When working with large files, it is often necessary to read
only part of the content to avoid unnecessary memory load. Big
data can fill up a system's RAM, leading to delays or crashes
(OutOfMemoryException) [7]. Also, big data leads to slow
processing speed [8] – a significant amount of time to reduce
the efficiency of applications. Big data can contain
unstructured or poorly formatted parts, which can complicate
its processing.

Using Memory<T> allows working with parts of the data
without loading the entire file into memory. Reading a specific
block of the file and using Memory<T> to work with that
block provides efficiency and flexibility (Fig. 3).

Fig. 3. Reading data with Memory<T>

The following is a comparative analysis between the use of
Memory<T> and the standard implementation with
StreamReader. Two methods will be implemented to read the
response from the query (Fig. 4, Fig. 5).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

196 | P a g e

www.ijacsa.thesai.org

Fig. 4. Reading data with StreamReader.

Fig. 5. Reading data with Memory<T>.

HttpClient and URL were used for the tests. The URL
points to a large file (100 MB) which can be downloaded for
the tests. Running the benchmark leads to the following results
(Fig. 6):

Fig. 6. Test results.

 ReadLargeHttpResponseWithMemory(): This method
uses Memory<byte> and shows an average execution
time of 520.4 ms. Using Memory<T> provides
advantages in terms of efficient memory management
and performance.

 ReadLargeHttpResponseWithStream(): This method
uses a traditional approach with Stream and shows an
average execution time of 680.3 ms. The traditional
method is slower due to the additional time it takes to
work with StreamReader and convert data.

Several of the most important advantages of using relevant
optimizations can be noted:

 Efficient Memory Management: Working with
Memory<byte> reduces the need to create redundant
copies of data, which saves memory and resources.

 Flexibility: Memory<T> allows for easy retrieval and
handling of partial blocks of data, which is useful when
working with large files or data streams.

 Better performance: Reading only the required portion
of the file and working with Memory<T> can improve
application performance by reducing processing time
and memory usage.

C. Other applications

1) Search algorithm optimization: Algorithms for

searching large arrays or text data often require high

performance and low memory usage. Traditional approaches

may involve creating new copies of the data, which increases

memory costs and slows down processing. Span<T> allows

working with pieces of data directly, without creating new

copies, which is useful in search algorithm optimization. The

following test will be conducted. A version of the familiar

binary search algorithm [9] is implemented but using the Span

structure. It must be compared to a method representing the

basic implementation. Finally, the test is run again.
Fig. 8 shows the only difference is that the lookup data is

sent with a Span. In the benchmark made, in Fig. 7, 1 million
elements were feeded.

Fig. 7. Binary search and span.

Fig. 8. Binary search with a span.

It is noticeable that the difference is small, but it will be
tested whether Span<T> offers any advantages in the context
of specific use cases. One of the advantages is that ready-made
methods of the structure itself can be used, and additional
functionality can be added without wasting time on it.

2) Parallel data processing: Parallel data processing can

lead to high memory costs if each thread creates its own

copies of the data. This can reduce the efficiency of the

application and increase processing time. Parallel processing

involves dividing a task into smaller subtasks that can be run

simultaneously [10]. C# has various tools for parallelization.,

such as Task, Parallel.For, and async/await. The following test

will be performed. 10 million characters simulating text will

be sent to be processed by the program. Two variants have

been developed: with string and with Memory (Fig. 9 and Fig.

11).
In the test done, better performance is again visible, albeit

with a small lead in time (Fig. 10).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

197 | P a g e

www.ijacsa.thesai.org

Fig. 9. Parallel processing with memory

Fig. 10. Task and memory test result

The use of Memory<T> allows for the safe sharing of data
between different threads, without creating redundant copies.
Processing with Memory<T> will be faster because
Memory<T> reduces the cost of creating new copies of the
data and provides more efficient access to memory.

Fig. 11. Parallel processing with string

III. RESULTS

The results of comparing different memory management
techniques in C# - ReadOnlyMemory<T>, ReadOnlySpan<T>,
Memory<T>, and Span<T> - demonstrates clear advantages in
performance optimization for HTTP request handling. Key
findings are as follows:

 ReadOnlyMemory<T>: Offers efficient read-only data
access with reduced memory allocations and garbage
collection pressure. It is well-suited for handling
immutable HTTP request data like headers and bodies,
providing safety with minimal performance overhead.

 ReadOnlySpan<T>: Provides the most efficient, zero-
allocation solution by leveraging stack-based memory
management. It excels in short-lived, high-performance
scenarios, such as parsing HTTP requests without
persisting data. However, it is limited by its inability to
be used across asynchronous boundaries.

 Memory<T>: Allows mutable access to memory,
making it versatile for scenarios where data needs to be
modified. Its ability to reuse memory buffers reduces
garbage collection events and enhances performance in
systems with high-throughput HTTP requests.

 Span<T>: Similar to Memory<T>, but focused on
stack-based memory, making it ideal for fast, non-
persistent data processing. It shares the limitations of
ReadOnlySpan<T> in async contexts but provides
excellent performance when dealing with mutable,
transient data.

Overall, these advanced memory manipulation types
significantly reduce memory allocations, improve execution
time, and lower GC pressure compared to traditional
approaches like StreamReader. The most substantial
performance gains are observed when using Span<T> and
ReadOnlySpan<T>, which minimize overhead through zero-
copy, stack-based memory operations.

IV. DISCUSSION

The special language features in C# and other modern
languages that allow more efficient management of
sequentially located data structures in memory are relatively
new, and there is not much scientific research related to them.

The study [11] is focused on how Span is designed to
optimize memory usage and enhance processing speed in .NET
applications, with an emphasis on the characteristic collections,
which generally store the data in the heap memory, which
consumes more RAM and increases the workload of the
Garbage Collector. One of the strongest features of Span is to
keep data on the stack which enables better performance.

The study [12] presents an in-depth comparison of the use
of different algorithms on the traditional List, Array, etc.
collections. Experimentation and analysis reveal the different
performance of these algorithms using C#.

A comparison of the effectiveness of different strategies
related to the optimization of memory management procedures
and in particular the release of resources implemented in the
C#, Java and C++ languages is discussed in [13]. The
surprising conclusion is made that C#’s garbage collection
system consistently outperformed the others due to its
optimized procedures of asynchronously deallocating memory.

Notorious key techniques in Memory Optimization include
avoiding unnecessary object allocations; use value types
for small, immutable data; pool reusable objects with
ObjectPool<T>; optimize collections (e.g. prefer array or
Span<T> over List<T> when possible); avoid large object heap
fragmentation by reusing buffers; utilize asynchronous
programming effectively to reduce memory pressure.

The test results clearly demonstrate that leveraging modern
memory types in C#, such as ReadOnlyMemory<T>,
ReadOnlySpan<T>, Memory<T>, and Span<T>, provides
significant performance improvements in scenarios involving
HTTP request handling. The implications of these findings are
particularly relevant for applications that deal with high

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

198 | P a g e

www.ijacsa.thesai.org

volumes of HTTP traffic, where memory allocations and GC
overhead can become major bottlenecks.

D. Memory Efficiency and Allocation Reduction

One of the key benefits of using these memory types is the
reduction in memory allocations. Traditional methods, such as
reading data with StreamReader, create new strings and objects
on the heap, which leads to frequent memory allocations. This
not only consumes more memory but also increases the
frequency of GC cycles, leading to performance degradation.

By contrast, Memory<T> and Span<T> significantly
reduce the need for heap allocations by reusing memory
buffers or leveraging stack-based memory management. This is
particularly important in real-time systems or services that
handle numerous HTTP requests, as it helps maintain
consistent performance under heavy load. The zero-allocation
nature of ReadOnlySpan<T> and Span<T>, in particular,
shows tremendous potential for short-lived operations where
both memory and speed are critical.

E. Garbage Collection Optimization

Reducing GC pressure is a critical factor in achieving high-
performance applications, especially in scenarios involving
concurrent HTTP requests. The frequent creation and
destruction of objects in heap-based memory can result in
excessive GC activity, leading to increased latency and jitter.
The findings highlight that Memory<T> and Span<T>, by
reducing object creation, lead to fewer GC interruptions and
smoother application performance.

In particular, ReadOnlyMemory<T> and
ReadOnlySpan<T> proved highly efficient for handling
immutable data like HTTP headers or request bodies, where
copying or modifying data is unnecessary. These types allow
direct access to memory without the need for costly
allocations, which lowers GC frequency and minimizes its
impact on performance.

F. Trade-offs and Limitations

While these memory types offer clear performance gains,
there are trade-offs that developers need to consider. For
instance, Span<T> and ReadOnlySpan<T> are stack-allocated
and, therefore, cannot be used across asynchronous method
calls. This limits their applicability in scenarios where
asynchronous programming is heavily used, such as modern
HTTP request pipelines built on async/await patterns. In these
cases, developers must rely on heap-based Memory<T> or
ReadOnlyMemory<T>, which still provide performance
benefits but with slightly higher overhead compared to their
stack-based counterparts.

Additionally, while these types reduce memory allocations
and improve performance, they introduce added complexity in
managing memory manually. Developers must be more
mindful of buffer management and ensure that memory is
handled properly to avoid issues such as memory leaks or
unsafe access. This represents a trade-off between performance
and ease of use, particularly for teams or projects where rapid
development is prioritized over fine-tuned optimization.

G. Practical Implications for HTTP Request Handling

For real-world applications that handle HTTP requests,
especially high-throughput services such as web servers, API
gateways, or microservices, the use of Memory<T> and
Span<T> can lead to substantial performance improvements.
The ability to avoid data copying, minimize memory
fragmentation, and reduce GC pressure can help these systems
scale more effectively, handling larger workloads with lower
resource consumption.

However, these performance benefits come with the
requirement for a deeper understanding of memory
management in .NET. Developers will need to weigh the trade-
offs between the additional complexity and the performance
gains, particularly when deciding between the simplicity of
StreamReader and the efficiency of the newer memory types.

H. Future Considerations

As C# continues to evolve, further optimizations and tools
that will make memory management both easier and more
efficient can be expected. The results suggest that adopting
these newer memory types now can provide immediate
benefits in terms of performance, but future improvements in
language features, runtime optimizations, and libraries may
help bridge the gap between ease of use and high performance.
Additionally, as more developers adopt these patterns, best
practices will likely emerge, helping to mitigate the challenges
associated with the manual memory management required by
Span<T> and Memory<T>.

I. Similar Features in Other Programming Languages

Languages like C++, Rust, D, and Swift have similar
features. C++ has std::span which is a very lightweight
abstraction (a class template), but powerful tool for working
with contiguous sequence of data. A typical implementation
holds a pointer to the data, if the extent is dynamic, the
implementation also holds a size. The main advantage is that it
is a non-owning type (a reference-type rather than a value
type). It never allocates nor deallocates anything and does not
keep smart pointers alive.

Fig. 12. Using std::span as function parameter.

In C++, std::span can also be used to simplify syntax. For
example, the implementation of arrays in C++ is such that they
"don't know" their size. When an array is passed as an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

199 | P a g e

www.ijacsa.thesai.org

argument to a function, actually a constant pointer to the first
element of the array is passed and the function "does not
know" the number of elements in the array. However, if this
array is passed to the function as span, there is no need to pass
an additional parameter with the size of the array (Fig. 12).

Instead of Span, Rust has a slice, which is a view into a
collection of elements, like std::span. D language offers slices
as well, providing a safe way to handle arrays. Swift has
ArraySlice, which allows sub-ranges of an array without
copying. Each of these languages emphasizes safety and
efficiency in handling contiguous data sequences.

Java doesn’t have a direct equivalent of Span, but
List.subList() allows to work with a sublist view of a list.
Although it doesn’t offer the same level of low-level control, it
does provide a way to handle segments of collections
efficiently.

V. CONCLUSION

Both Span<T> and Memory<T> provide powerful ways to
work with memory in C#, especially when performance and
efficiency are critical. Overall, our findings confirm that using
ReadOnlyMemory<T>, ReadOnlySpan<T>, Memory<T>, and
Span<T> provide significant improvements in performance,
particularly for HTTP request processing. While there are
trade-offs in terms of complexity and applicability in
asynchronous programming, these memory types offer a
powerful way to optimize memory usage, reduce GC overhead,
and improve the scalability of modern .NET applications.

 Developers aiming for high-performance HTTP request
handling should seriously consider integrating these memory
types into their systems to achieve better throughput and
responsiveness.

Other practical applications of Span<T> include image
processing or numerical computations – situations when
working with performance-critical code. In this case, Span<T>
can help avoid allocations and reduce the overhead of garbage
collection. Similar is the situation when interaction with native
code via P/Invoke or other interop mechanisms is needed. Here
Span<T> can be used to represent contiguous memory regions
efficiently.

Wherever working with asynchronous I/O operations, data
buffers or lazy initialization are needed, Memory<T> is a great
solution.

REFERENCES

[1] Microsoft .NET documentation, Microsoft Learn, Span<T> Struct,
online: https://learn.microsoft.com/en-us/dotnet/api/system.span-
1?view=net-9.0

[2] Microsoft .NET documentation, Microsoft Learn, Memory<T> Struct,
online: https://learn.microsoft.com/en-us/dotnet/api/system.memory-
1?view=net-9.0

[3] Smith, J., Build your own web server from scratch in Node.JS: Learn
network programming, HTTP, and WebSocket by coding a web server
(Build Your Own X From Scratch), Independently published, 2024

[4] Jones, R., Hosking, A., Moss, E., The garbage collection handbook: The
art of automatic memory management, Chapman and Hall/CRC; 2nd
edition, 2023

[5] Price, M., C# 9 and .NET 5 – Modern cross-platform development:
Build intelligent apps, websites, and services with Blazor, ASP.NET
Core, and Entity Framework Core using Visual Studio Code, Packt
Publishing; 5th edition, 2020

[6] Albahari, J., C# 12 in a Nutshell: The Definitive Reference, O'Reilly
Media; 1st edition, 2023

[7] Kokosa, K., Nasarre, Chr., Gosse, K., Pro .NET memory management:
For better code, performance, and scalability, Apress; Second edition,
2024

[8] Rasmussen, B. (2014), High-performance Windows Store apps
(developer reference), Microsoft Press; 1st edition, 2014

[9] Cormen, T., Leiserson, Ch., Rivest, R., Stein, C., Introduction to
Algorithms, The MIT Press; 4th edition, 2022

[10] Sarcar, V., Parallel programming with C# and .NET: Fundamentals of
concurrency and asynchrony behind fast-paced applications, Apress,
2024

[11] Akdoğan, H., Duymaz, H., Kocakır, N., Karademir, Ö., Performance
analysis of Span data type in C# programming language. Turkish Journal
of Nature and Science. October 2024; Issue 1, pp. 29-36.
doi:10.46810/tdfd.1425662

[12] Shastri, S., Singh, A., Mohan, B., Mansotra, V., Run-time analysis of
searching and hashing algorithms with C#, 2016, Available from:
https://www.researchgate.net/publication/326331475_Run-
Time_Analysis_of_Searching_and_Hashing_Algorithms_with_C

[13] Henriques, L., Bernardino, J., Performance of memory deallocation in
C++, C# and Java, CAPSI 2018 Proceedings. 10.,
https://aisel.aisnet.org/capsi2018/10

