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Abstract—In the modern era of cyber security, cyber-attacks 

are continuously evolving in terms of complexity and frequency. 

In this context, organizations need to enhance Network Intrusion 

Detection Systems (NIDS) for anomaly detection. Although the 

existing Machine Learning models are in place to cater to the 

situations but new challenges emerge rapidly which affects the 

performance and efficiency of existing models specifically the 

unreachability of large datasets and unorganized data. This 

results in degraded efficiency for the identification of complex 

attacks. In this paper, data augmentation has been done of NSL-

KDD which is a standard dataset for Intrusion Detection Systems 

(IDS) specifically for IoT-based devices. The improvement in 

performance and efficiency of NIDS has been performed by 

training the augmented dataset using the K-Nearest Neighbor 

(KNN) ML model. 
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I. INTRODUCTION 

This section gives some background regarding the research 
presented in this paper along with a detailed problem statement 
followed by the objectives. 

A. Background 

The domain of Network security has become one of the most 
immensely important domain in the modern technological 
landscape because of various challenging threats, numerously 
increasing the risk factors. In this context, continuous counter- 
security measures have become the utmost need of modern-day 
technology that declares war against intruders and stabilizes the 
computer networks that are responsible for the protection of user 
information without compromising the entire network. Network 
Security has provided significant benefits with time in terms of 
various aspects like evaluation of security problems, practicing 
attack and defense, and enhancement of confrontation of 
network information. Network security plays a vital role and 
always needs room for improvement in terms of the efficiency 
and accuracy of intrusion detection techniques [10]. The use of 
wireless technology and the transmission of large amount of 
information over the networks has significantly increased 
security issues specifically in the emerging field of IoT. Network 
security has become the main point of concern and an effective 
and efficient Intrusion Detection System (IDS) has now become 
an essential need for traditional and IoT networks that provide 
countermeasures against rising threats in small and medium 
enterprises. 

Because of these reasons, Intrusion Detection Prevention 
Systems (IDPS) have become crucial for network security as 

they play a vital role in tackling threats. IDPS have become more 
powerful than ever ensuring the security of networks. 

B. Problem Statement 

The modern-day NIDS has various crucial shortcomings and 
drawbacks that degrade its ability to effectively handle cyber-
attacks. Majorly it lacks in authenticity and timely 
responsiveness of network threats in existing datasets that are 
used for training of NIDS. The frequent staling of these datasets 
is the main reason for identifying new threats as IDS models 
mainly rely on these datasets. 

Another major limitation regarding the current deployment 
of NIDS is expensive middleware applications that only monitor 
a certain portion of the entire network, whereas neglects 
monitoring of other segments. Data augmentation 
methodologies play a pivotal role in the training of machine 
learning models. On the other hand, various existing research 
has claimed the enhancement in the adaptability of models but 
still, the utilization of these augmentation techniques in cyber 
security poses problems. 

C. Objectives 

The main objective of this research is to produce a vigorous 
cyber threat detection system equipped with the tendency of 
auto-encoder based data synthesis and attack surface vector 
modeling [11]. Generative Adversarial Networks (GANs) [2] 
have the ability to enhance the attack detection performance of 
NIDS when datasets like NSL-KDD are incorporated into it. 
Utilization of GANs to produce the synthetic data, NSL-KDD 
can be extended using more assorted and accurate examples of 
network traffic that enhance the quality of trained models of the 
provided datasets. 

To authenticate the designed methodology, the NSL-KDD 
dataset has been selected as a vigorous baseline for this research. 
The dataset chosen has been proven globally in the field of 
networks due to its rational evaluation, reproducibility, and 
trustworthy capability of accomplishing theoretical 
amendments. The results generated by the selection of the 
above-mentioned dataset impact a concrete transferable theory 
that is not affected by dataset-specific limitations. Thus, the 
framework proposed in this research is more capable of being 
implemented on complex datasets resulting in the evolution of 
various network traffic scenarios. 

The idea of using generative model approaches and the NSL-
KDD in combination will enhance the capability to cater the 
challenges such as data misbalancing and overfitting in IDS. 
Training of augmented datasets with denser samples, the 
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performance can be enhanced against cyber-attacks, thus 
enhancing the model’s efficiency in detecting network threats. 

II. RELATED WORK 

In this section, all the related work was discussed in detail 
including NSL-KDD Dataset, various ML Models, GAN for 
augmentation of data, KNN Model, and gaps in existing 
research. 

A. Overview of NSL-KDD Dataset 

The NSL-KDD dataset is an enhanced version of the KDD 
Cup 1999 dataset that was developed to address the problems 
like redundancy and class imbalance [12]. It is capable of 
providing improved and reliable standards for evaluating the 
performance of Network Intrusion Detection Systems (NIDS). 
The dataset in KDD Cup 1999 consists of a large number of 
duplicate instances that create noise while training the machine 
learning models [14]. Due to this reason, NSL-KDD has an edit 
advantage in which the majority of duplicated records are 
considered redundant and are eliminated. This elimination of 
duplicate records provides more enhanced and refined data of 
network traffic, improving the capability to assess the 
performance of NIDS. 

There are 41 features in the NSL-KDD that are capable 
enough to capture the characteristics of network traffic. These 
characteristics include connection details, timing, transferred 
bytes, and payload content. These characteristics are further 
divided into structural, content, time-based, and host-based 
groups that help in attaining improved statistical and machine-
learning methodologies used for intrusion detection. The 
enhanced features of KDD-NSL such as addressing redundancy 
and balanced class distribution, improve the capabilities to 
detect common and rare attacks in NIDS [3][4]. Vast research 
has been carried out using this dataset for the development and 
testing of new algorithms, which further makes this dataset more 
relevant in the field of network security and intrusion detection. 

B. Machine Learning Models for Network Security 

Machine Learning Models are now playing a vital role in the 
domain of network security as they provide capabilities like 
detection of more unusual activities, attacks, and adjustments of 
cybersecurity systems. There are a large number of models for 
anomaly detection, some of the most popular used models are 
Auto encoders, Support Vector Machines (SVM), K-Nearest 
Neighbor (KNN), Random Forest Classifiers, Convolutional 
Neural Networks (CNN), Deep Neural Networks (DNN), 
Generative Adversarial Networks (GANs). 

Training the Wasserstein Generative Adversarial Network 
with Gradient Penalty (WGAN-GP) data augmentation [9] with 
the KNN model gives an enhanced result in the detection of 
cyber-attacks. The NSL-KDD dataset is being considered as the 
standard dataset for intrusion detection, sometimes agonizes 
from class imbalance. WGAN-GP, being a benchmark 
generative model addresses this issue by creating high-quality 
synthetic samples for diminished classes. This augmentation 
improves the diversity of the dataset, guaranteeing the training 
of ML models on illustrative data. The enhanced features of 
KNN such as instance classification depending upon 

neighborhood patterns make a perfect technique for this 
augmented dataset. 

 

Fig. 1. Workflow of GAN. 

The essence of this approach enhances its tendency to meet 
high accuracy and robustness in defending against cyber-
attacks. WGAN-GP produces the data with very less 
overfittings, sustaining the integrity of the distribution, which is 
vital in identifying attacks. The flexibility and interoperability 
of KNN ensure detection in diversified attack scenarios. 
Combining the WGAN-GP augmented dataset with the KNN 
model, the system becomes capable of addressing limitations of 
traditional detection methods like bad generalization and 
imbalance bias, which leads to a more enhanced cyber-attack 
detection system for real-world applications. 

Generative Adversarial Network (GAN) is one of the most 
proven model for generative learning that is divided into three 
main areas which are deep learning, generative models, and 
adversarial learning techniques [8]. GANs efficiently utilize 
deep learning networks for solving complex patterns. 

The objective function of the original WGAN is given in 
Eq. (1). 

𝓛𝑾𝑮𝑨𝑵 = 𝔼𝒙∼𝒑𝒅𝒂𝒕𝒂[𝑫(𝒙)] − 𝔼𝒛∼𝒑𝒛[𝑫(𝑮(𝒛))     (1) 

where, 

x is a sample from the real data distribution pdata, 

z is a noise vector sampled from a prior distribution pz, 

D(x) is the output of the critic for a real sample, 

D(G(z)) is the output of the critic for a generated sample. 

The Gradient Penalty of WGAN-GP can be mathematically 
defined in Eq. (2). 

𝓛𝑮𝑷 = 𝔼𝒙∼𝒑𝒛[(||𝛁𝒙𝑫(𝒙) ||𝟐 − 𝟏𝟐]            (2) 

where, 

�̂�  is a random sample, 

∇𝑥𝐷(�̂�) is the gradient of the critic 𝐷 concerning the input, 

||∇𝑥𝐷(�̂�) ||2 is the norm of gradient. 

The WGAN-GP loss function is expressed in Eq. (3). 

𝑳 = 𝔼[𝑫(𝒙)] − 𝔼[𝑫(𝑮(𝒛))] + 𝝀𝔼[(||𝛁𝑫(𝒙)||
𝟐

− 𝟏)
𝟐

(3) 

Eq. (3) is comprised of two parts; in the first part, the critical 
loss is referred while in the second part is related to the WGAN 
gradient penalty. This ensures maintaining stability while 
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training. The diagram in Fig. 1 explains the architecture of a 
WGAN-GP [13], presenting the generator and discriminator's 
roles in the production of high-quality synthetic data while 
differentiating it from real data. 

C. Generative Adversarial Network in Data Augmentation 

When it comes to data augmentation, GANs are proven to be 
the most relevant technique that increases the range and volume 
of data serving the machine learning model. 

GANs can produce suitable data distribution over the 
original dataset. Also, it can compensate the unusual situations 
where data is limited or unbalanced. Synthetic data, refers to 
different samples that are not present in data, for example, other 
viewpoint images in image data or samples of some neglected 
categories in categorical data. This permits to enhancement of 
the dataset by inculcating realistic synthetic samples and GANs 
in addition improves the overall performance of machine 
learning models and provides a better ability for generalization 
of data as illustrated in Fig. 1. GAN usage for augmentation of 
data is extensive and produced various advancements in 
multiple fields by synthetic data creation [6][7]. They can also 
be deployed in the analysis of network traffic, where they can be 
utilized in producing synthetic data that aids in creating 
enhanced models and is capable of identifying abnormalities in 
network systems. 

D. K-Nearest Neighbor (KNN) 

K-Nearest Neighbors (KNN) is a non-parametric, controlled 
learning algorithm that is popular for its classification and 
regression tasks. This algorithm functions by detecting the ‘k’ 
nearest data points known as neighbors within the featured space 
over a given input point. Also, it provides predictions either 
based on the majority class for classification or the average of 
their values for regression. Euclidean, Manhattan, or Minkowski 
distance metrics are being used to calculate the distance between 
two points. 

KNN is specifically beneficial in the detection of 
abnormality as it tends to detect data points that significantly 
diverge from their nearest neighbors. Abnormalities usually 
appear as data points with lesser or more detached neighbors as 
compared with normal data points. KNNs are very useful in 
multidimensional data handling, implementation simplicity, and 
flexibility. 

The mathematical equation of KNN can be given in Eq. (4): 

𝒅(𝒙, 𝒚) = √∑ (𝒙𝒊 − 𝒚𝒊)
𝟐𝒏

𝒊=𝟏                     (4) 

where, 

d is the distance between two points x and y in an n-
dimensional space. 

The formula for calculating the anomaly score is given in 
Eq. (5). 

𝑨𝒏𝒐𝒎𝒂𝒍𝒚 𝑺𝒄𝒐𝒓𝒆(𝒙) = 𝒅(𝒙, 𝒙(𝒌))        (5) 

where, 

𝑥(𝑘) is the kth nearest neighbor of (x). 

E. Gaps in Existing Research 

In the area of GANs, a wide research gap is still there. The 
research performed in this paper will try to cover these areas. 
The first and most important part is augmentation of data using 
GAN. The majority of studies on GAN focused on GAN in a 
general manner, rather than emphasizing the functionality. This 
research has been carried out with a focus on how GANs can be 
utilized extensively to handle new types of data. 

The methodology proposed in this paper focuses on practical 
ability by dimensionality reduction with WGAN-GP and Auto-
encoder. The performed research ensures uninterrupted 
translation to the operational environment. Also, it addresses the 
real-world scenarios for network traffic data in various ways. 
This research will result in providing effective ways to process 
the real-world data, with enhanced features like reduced 
dimensionality, and augmentation of data, as, the WGAN-GP’s 
framework is specifically trained to produce realistic network 
traffic. 

Observations show continuous improvements in the 
performance with the proposed methodology that is almost 
similar to real-world scenarios.  Various network environments 
can be adaptable to proposed design of WGAN-GP as it allows 
retraining the generator with domain-specific traffic data. For 
example, this design can be deployed on IoT and cloud-based 
infrastructures by modifying the training process for reflection 
of their unique characteristics. 

III. METHODOLOGY 

This section describes the complete methodology applied to 
the research. 

A. Data Description 

The dataset used for experimentation is the NSL-KDD 
dataset. It contains 84,952 entries with 28,318 reserved entries 
for validation. 

While considering the features and labels, the dataset 
contains similar properties. Every single record in the dataset has 
several parameters depicting multiple aspects of the network 
traffic. These features provide help in specific identification of 
the attacks in the behavior of the network. Preprocessing of data 
has been performed to identify the classification task to the 
binary decision [1] that is either “normal” or “attack”. Due to 
this binary transformation, intrusion detection has been more 
simplified specifying whether the ongoing activity is malicious 
or not. 

B. Data Preprocessing 

The preprocessing of data is the most important part as it 
transforms the data to be used by machine learning algorithms. 
Other processes that are associated with data preprocessing are 
data collection, data sanitization, and data normalization. The 
details of the process include data loading, data splitting, data 
validation, data testing, handling of numerical and categorical 
features, and reduction of dimensionality using auto-encoders. 
The data preprocessing process is further divided into the 
following steps. 

The first step is to import the NSL-KDD dataset, which is 
divided into two parts. One is referred to as the original dataset 
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containing 84,952 entries. The other one is referred to as a 
reserved dataset containing 28,318 entries. The remaining 
entries are referred to as test datasets for evaluating the model’s 
performance on new data. This technique empowers our 
research to minimize overfitting effects to train models for any 
unseen instances. 

The next step is scaling the features for numeric features and 
one-hot encoding for categorical features. In numeric features, 
the median strategy was used for imputing missing values. This 
was done to refrain from the mean value of numeric data so that 
it does not bend towards outliers. In categorical features, a one-
hot encoder class was used for each feature. The preprocessing 
technique was used to assign the use of a column transformer 
which introduces automation of their application to training and 
test datasets. 

The encoding dimension is constant throughout the 
experiment, to preserve the true spirit of feature representation 
and analyze the behavior of varying factors. Out of 100%, a 30% 
augmentation level has been represented to create a balance 
between sufficient variability and training data, preserving the 
integrity of the original labels. Also, diverse representations will 
be learned by the model without being overwhelmed with noise 
at 30%. This will further enhance the generalization capabilities. 
The quality of the synthetic data is evaluated using the 
Classification Model Utility approach. This method involves 
training a model on the original dataset and another on the 
combined original + synthetic dataset, then testing both models 
on the same validation dataset. Improved performance on the 
validation dataset indicates the synthetic data's 
quality and utility [5]. The augmentation level increased to 50% 
enhances variability without introducing out-of-distribution 
issues. 

The next step is the generation of data. It comprises three 
phases that include optimization of the constructed model, new 
synthesized data was produced using WGAN-GP. 

The next step is the setup of the WGAN-GP model. This 
setup comprises two major components, the generator and the 
discriminator. The generator produces data that resembles with 
input dataset. The discriminator determines whether the 
generated data is fake or real. While training the WGAN-GP, 
numerous iterations were performed through many epochs. The 
generated data was still transformed and in scaled format, it was 
necessary to untransformed it to bring it back into its original 
feature space. 

The final step is the merging of synthesized data with 
existing data. 

The hyper-parameters and their functionality are as follows: 

 Learning Rate: Controls the weight update per iteration, 
enhancing the speed and stability of training. 

 Num Epochs: Determines the count for seeing the entire 
dataset by the model of the training process. 

 Critic Iterations: Number of updates for the critic 
(discriminator) per generator update, affecting model 
stability. 

 Lambda GP: It is the coefficient of gradient penalty that 
ensures that makes sure normalization of the gradient to 
stabilize the training. 

The deviation in hyper-parameters shows a major difference 
in WGAN-GP performance. Table I depicts the response of the 
model over the selected algorithm and parameter. The fluctuated 
parameters during the experiment are shown in Table I. 

TABLE I.  VARIATION IN HYPER-PARAMETER 

Instance 
Hyper-Parameter Configuration 

Learning Rate Num of Epochs 
WGAN Augment 

% 

X1 2.00E-04 100 30% 

X2 1.00E-04 100 30% 

X3 5.00E-05 100 30% 

X4 2.00E-04 50 30% 

X5 1.00E-04 50 30% 

X6 5.00E-05 50 30% 

C. Performance Metrics 

The parameters applied on WGAN-GP for examining the 
performance are as follows: 

1) Accuracy (ACC): It is considered the most important 

parameter in evaluating the model’s performance. This metric 

evaluates the number of samples for correct prediction over the 

number of all samples. The formula for calculating this metric 

is given in Eq. (6). 

𝑨𝑪𝑪 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
                 (6) 

2) Recall: This parameter refers to the ability of the model 

to predict positive samples. This is calculated by dividing the 

number of samples that are categorized as true positive overall 

positive samples. The formula for calculating this metric is 

given in Eq. (7). 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
                  (7) 

3) Precision: In this parameter, true positive identified the 

number of samples over several samples that are predicted as 

positive. Eq. (8) calculates the precision. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
                      (8) 

 

4) F1_score: In this parameter, the recall and precision are 

combined into a single metric. This is called the harmonic mean 

of recall and precision. Eq. (9) calculates the F1_score. 

𝑭𝟏_𝒔𝒄𝒐𝒓𝒆 =
𝟐×𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
                (9) 

5) Matthews correlation coefficient (MCC): This 

performance parameter is considered the best metric for binary 

classification. It combines all parts of the confusion matrix. The 

equation for calculating this metric is given in Eq. (10). 
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𝑴𝑪𝑪 =
(𝑻𝑷×𝑻𝑵)−(𝑭𝑷×𝑭𝑵)

√(𝑻𝑷+𝑭𝑷)×(𝑻𝑷+𝑭𝑵)×(𝑻𝑵+𝑭𝑷)×(𝑻𝑵+𝑭𝑵)
     (10) 

D. Model Training 

While training the models, various ML Models have been 
considered on encoded information generated from auto-
encoder. K-Nearest Neighbor (KNN) has been shortlisted from 
various models. The parameters for selecting this model were its 
applicability in classifying the tasks. 

Algorithm 1: Machine Learning Model for Predictions 

Initialize (train_set, validate_set) 

Step 1: Import K-Nearest Neighbor (KNN) instances from the scikit-
learn library  

Step 2:  

 If (train_set: == X_train_encoded) then 

 Train model on X_Train_Encoded 

 Else 

 Train model on X_Train_Augmented 

 End 

Step 3: Predict the imported models on Validate_Set 

Step 4: Evaluate the models on the following performance metrics 

a. Accuracy 
b. Precision 
c. Recall 
d. F1 score 
e. MCC 

Step 5: Export the performance metrics in the CSV file 

End 
 

The machine learning model can be categorized into two 
stages. First is training of the model and second is validation of 
the model. The step-by-step processing of the research algorithm 
is presented in Algorithm 1. This algorithm gives a method for 
comparing the accuracy of the models and various parameters 
for evaluation using the encoded validation dataset to assess the 
possibility of identifying cyber-attacks. 

K-Nearest Neighbor (KNN) ML model is used in this 
research. KKN Algorithm is known for its simplicity and 
instance-based machine learning which makes it suitable for 
tasks like classification and regression. This algorithm operates 
in a manner that compares a new data point with its nearest 
neighbors in the featured space. The “K” is the number of 
considerable neighbors. The label of the new point is determined 
by classifying the most common class from corresponding K 
neighbors. Regression is achieved by averaging the neighbors’ 
values that are used to predict the output. 

Another reason for using KNN was its non-parametric 
feature. In this feature, assumptions were not made regarding 
data distribution. The other features of this model like simplicity 
and effectiveness for handling non-linear relationships make this 
algorithm the most suitable choice for tasks like pattern 
recognition, recommendation systems, and anomaly detection. 
However, the performance of KNN depends on the selection of 
K and the distance metric (e.g., Euclidean, Manhattan), along 
with the size and quality of the dataset. 

E. WGAN-GP Augmented Data Training and Validation 

The blending of WGAN-GP synthesized data with the NSL-
KDD dataset [30], poses a great impact on the performance of 

the model. The model training starts with the preprocessing of 
raw datasets, which is the most important process that ensures 
that the data is ready for model training. Also, further processes 
like imputation, scaling, and encoding were performed on the 
augmented data. 

After the completion of preprocessing on augmented data, 
the next step was to update of machine learning model. The 
subset of the model used in the training process is replicated for 
the update process. The training of the model was performed on 
the same metrics used in the dataset training process. Those are 
accuracy, precision, recall, F1-score, and Mathews Correlation 
Coefficient (MCC). Using these metrics, performance was 
assessed after training the model. 

Once the KNN model training is completed, the next step is 
to apply the trained model to encoded validation data. The 
metrics for analyzing the performance are the same as in 
previous steps. The use of the validation model trained from the 
WGAN-GP augmented dataset is the most important factor in 
assessing the generalization capabilities of the trained model 
from the augmented datasets. 

By observing the performance of the model on the validation 
dataset, the quality of the synthetic dataset was accounted for. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

Table II shows the performance evaluation of the trained 
model with original data and augmented data. The datasets were 
evaluated on five performance metrics as described in 
Algorithm 1 step 4. The values of performance parameters 
present significant and effective results. These results can be 
used to draw a meaningful conclusion. 

On the original dataset, the provided metrics reflect the 
mixed performance of the model. 64.77% of accuracy specifies 
the classification of the instances in the model is an average of 
two-thirds. Nevertheless, considering accuracy alone can 
mislead, especially while dealing with imbalanced datasets. The 
precision value of 0.7376 depicts that the prediction of a positive 
outcome by the model is 73.76% correct, resulting in a reduced 
false positive rate. As far as recall is considered, the 0.6477 
value highlights the capturing of actual positive cases by the 
model up to 64.77%, leaving a significant number of false 
negatives. The F1 score, which provides a balanced measure 
between precision and recall, with 0.5594, reflects an imbalance 
relation between these two metrics. This reflects the struggle of 
the model to maintain an optimal trade-off between precision 
and recall. Moreover, MCC which covers all aspects of the 
confusion matrix, is 0.26467. This depicts the model has 
limitations in prediction, performing slightly better than random 
guessing. 

With an augmented dataset, the performance metrics show 
variable performance for various hyper-parameter 
configurations. These performances are presented in the form of 
graphs in Fig. 2 to 6. Instance X1 provides average recall at 
59.11%, but looking at precision (45.12%) and F1 score 
(44.69%) gives a high false positive rate, whereas negative MCC 
(-0.0328) means that the performance of the model is overall 
weak. On the other hand, instance X2 results as the most 
improved, enhanced, and efficient model. The highest level of 
accuracy (79.74%), precision (0.8352), recall (0.7974), and F1 
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score (0.7988) having the strongest MCC (0.6297), depicts the 
overall best performance providing balanced and reliable 
predictions. X3 performance is considered to be an average 
performance having an accuracy of 60.21%, precision at 0.5895, 
and recall at 0.6021. However, lower F1_score (0.4886) and 
MCC (0.0722) show that there is room for improvement. 

By analyzing the provided parameters of X4, the 
performance of the model seems to be poor with an accuracy of 
38.21%, precision at 0.3656, and recall at 0.3821. The results of 
F1_score (0.3728) and negative MCC (-0.3152), indicate the 
predictions very near to random guessing. The worst 
performance results can be seen in the X5 instance with very low 

accuracy (13.09%), precision of 0.1489, and recall (0.1309). The 
F1_score (0.1373) and highly negative MCC (-0.7379) show 
extremely unreliable predictions. The X6 instance results same 
as X1 depicting average recall (0.5899), low precision (0.4625), 
F1 score of 0.4485, and nearly zero MCC (-0.0321), indicating 
poor predictive power. 

In a nutshell, instance X2 is considered to be the most 
significant as compared to other hyper-parameter configurations 
providing a strong balance between precision and recall. X1 and 
X6 can be considered as average while, X4 and X5 require major 
improvements. 

TABLE II.  OVERALL PERFORMANCE OF DIFFERENT HYPER-PARAMETERS WITH KNN AS A CLASSIFIER 

Instance Data Model 
Hyper-Parameter Configuration 

Accuracy Precision Recall F1 Score MCC 

Original Dataset Original Dataset 64.77% 0.737635 0.647655 0.559395 0.264674 

X1 

Augmented Dataset 

59.11% 0.451186 0.591118 0.446918 -0.03282 

X2 79.74% 0.835227 0.797432 0.798767 0.62967 

X3 60.21% 0.589498 0.60214 0.488586 0.072174 

X4 38.21% 0.365578 0.382094 0.372804 -0.31518 

X5 13.09% 0.148879 0.130908 0.137281 -0.73789 

X6 58.99% 0.462506 0.589905 0.44854 -0.03214 

 

Fig. 2. Accuracy performance. 

 

Fig. 3. Precision performance. 
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Fig. 4. Recall performance. 

 

Fig. 5. F1_score performance. 

 

Fig. 6. MCC performance. 
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Fig. 7. Correlation heatmap between epoch and hyperparameters. 

 

Fig. 8. Correlation heatmap between performance metrics and 

hyperparameters. 

V. CONCLUSION 

The performance analysis of KNN using various hyper-
parameter configurations shows unique trends in deciding which 
configuration is suitable for enhanced performance of machine 
learning classifier. KNN was found to be more sensitive in 
selecting hyper-parameters, resulting in great variability, with 
some configurations resulting in poor performance. Dataset 
augmentation improves performance in general. However, it is 
essential to how hyper-parameter values are combined. The 
optimistic combination of hyper-parameter values for data 
augmentation will leverage the performance of the machine 
learning algorithm. Also, from the graphs shown in Fig. 2 to 6, 
it can be concluded that the increment in epoch value increases 
the chance of performance as compared to lower epoch values. 
By analyzing the heat map correlation matrix in Fig. 7 and 8, a 
value of 0.7 implies a strong positive correlation between the 

two variables. This concludes that variables have a direct 
relationship: as one variable increases, the other tends to 
increase as well. 

The research in this paper presents a focused approach to 
enhancing the capabilities of Network Intrusion Detection 
Systems (NIDS) through improvement in learning capacity 
using advanced generative methods like WGAN-GP for 
augmentation of the dataset. In addition, resource-constrained 
environments can be considered for future experiments that will 
help in determining the practical implementation of these 
techniques in real-time IoT-based applications. Future 
enhancement of this research can be done by comparing 
different augmentation techniques on diversified datasets that 
will enhance the adaptability and robustness of NIDS. 
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