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Abstract—Optimization of application performance is a 

critical aspect of software development, especially when dealing 

with high-throughput operations such as handling HTTP 

requests. In modern C#, structures Span<T> and Memory<T> 

provide powerful tools for working with memory more 

efficiently, reducing heap allocations, and improving overall 

performance. This paper explores the practical applications of 

Span<T> and Memory<T> in the context of optimizing HTTP 

request processing. Real-world examples and approaches that 

demonstrate how these types can minimize memory 

fragmentation are presented, avoid unnecessary data copying, 

and enable high-performance parsing and transformation of 

HTTP request data. By leveraging these advanced memory 

structures, developers can significantly enhance the throughput 

and responsiveness of their applications, particularly in resource-

constrained environments or systems handling many concurrent 

requests. This paper aims to provide developers with actionable 

insights and strategies for integrating these techniques into their 

.NET applications for improved performance. 
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I. INTRODUCTION 

As software applications evolve and network 
communications become increasingly complex, code efficiency 
and performance are becoming key. In .NET, types such as 
Span<T> [1] and Memory<T> [2] provide powerful memory 
management and data processing tools that can play an 
essential role in optimizing performance when handling HTTP 
requests [3]. Efficient memory management is a critical 
concern in modern high-performance applications, especially 
when dealing with high volumes of HTTP requests and 
responses. In scenarios such as web servers, API gateways, and 
microservices, where throughput and responsiveness are 
paramount, excessive memory allocations and garbage 
collection (GC) [4] overhead can severely impact performance 
and scalability. Traditional approaches to handling HTTP data, 
like using StreamReader or working directly with strings and 
arrays, often lead to unnecessary memory copying and 
fragmentation, which increases the load on the garbage 
collector (GC) and reduces the overall efficiency of the system. 
To address these issues, modern versions of C# introduced 
Span<T> and ReadOnlySpan<T> – lightweight, stack-
allocated types designed to operate directly on memory without 
allocations. These types allow developers to access and 
manipulate slices of memory, buffers or arrays without creating 

new objects, thereby minimizing memory allocations and 
avoiding costly GC operations. Span<T> enables mutable 
operations on memory, while ReadOnlySpan<T> provides 
safe, immutable access, making them ideal for handling both 
mutable and immutable HTTP request and response data. This 
paper explores how these advanced memory constructs can be 
applied in real-world HTTP request handling scenarios to 
optimize performance. We demonstrate practical examples of 
using Span<T> and ReadOnlySpan<T> to efficiently parse, 
modify, and process HTTP request and response data, 
highlighting the performance improvements gained from 
reduced memory usage and minimized garbage collection. By 
leveraging these tools, developers can significantly improve 
the throughput and scalability of their .NET applications, 
particularly in resource-constrained or high-load environments. 

The following sections are organized as follows: 

Section II comments on typical use cases of the Span and 
Memory structures. It points out their advantages, proven by 
test results. Emphasis is placed on the optimization of HTTP 
requests, sorting algorithms and parallel data processing. 

Section III summarizes the comparison of the different 
memory management techniques in C#. 

Section IV discusses the results of similar studies; focuses 
on the advantages of new memory management structures, 
including reducing memory allocation and optimizing GC 
operations. Attention is paid to trade-offs and limitations 
related to the use of Span and Memory, practical implications 
for HTTP request handling and similar features in other 
programming languages. 

The conclusion motivates once again developers to use the 
new memory management structures to achieve higher 
performance of their applications. 

II. COMMON USE CASES OF SPAN AND MEMORY IN 

APPLICATIONS AND REAL TESTS 

When working with large text data, like reading content 
from files or HTTP responses, the traditional approach 
involves loading all the content into memory as a string. This 
can lead to a significant memory load, especially when the data 
is large. One of the common problems when dealing with 
HTTP requests is the incorrect handling of large JSON 
responses [5]. When receiving a large JSON response from a 
server, trying to desearilize the entire response at once can lead 
to memory and performance problems. 
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The following example shows one such problematic JSON 
response that is handled incorrectly, and this leads to a large 
memory load. 

One common problem when dealing with data from HTTP 
requests is the inefficient handling of large text data, which can 
lead to unnecessary data copying and increased memory usage. 

Span<T> can help optimize data processing by allowing us 
to work directly on arrays of bytes without copying. Span<T> 
comprises just two fields, a pointer and a length. For this 
reason, it can represent only contiguous blocks of memory [6]. 
Span by nature is mutable and allows for modifications to the 
underlying data. This example shows how a large text response 
is handled inefficiently, resulting in high memory overhead and 
latency. 

 
Fig. 1. Getting a response and taking the result from the null index. 

The problem with the code above (Fig. 1) is the large and 
inefficient use of memory: the entire textual response is held in 
memory as a string. Therefore, unnecessary data copying is 
also performed. The Split() method creates new arrays of 
strings. To avoid these problems, Span<T> can be used to 
work directly on the byte arrays and to extract the necessary 
information efficiently. Using Span is only synchronous, and it 
should be noted that implementation in asynchronous methods 
requires additional code writing, since using synchronous 
methods in asynchronous ones would lead to unpredictable 
results or thread blocking. 

Avoiding asynchronous disadvantages, another fast data 
processing can be used and the use of asynchronous operations 
without accompanying difficulties that can be achieved using 
Memory<T>, which allows working with subsets of data 
without additional copying. 

Processing large text data from HTTP responses can be 
inefficient if the data is behaved like strings. Memory<T> can 
help optimize this process by working directly with the byte 
arrays. In .NET, Memory<T> and ReadOnlyMemory<T> 
provide powerful memory tools that enable efficient data 
processing without unnecessary copying and reduce memory 
load. These structures can be used in both synchronous and 
asynchronous methods (Fig. 2), making them suitable for a 
wide range of applications. 

 
Fig. 2. Use of memory in http requests. 

A. Benefits of Memory<T> and ReadOnlyMemory<T> 

 Efficient memory usage: Memory<T> and 
ReadOnlyMemory<T> allows processing of parts of 
arrays without creating new objects, which reduces 
memory load. 

 Flexibility: They can be used in both synchronous and 
asynchronous methods, providing a safe way to work 
with data between await points. 

 Improved data processing code: By using Memory<T>, 
efficiency of applications can be improved when 
dealing with large amounts of data, such as text 
responses from HTTP requests or binaries. 

B. Test Performance When Reading Query Data 

When working with large files, it is often necessary to read 
only part of the content to avoid unnecessary memory load. Big 
data can fill up a system's RAM, leading to delays or crashes 
(OutOfMemoryException) [7]. Also, big data leads to slow 
processing speed [8] – a significant amount of time to reduce 
the efficiency of applications. Big data can contain 
unstructured or poorly formatted parts, which can complicate 
its processing. 

Using Memory<T> allows working with parts of the data 
without loading the entire file into memory. Reading a specific 
block of the file and using Memory<T> to work with that 
block provides efficiency and flexibility (Fig. 3). 

 
Fig. 3. Reading data with Memory<T> 

The following is a comparative analysis between the use of 
Memory<T> and the standard implementation with 
StreamReader. Two methods will be implemented to read the 
response from the query (Fig. 4, Fig. 5). 
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Fig. 4. Reading data with StreamReader. 

 
Fig. 5. Reading data with Memory<T>. 

HttpClient and URL were used for the tests. The URL 
points to a large file (100 MB) which can be downloaded for 
the tests. Running the benchmark leads to the following results 
(Fig. 6): 

 
Fig. 6. Test results. 

 ReadLargeHttpResponseWithMemory(): This method 
uses Memory<byte> and shows an average execution 
time of 520.4 ms. Using Memory<T> provides 
advantages in terms of efficient memory management 
and performance. 

 ReadLargeHttpResponseWithStream(): This method 
uses a traditional approach with Stream and shows an 
average execution time of 680.3 ms. The traditional 
method is slower due to the additional time it takes to 
work with StreamReader and convert data. 

Several of the most important advantages of using relevant 
optimizations can be noted: 

 Efficient Memory Management: Working with 
Memory<byte> reduces the need to create redundant 
copies of data, which saves memory and resources. 

 Flexibility: Memory<T> allows for easy retrieval and 
handling of partial blocks of data, which is useful when 
working with large files or data streams. 

 Better performance: Reading only the required portion 
of the file and working with Memory<T> can improve 
application performance by reducing processing time 
and memory usage. 

C. Other applications 

1) Search algorithm optimization: Algorithms for 

searching large arrays or text data often require high 

performance and low memory usage. Traditional approaches 

may involve creating new copies of the data, which increases 

memory costs and slows down processing. Span<T> allows 

working with pieces of data directly, without creating new 

copies, which is useful in search algorithm optimization. The 

following test will be conducted. A version of the familiar 

binary search algorithm [9] is implemented but using the Span 

structure. It must be compared to a method representing the 

basic implementation. Finally, the test is run again. 
Fig. 8 shows the only difference is that the lookup data is 

sent with a Span. In the benchmark made, in Fig. 7, 1 million 
elements were feeded. 

 
Fig. 7. Binary search and span. 

 
Fig. 8. Binary search with a span. 

It is noticeable that the difference is small, but it will be 
tested whether Span<T> offers any advantages in the context 
of specific use cases. One of the advantages is that ready-made 
methods of the structure itself can be used, and additional 
functionality can be added without wasting time on it. 

2) Parallel data processing: Parallel data processing can 

lead to high memory costs if each thread creates its own 

copies of the data. This can reduce the efficiency of the 

application and increase processing time. Parallel processing 

involves dividing a task into smaller subtasks that can be run 

simultaneously [10]. C# has various tools for parallelization., 

such as Task, Parallel.For, and async/await. The following test 

will be performed. 10 million characters simulating text will 

be sent to be processed by the program. Two variants have 

been developed: with string and with Memory (Fig. 9 and Fig. 

11). 
In the test done, better performance is again visible, albeit 

with a small lead in time (Fig. 10). 
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Fig. 9. Parallel processing with memory 

 
Fig. 10. Task and memory test result 

The use of Memory<T> allows for the safe sharing of data 
between different threads, without creating redundant copies. 
Processing with Memory<T> will be faster because 
Memory<T> reduces the cost of creating new copies of the 
data and provides more efficient access to memory. 

 

Fig. 11. Parallel processing with string 

III. RESULTS 

The results of comparing different memory management 
techniques in C# - ReadOnlyMemory<T>, ReadOnlySpan<T>, 
Memory<T>, and Span<T> - demonstrates clear advantages in 
performance optimization for HTTP request handling. Key 
findings are as follows: 

 ReadOnlyMemory<T>: Offers efficient read-only data 
access with reduced memory allocations and garbage 
collection pressure. It is well-suited for handling 
immutable HTTP request data like headers and bodies, 
providing safety with minimal performance overhead. 

 ReadOnlySpan<T>: Provides the most efficient, zero-
allocation solution by leveraging stack-based memory 
management. It excels in short-lived, high-performance 
scenarios, such as parsing HTTP requests without 
persisting data. However, it is limited by its inability to 
be used across asynchronous boundaries. 

 Memory<T>: Allows mutable access to memory, 
making it versatile for scenarios where data needs to be 
modified. Its ability to reuse memory buffers reduces 
garbage collection events and enhances performance in 
systems with high-throughput HTTP requests. 

 Span<T>: Similar to Memory<T>, but focused on 
stack-based memory, making it ideal for fast, non-
persistent data processing. It shares the limitations of 
ReadOnlySpan<T> in async contexts but provides 
excellent performance when dealing with mutable, 
transient data. 

Overall, these advanced memory manipulation types 
significantly reduce memory allocations, improve execution 
time, and lower GC pressure compared to traditional 
approaches like StreamReader. The most substantial 
performance gains are observed when using Span<T> and 
ReadOnlySpan<T>, which minimize overhead through zero-
copy, stack-based memory operations. 

IV. DISCUSSION 

The special language features in C# and other modern 
languages that allow more efficient management of 
sequentially located data structures in memory are relatively 
new, and there is not much scientific research related to them. 

The study [11] is focused on how Span is designed to 
optimize memory usage and enhance processing speed in .NET 
applications, with an emphasis on the characteristic collections, 
which generally store the data in the heap memory, which 
consumes more RAM and increases the workload of the 
Garbage Collector. One of the strongest features of Span is to 
keep data on the stack which enables better performance. 

The study [12] presents an in-depth comparison of the use 
of different algorithms on the traditional List, Array, etc. 
collections. Experimentation and analysis reveal the different 
performance of these algorithms using C#. 

A comparison of the effectiveness of different strategies 
related to the optimization of memory management procedures 
and in particular the release of resources implemented in the 
C#, Java and C++ languages is discussed in [13]. The 
surprising conclusion is made that C#’s garbage collection 
system consistently outperformed the others due to its 
optimized procedures of asynchronously deallocating memory. 

Notorious key techniques in Memory Optimization include 
avoiding unnecessary object allocations; use value types 
for small, immutable data; pool reusable objects with 
ObjectPool<T>; optimize collections (e.g. prefer array or 
Span<T> over List<T> when possible); avoid large object heap 
fragmentation by reusing buffers; utilize asynchronous 
programming effectively to reduce memory pressure. 

The test results clearly demonstrate that leveraging modern 
memory types in C#, such as ReadOnlyMemory<T>, 
ReadOnlySpan<T>, Memory<T>, and Span<T>, provides 
significant performance improvements in scenarios involving 
HTTP request handling. The implications of these findings are 
particularly relevant for applications that deal with high 
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volumes of HTTP traffic, where memory allocations and GC 
overhead can become major bottlenecks. 

D. Memory Efficiency and Allocation Reduction 

One of the key benefits of using these memory types is the 
reduction in memory allocations. Traditional methods, such as 
reading data with StreamReader, create new strings and objects 
on the heap, which leads to frequent memory allocations. This 
not only consumes more memory but also increases the 
frequency of GC cycles, leading to performance degradation. 

By contrast, Memory<T> and Span<T> significantly 
reduce the need for heap allocations by reusing memory 
buffers or leveraging stack-based memory management. This is 
particularly important in real-time systems or services that 
handle numerous HTTP requests, as it helps maintain 
consistent performance under heavy load. The zero-allocation 
nature of ReadOnlySpan<T> and Span<T>, in particular, 
shows tremendous potential for short-lived operations where 
both memory and speed are critical. 

E. Garbage Collection Optimization 

Reducing GC pressure is a critical factor in achieving high-
performance applications, especially in scenarios involving 
concurrent HTTP requests. The frequent creation and 
destruction of objects in heap-based memory can result in 
excessive GC activity, leading to increased latency and jitter. 
The findings highlight that Memory<T> and Span<T>, by 
reducing object creation, lead to fewer GC interruptions and 
smoother application performance. 

In particular, ReadOnlyMemory<T> and 
ReadOnlySpan<T> proved highly efficient for handling 
immutable data like HTTP headers or request bodies, where 
copying or modifying data is unnecessary. These types allow 
direct access to memory without the need for costly 
allocations, which lowers GC frequency and minimizes its 
impact on performance. 

F. Trade-offs and Limitations 

While these memory types offer clear performance gains, 
there are trade-offs that developers need to consider. For 
instance, Span<T> and ReadOnlySpan<T> are stack-allocated 
and, therefore, cannot be used across asynchronous method 
calls. This limits their applicability in scenarios where 
asynchronous programming is heavily used, such as modern 
HTTP request pipelines built on async/await patterns. In these 
cases, developers must rely on heap-based Memory<T> or 
ReadOnlyMemory<T>, which still provide performance 
benefits but with slightly higher overhead compared to their 
stack-based counterparts. 

Additionally, while these types reduce memory allocations 
and improve performance, they introduce added complexity in 
managing memory manually. Developers must be more 
mindful of buffer management and ensure that memory is 
handled properly to avoid issues such as memory leaks or 
unsafe access. This represents a trade-off between performance 
and ease of use, particularly for teams or projects where rapid 
development is prioritized over fine-tuned optimization. 

G. Practical Implications for HTTP Request Handling 

For real-world applications that handle HTTP requests, 
especially high-throughput services such as web servers, API 
gateways, or microservices, the use of Memory<T> and 
Span<T> can lead to substantial performance improvements. 
The ability to avoid data copying, minimize memory 
fragmentation, and reduce GC pressure can help these systems 
scale more effectively, handling larger workloads with lower 
resource consumption. 

However, these performance benefits come with the 
requirement for a deeper understanding of memory 
management in .NET. Developers will need to weigh the trade-
offs between the additional complexity and the performance 
gains, particularly when deciding between the simplicity of 
StreamReader and the efficiency of the newer memory types. 

H. Future Considerations 

As C# continues to evolve, further optimizations and tools 
that will make memory management both easier and more 
efficient can be expected. The results suggest that adopting 
these newer memory types now can provide immediate 
benefits in terms of performance, but future improvements in 
language features, runtime optimizations, and libraries may 
help bridge the gap between ease of use and high performance. 
Additionally, as more developers adopt these patterns, best 
practices will likely emerge, helping to mitigate the challenges 
associated with the manual memory management required by 
Span<T> and Memory<T>. 

I. Similar Features in Other Programming Languages 

Languages like C++, Rust, D, and Swift have similar 
features. C++ has std::span which is a very lightweight 
abstraction (a class template), but powerful tool for working 
with contiguous sequence of data. A typical implementation 
holds a pointer to the data, if the extent is dynamic, the 
implementation also holds a size. The main advantage is that it 
is a non-owning type (a reference-type rather than a value 
type). It never allocates nor deallocates anything and does not 
keep smart pointers alive. 

 

Fig. 12. Using std::span as function parameter. 

In C++, std::span can also be used to simplify syntax. For 
example, the implementation of arrays in C++ is such that they 
"don't know" their size. When an array is passed as an 
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argument to a function, actually a constant pointer to the first 
element of the array is passed and the function "does not 
know" the number of elements in the array. However, if this 
array is passed to the function as span, there is no need to pass 
an additional parameter with the size of the array (Fig. 12). 

Instead of Span, Rust has a slice, which is a view into a 
collection of elements, like std::span. D language offers slices 
as well, providing a safe way to handle arrays. Swift has 
ArraySlice, which allows sub-ranges of an array without 
copying. Each of these languages emphasizes safety and 
efficiency in handling contiguous data sequences. 

Java doesn’t have a direct equivalent of Span, but 
List.subList() allows to work with a sublist view of a list. 
Although it doesn’t offer the same level of low-level control, it 
does provide a way to handle segments of collections 
efficiently. 

V. CONCLUSION 

Both Span<T> and Memory<T> provide powerful ways to 
work with memory in C#, especially when performance and 
efficiency are critical. Overall, our findings confirm that using 
ReadOnlyMemory<T>, ReadOnlySpan<T>, Memory<T>, and 
Span<T> provide significant improvements in performance, 
particularly for HTTP request processing. While there are 
trade-offs in terms of complexity and applicability in 
asynchronous programming, these memory types offer a 
powerful way to optimize memory usage, reduce GC overhead, 
and improve the scalability of modern .NET applications. 

 Developers aiming for high-performance HTTP request 
handling should seriously consider integrating these memory 
types into their systems to achieve better throughput and 
responsiveness. 

Other practical applications of Span<T> include image 
processing or numerical computations – situations when 
working with performance-critical code. In this case, Span<T> 
can help avoid allocations and reduce the overhead of garbage 
collection. Similar is the situation when interaction with native 
code via P/Invoke or other interop mechanisms is needed. Here 
Span<T> can be used to represent contiguous memory regions 
efficiently. 

Wherever working with asynchronous I/O operations, data 
buffers or lazy initialization are needed, Memory<T> is a great 
solution. 
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