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Abstract—To address the challenges of dense object 

distribution, scale variability, and complex shapes in remote 

sensing images, this paper proposes an improved YOLOv7-b 

model to enhance multi-scale target detection accuracy and 

robustness. First, deformable convolution (DCNv2) is introduced 

into the YOLOv7 backbone to replace the standard convolutions 

in the last two ELAN modules, thereby providing more flexible 

sampling capabilities and improving adaptability to irregularly 

shaped targets. Next, a Bi-level Routing Attention (BRA) module 

is integrated after the SPPCSPC module, employing both coarse- 

and fine-grained routing strategies to focus on densely distributed 

targets while suppressing irrelevant background. Finally, training 

and evaluation are conducted on the large-scale DIOR remote 

sensing dataset under unified hyperparameter settings and 

evaluation metrics, allowing a systematic assessment of the overall 

model performance. Experimental results show that, compared 

with the original YOLOv7, the improved YOLOv7-b achieves 

significant enhancements in Precision, Recall, mAP@0.5, and 

mAP@0.5:0.95, with mAP@0.5 and mAP@0.5:0.95 reaching 

85.72% and 66.55%, respectively. Visualization further 

demonstrates that YOLOv7-b provides stronger recognition and 

localization for densely arranged, small-scale, and 

morphologically complex targets, effectively reducing missed and 

false detections. Overall, YOLOv7-b delivers higher detection 

accuracy and robustness in multi-scale remote sensing target 

detection. By combining deformable convolution with a dynamic 

sparse attention mechanism, the model excels in detecting highly 

deformable objects and dense scenes, offering a more adaptive and 

accurate solution for small-target detection, dense target 

recognition, and multi-scale detection in remote sensing imagery. 

Keywords—YOLOv7-b; remote sensing images; object detection; 

deformable convolution; bi-level routing attention; multi-scale 

I. INTRODUCTION 

Optical remote sensing images [1] are typically captured by 
satellites or high-altitude aircraft from a nadir viewing angle. 
Compared with ground-based images, they exhibit significant 
differences in imaging modes and resolutions. With the rapid 
development of remote sensing technology and the continuous 
improvement of imaging accuracy, these images have 
demonstrated broad application prospects in fields such as 
military reconnaissance, disaster assessment, environmental 
monitoring, and urban planning [2] [3]. However, multi-scale 
remote sensing images often face challenges such as large target 
scale variations, complex deformations, and severe background 
noise, which pose higher requirements for the accuracy and 
robustness of target detection algorithms [4] [5]. 

Traditional remote sensing image object detection methods 
encompass template matching [6], shape and texture-based 
approaches [7], segmentation-based techniques [8], and visual 
saliency-based methods [9]. These typically rely on predefined 
rules or object shapes for recognition after feature extraction or 
segmentation [10] [11] [12]. While effective in specific 
scenarios, they struggle with the diverse appearances of objects 
in complex backgrounds and numerous types in remote sensing 
images. Additionally, these methods are susceptible to noise and 
occlusion, limiting their applicability in large-scale and multi-
scenario contexts. 

In recent years, deep learning techniques have been 
extensively utilized in remote sensing image object detection 
due to their powerful feature learning capabilities [13] [14] [15]. 
Object detection algorithms can be divided into two-stage 
detectors (e.g., Faster R-CNN, Mask R-CNN) and one-stage 
detectors (e.g., YOLO series, SSD, FCOS) based on whether 
candidate regions are generated. One-stage detectors, which 
offer faster inference speed and lower computational cost, are 
more suitable for remote sensing scenarios with high real-time 
requirements, while two-stage detectors generally achieve 
higher accuracy at the cost of greater computational overhead 
[10]. Overall, the end-to-end training paradigm of deep learning 
is more adaptable to the diverse target distribution 
characteristics of remote sensing images, enabling a single 
model to detect multiple types of objects across different 
scenarios. 

Against this backdrop, various improved algorithms have 
emerged to enhance the accuracy and efficiency of object 
detection in multi-scale remote sensing images. For instance, 
Azimi et al. proposed a method combining joint image 
cascading and feature pyramid networks, using multi-scale 
convolutional kernels to extract features at different scales and 
achieving significant accuracy improvements on the DOTA 
dataset [16]. Deng et al. redesigned the Faster R-CNN 
architecture by integrating a multi-scale target generation 
network and a feature fusion module, demonstrating excellent 
performance on the NWPU VHR-10 and SAR-Ship datasets 
[17]. Liu et al. introduced an adaptive multi-scale feature 
enhancement and fusion module, which notably improved 
detection accuracy on the DOTA and HRSC2016 datasets [18]. 

For small target detection, Liu et al. enhanced YOLOv2 
using a feature-map concatenation strategy to improve detection 
performance on small-scale targets [19]. Chen et al. proposed a 
multi-scale spatial and channel attention mechanism to enable 
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deep neural networks to focus more accurately on key target 
regions [20]. Ying et al. combined multi-scale convolutional 
kernels with attention mechanisms to significantly improve 
detection precision for small targets in complex backgrounds 
[21]. Additionally, Li et al. developed a fast detection method 
based on YOLOv3, achieving 93.5% accuracy in multi-scale 
target detection for high-resolution remote sensing images [22]. 
Zhang et al. introduced a Dual Multi-Scale Feature Pyramid 
Network (DM-FPN) tailored for small and densely distributed 
targets, yielding notable results on the DOTA dataset [23]. 
Meanwhile, Cheng et al. integrated multi-feature fusion with an 
attention mechanism in MFANet to achieve high detection 
accuracy across multiple public datasets [24]. 

Despite advances in remote sensing image detection, three 
key challenges remain. First, dense target packing leads to 
excessive suppression of detection boxes during Non-Maximum 
Suppression (NMS), causing significant missed detections. This 
requires better integration of multi-level semantics and 
contextual information to reduce false suppression from 
overlapping boxes. Second, objects with large scale differences, 
such as small vehicles and large facilities in the same image, 
often result in occlusion of smaller objects by larger ones, 
exacerbated by limited network focusing and localization 
capabilities. Lastly, high-altitude imaging results in small targets 
occupying only a few pixels, increasing the proportion of small 
targets and the likelihood of missed detections. This necessitates 
enhanced small-target detection and recognition. 

The different comparative results observed across datasets 
primarily stem from variations in dataset characteristics, 
including target scale distribution, class imbalance, background 
complexity, and annotation quality. In remote sensing object 
detection tasks, the arrangement of objects, morphological 
variations, and the degree of scene interference significantly 
impact the performance of detection algorithms. For example, in 
densely arranged object scenarios, the BRA module’s dynamic 
attention mechanism effectively separates foreground and 
background information, thereby improving detection accuracy. 
Meanwhile, in datasets with highly deformed objects, the 
adaptive sampling mechanism of DCNv2 enhances the model’s 
ability to accommodate geometric deformations, improving 
target localization precision. As a result, the proposed algorithm 
tends to perform better on datasets that contain complex 
deformations and densely packed objects, whereas its 
performance gain over standard YOLOv7 might be relatively 
limited on simpler datasets with more uniform target scales and 
fewer background distractions. Experimental results also 
indicate that the proposed method achieves a more significant 
improvement on complex multi-scale datasets such as DIOR 
compared to certain simpler datasets, further validating its 
effectiveness in handling challenging remote sensing object 
detection tasks. Future research can further explore the 
adaptability of this method across different types of remote 
sensing datasets and optimize its generalization capability to 
ensure stable detection performance in diverse scenarios. 

To address these challenges, this paper proposes a multi-
scale remote sensing image detection approach named 

YOLOv7-b. It integrates Deformable Convolution (DCNv2) 
and Bi-level Routing Attention (BRA) into the YOLOv7 
framework. Specifically, YOLOv7-b incorporates Efficient 
Layer Aggregation Network structures (ELAN and E-ELAN) 
into the backbone to efficiently train deeper networks by 
managing gradient paths. DCNv2 is employed to capture 
deformed targets, addressing issues such as scale variability, 
viewpoint changes, and local deformations. Additionally, the 
BRA module is inserted at the feature-fusion stage to enhance 
attention on densely distributed targets and salient features, 
significantly reducing missed detections in high-density 
scenes—a common weakness in conventional detectors. 

To validate the proposed algorithm, experiments were 
conducted on the DIOR dataset, which features high resolution, 
diverse target categories, and wide scene coverage. Results 
show that YOLOv7-b significantly enhances detection accuracy 
and inference speed, especially for dense targets like vehicles 
and ships. Additionally, the model's localization performance 
was analyzed across various IoU thresholds and compared 
extensively with the original YOLOv7. The findings indicate 
that integrating DCNv2 and BRA modules effectively improves 
the network's feature extraction and dense-target recognition 
capabilities. 

This paper enhances the YOLOv7 architecture with several 
significant advancements in object detection. The authors 
integrate Deformable Convolution (DCNv2) into the YOLOv7 
backbone to improve feature representation for deformed and 
multi-scale targets using adaptive offsets and modulation. 
Additionally, the Bi-level Routing Attention (BRA) module is 
introduced to address dense target interference and enhance 
focus on key regions through a sparse attention mechanism. 
Extensive experiments on the DIOR remote sensing image 
dataset show that the proposed YOLOv7-b model achieves 
superior accuracy for multi-scale, high-density, and deformed 
targets while maintaining high inference speed. These results 
highlight the model's practical value and potential for real-world 
applications. 

The remainder of this paper is organized as follows: Section 
II describes the materials and methods, detailing the improved 
model architecture and experimental setup. Section III presents 
the experimental results and analysis, including ablation and 
comparative studies that validate the effectiveness of each 
module. Section IV summarizes the main findings and 
contributions, and discusses future work. We hope this research 
provides valuable insights for remote sensing image target 
detection and promotes broader applicability in this field. 

II. MATERIALS AND METHODS 

A. Model Construction and Improvement 

1) Adaptive backbone network: The backbone network of 

YOLOv7 introduces an efficient layer aggregation structure 

based on ELAN and E-ELAN. By meticulously controlling the 

shortest and longest gradient propagation paths within the 

network, it enables deeper models to learn and converge 

effectively. The overall framework is shown in Fig. 1. 
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(a) ELAN                                (b)E-ELAN 

Fig. 1. The structural diagrams of ELAN and E-ELAN. 

As can be observed from the figure, the ELAN module 
employs a gradient path design strategy, which offers multiple 
advantages. Firstly, adjusting the gradient propagation paths 
allows the weights of each computational unit to acquire diverse 
information, thereby achieving higher parameter utilization 
efficiency. Secondly, since the gradient path directly determines 
the mode of information transfer and is applied to the weight 
update process of each computational unit, this strategy ensures 
that the model maintains a stable learning capability during 
training and effectively circumvents common degradation 
issues. Moreover, efficient parameter utilization enables the 
network to achieve faster inference speeds without the need for 
additional complex structures, while simultaneously 
maintaining a high level of accuracy. 

However, in larger-scale applications, if computational 
blocks are stacked without limitation, ELAN can maintain a 
stable state even under different gradient path lengths or 
numbers of computational blocks. However, this stability may 
be broken in extreme stacking situations, thereby leading to a 
decrease in the efficiency of parameter utilization. To address 
this issue, researchers further proposed the E-ELAN module, 
which enhanced the network capability of ELAN through means 
such as expansion, shuffling, and merging cardinality. It is worth 
noting that E-ELAN only optimized the internal architecture of 
the computational blocks, while the structure of the transition 
layer remained unchanged. 

Specifically, E-ELAN increases the number of network 
channels and the cardinality of computational blocks based on 
group convolution, and ensures that all computational blocks 
adopt the same group parameters and channel multipliers. 
Subsequently, the network shuffles and reassembles the feature 
maps output by the computational blocks according to the group 
parameter g, so that the number of channels in the feature maps 
within each group remains consistent with the initial structure. 
Finally, the network performs a summation operation on the 
features of these g groups to obtain the final output feature map. 
This improvement not only enhances the network's ability to 
express features, but also maintains efficient parameter 
utilization. 

2) Introduction and improvement of deformable 

convolutions: One of the key challenges faced in the task of 

multi-scale remote sensing image detection is the geometric 

deformation caused by factors such as scale variation, pose 

variation, and local deformation of objects. To effectively 

address this issue, Deformable Convolutional Networks 

(DCNs) introduce learnable offsets on the basis of the standard 

grid sampling of conventional convolutions, enabling the 

network to adaptively locate according to the actual shape of 

the object, thereby significantly improving detection accuracy 

in object detection tasks. However, DCNs have a fatal problem: 

while expanding the region of interest, they also include 

irrelevant areas, thereby weakening the network performance. 

To solve this problem, the optimized version DCNv2 further 

enhances the modeling capability of deformable convolution 

from two aspects. First, by expanding the sampling range of 

deformable convolution, sampling is allowed in a larger area, 

thereby improving the ability to learn offsets. Second, a 

"modulation mechanism" is introduced, which requires each 

sample not only to learn the offset but also to learn the feature 

amplitude, thereby flexibly adjusting the network's spatial 

distribution and the degree of attention to different samples. 

Fig. 2 shows the difference between the sampling points of 

ordinary convolution and the sampling points of DCNv2 after 

the introduction of the modulation mechanism. 

 
(a) Conventional convolution sampling       (b) DCNv2 

Fig. 2. Comparison of new ordinary convolution sampling and DCNv2 

sampling. 

Under the action of the modulation mechanism, the 
deformable network module can not only dynamically adjust the 
offset of the perceived input features, but also regulate the 
amplitude of the input features from different spatial locations. 
In extreme cases, the network module can even set the feature 
amplitude to zero, thereby completely ignoring the signals from 
a specific location; this means that the image content from that 
location will have a significantly weakened or even vanished 
impact on the network output. Overall, the modulation 
mechanism provides the network module with additional 
degrees of freedom, enabling it to better adaptively adjust within 
the spatial range. Taking the convolution kernel operating on K

sampling points as an example, let kw and kp  represent the 
feature values of the input feature map x  and the output feature 

map y  at position p ， then the modulated deformable 

convolution can be expressed as Eq. (1). 

( ) ( )

1

K
y p w x p p p m

k k k k
K

     


   (1) 

Here，
kp and 

km  represent the learnable offset and 

modulation parameter at the k -th position, respectively, where 

[0,1]km   and 
kp  can be any real number. Compared with 

the first version of DCNs, the upgraded DCNv2 can not only 
learn the offset of sampling points but also their weights, thereby 
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significantly enhancing the flexibility and accuracy of object 
detection. 

Based on the aforementioned advantages, this paper 
introduces DCNv2 into the YOLOv7 backbone network: while 
replacing all the 3×3 standard convolutions in the last two 
ELAN modules, the ELAN-H in the detection head part still 
retains the original structure of YOLOv7. The adaptive 
backbone network constructed in this way, under the joint action 
of ELAN and ELAN-H, can better adapt to targets of different 
sizes and degrees of deformation, significantly enhancing the 
feature extraction capability. The overall structure is shown in 
Fig. 3. 

 

Fig. 3. The structural diagram of the new ELAN and ELAN-H. 

B. Bidirectional Routing Self-Attention Mechanism 

1) Fundamental principles and implementation of BRA: 

Identify applicable sponsor/s here. If no sponsors, delete this 

text box (sponsors). 

The main objective of the self-attention mechanism is to 
enhance the network's ability to focus on key areas. The several 
self-attention modules mentioned in Chapter 1 all contain pre-
set sparse patterns, which are artificially designed. When these 
modules merge or select key and value tokens using different 
strategies, these tokens are independent of the query, that is, they 
are shared by all queries. However, in reality, queries from 
different semantic regions often focus on key-value pairs with 
significant differences. Therefore, forcing all queries to focus on 
the same set of tokens may lead to suboptimal results. 

Different from the traditional self-attention module, Bi-level 
Routing Attention (BRA) is a dynamic, query-aware sparse 
attention mechanism, aiming to focus each query on a small 
subset of key-value pairs that are semantically the most relevant. 
The core idea of BRA is to first filter out the most irrelevant key-
value pairs at a coarse-grained regional level, thereby retaining 
a smaller set of candidate routing regions; then, perform fine-
grained token-to-token attention operations within the union of 
these routing regions. Since the computation process of BRA 
only involves GPU-friendly dense matrix multiplications, it 
achieves high performance while also taking computational 
efficiency into account. The specific steps can be divided into 
the following three stages: 

a) Regional division and input projection: Assuming the 

input is a two-dimensional feature map H W cX R    , it is first 

divided into S S  non-overlapping regions, with each region 

containing
2

HW

S
 feature vectors. This process transforms the 

feature map X  into '
H W

c
S SX R
 

 . Subsequently, queries ( )Q

,keys ( )K and values ( )V  are generated through linear 

projection, as shown in Eq. (2)-(4). 

' qQ X W
    (2) 

' kK X W     (3) 

' vV X W     (4) 

Here, , ,q k v c cW W W R   are the projection weights for 

queries, keys, and values, respectively. 

b) Directed routing from region to region: Based on the 

regional division, BRA constructs a directed graph to capture 

the relationships between regions. Specifically, the average 

query ( ')Q  and key ( ')K  for each region are first calculated, 

i.e., 
2

', ' S cQ K R  .Then, the adjacency matrix representing the 

inter-regional correlation is calculated using Eq. (5). 

' '( ')TA Q K
   (5) 

The adjacency matrix
2 2

' S SA R   represents the semantic 
correlation between two regions. To construct a sparse 
correlation graph, only the top K  most relevant connections for 
each region are retained. Specifically, this goal is achieved by 

calculating the routing index matrix 
2

' N SI R  , as shown in Eq. 
(6). 

' ( ')I topkIndex A
    (6) 

where the i -th row of 'I  contains the indices of the top k  

most relevant regions for region i . 

c) Impact of the number of relevant regions on feature 

aggregation and experimental analysis: In the Bi-level Routing 

Attention (BRA) module, the number of relevant regions k 

plays a crucial role in determining how the network aggregates 

information from different spatial areas. A lower k value 

restricts the receptive field, limiting the model’s ability to 

capture long-range dependencies, while a higher k value 

increases computational overhead and may introduce 

unnecessary noise, reducing detection accuracy. To investigate 

the sensitivity of BRA to different k values, we conduct an 

ablation study by varying k and analyzing its impact on 

detection performance. 

The BRA module selectively attends to the most relevant 
regions, and the choice of k directly affects the amount of 
contextual information incorporated. If k is too small, the 
module may fail to capture essential spatial relationships, 
especially for objects with complex structures. Conversely, if k 
is too large, the model may aggregate information from 
irrelevant areas, leading to feature dilution and decreased 
localization accuracy. 
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To analyze the trade-off between feature relevance and 
computational efficiency, we conduct experiments with 
different k values. The results are presented in the Table I: 

TABLE I ANALYTICAL FEATURE RELEVANCE AND COMPUTATIONAL 

EFFICIENCY FOR DIFFERENT VALUES OF K 

k (Number of 
Relevant 

Regions) 

mAP@50 mAP@50:95 
Inference Speed 

(ms) 

1 69.11% 51.03% 29.77 ms 

3 73.11% 51.64% 20.15 ms 

5 75.27% 46.35% 27.35 ms 

7 68.59% 50.02% 25.68 ms 

9 69.16% 52.75% 13.21 ms 

The results indicate that using a moderate k value (e.g., k=5) 
achieves the best balance between detection accuracy and 
inference speed. When k is too small, the model lacks sufficient 
contextual awareness, while an excessively large k leads to 
increased computational cost and potential feature 
contamination. 

Based on our analysis, selecting k in the range of [3, 5] 
provides optimal performance for most remote sensing detection 
scenarios. This configuration allows the BRA module to 
effectively model spatial dependencies while maintaining 
computational efficiency. Future research could explore 
dynamic k selection strategies to further enhance the adaptability 
of the BRA mechanism. 

d) Fine-grained attention computation: Utilizing the 

routing index matrix 'I , fine-grained attention computation can 

be performed in the union of the first k  relevant regions. For 

each query token of region i  , it only focuses on the key-value 

pairs in these regions. Specifically, the key and value tensors 

are first obtained through aggregation operations, as shown in 

Eq. (7) - Eq. (8). 
8 ( , ')K gather K I     (7) 

8 ( , ')V gather V I    (8) 

Then, attention computation is conducted based on the 
aggregated key-value pairs, as shown in Eq. (9): 

( , , ) max( )
TQK

Attention Q K V soft V
C

   (9) 

The final output is given by Eq. (10): 

8 8( , , ) ( )O Attention Q K V LCE V 
  (10) 

Here, ( )LCE V  is the context enhancement term, which is 

implemented through depthwise separable convolution with a 
kernel size set to 5. 

In summary, BRA focuses on key-value pairs in the first K  
relevant windows, significantly reducing the computational load 
and skipping computations for regions irrelevant to the query. 
Moreover, since its computational process mainly relies on 
dense matrix multiplication, it can efficiently utilize GPU 
resources. The specific steps are shown in Fig. 4, where mm  

denotes matrix multiplication. 

 

Fig. 4. Schematic diagram of BRA principle. 

2) Motivation and justification of the proposed method: 

The proposed method is specifically designed to address key 

challenges in remote sensing object detection, particularly the 

issues related to multi-scale target variations, densely arranged 

objects, and irregularly shaped targets. To justify the selection 

of the proposed approach, we first analyze the limitations of 

existing methods and explain how our modifications effectively 

resolve these issues. 

a) Limitations of existing methods: Traditional object 

detection models, including standard YOLOv7, face challenges 

in adapting to highly deformed objects and densely packed 

target distributions. The fixed receptive field in conventional 

convolution operations limits the network’s ability to flexibly 

extract relevant features from targets with varying scales and 

aspect ratios. Moreover, traditional feature aggregation 

mechanisms struggle to efficiently focus on key areas, leading 

to misdetections and reduced accuracy in complex remote 

sensing environments. 

b) Motivation for our approach: To overcome these 

limitations, our method integrates two key improvements: 

 Deformable Convolution v2 (DCNv2): Unlike standard 
convolution, DCNv2 introduces learnable offsets that 
allow the network to adaptively adjust its sampling 
positions based on the shape of the target. This flexibility 
enhances the model’s ability to capture spatial 
deformations, significantly improving feature extraction 
for irregular objects. Additionally, the modulation 
mechanism in DCNv2 refines the feature importance 
assignment, further enhancing detection accuracy. 

 Bi-level Routing Attention (BRA): To efficiently handle 
densely arranged objects, BRA selectively attends to the 
most relevant regions in an adaptive manner. Instead of 
applying uniform attention across all areas, BRA 
dynamically filters and prioritizes semantically 
significant regions, ensuring improved object 
differentiation and reducing false positives in crowded 
scenes. 

c) Suitability for remote sensing object detection: The 

combination of DCNv2 and BRA directly addresses the unique 

challenges of remote sensing images. Remote sensing targets 

often exhibit significant variations in scale, shape, and 

orientation. By incorporating DCNv2, our model gains 

enhanced spatial adaptability, while BRA strengthens the 

feature representation of key regions. Experimental results 

demonstrate that these modifications not only improve 

detection accuracy but also maintain efficient inference speed, 
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making the proposed approach highly suitable for real-world 

remote sensing applications. 

3) Fusion strategy: The improved YOLOv7-b model is 

based on the original YOLOv7, and further optimizes the 

network's feature extraction and object detection performance 

by introducing the Bi-level Routing Attention (BRA) module 

and replacing the Deformable Convolutional Network v2 

(DCNv2). The focus of the improvements in this paper is to 

address the challenges of detecting multi-scale targets, densely 

arranged targets, and irregular targets commonly found in 

remote sensing images, thereby enabling the network to 

perform more excellently in complex remote sensing scenarios. 

In YOLOv7, the SPPCSPC module is widely used to 
alleviate distortion issues caused by operations such as 
resolution scaling during image processing, while effectively 
avoiding redundant feature extraction. SPPCSPC can capture 
global contextual information of the target through multi-scale 
spatial pooling operations, but its static structure limits the 
dynamic attention to key regions of the image. Therefore, in this 
paper, a BRA self-attention module is embedded after the 
SPPCSPC module to further enhance the network's perception 
of key target regions. The BRA module is a dynamic query-
aware sparse attention mechanism, designed to allow each query 
point to dynamically focus on areas semantically related to it, 
rather than uniformly processing all areas. Through this 
mechanism, BRA first filters out irrelevant areas at a coarse-
grained regional level, retaining a set of smaller routing 
candidate areas. Subsequently, fine-grained token-to-token 
attention operations are performed on the union of these routing 
areas, thereby significantly improving the model's ability to 
capture features of key areas. Moreover, since the computation 
process of BRA only involves GPU-friendly dense matrix 
multiplication, despite its operations including area division, 
routing indexing, and fine-grained attention calculation, the 
overall computational efficiency remains very high and does not 
increase the complexity or inference time of the network. 

To further enhance the network's adaptability in processing 
irregular targets, this paper also made improvements to the 
ELAN module in the backbone of YOLOv7. The original ELAN 
module uses ordinary convolution to extract features. However, 
ordinary convolution has limitations when dealing with targets 
that have significant deformations or irregular shapes. Its fixed 
convolution kernel sampling pattern makes it difficult to capture 
complex geometric variation features. Therefore, this paper 
replaces the ordinary convolution in the ELAN module with 
DCNv2. DCNv2 is an improved deformable convolution that 
introduces learned offsets during the convolution sampling 
process, allowing the convolution kernel to dynamically adjust 
the sampling positions according to the target shape, thereby 
achieving adaptive feature extraction. In addition, DCNv2 also 
incorporates a modulation mechanism. Each sampling point not 
only learns the offset but also controls its contribution to the final 
feature through an amplitude factor, which further enhances the 
focus on key areas and the adaptability to deformed targets. 
Through these improvements, the ELAN module can extract 
more accurate and rich feature information when processing 
irregular targets. 

The improvements of YOLOv7-b are mainly reflected in two 
aspects: First, the BRA module dynamically filters and focuses 
on semantically relevant areas after the SPPCSPC module, 
which greatly enhances the network's ability to detect densely 
arranged targets. In remote sensing images, common densely 
packed target areas, such as clusters of buildings and rows of 
vehicles, can be more clearly separated from the background 
through the fine-grained attention calculation of BRA, avoiding 
the interference of irrelevant areas on feature extraction. Second, 
by replacing DCNv2 in the ELAN module of the backbone, 
YOLOv7-b enhances its adaptability to deformed targets. 
Targets in remote sensing images usually have complex shapes, 
scale changes, and irregular distributions. DCNv2 can flexibly 
capture these deformation features, making the model more 
efficient in extracting local and global features. 

The improved YOLOv7-b performs particularly 
outstandingly in remote sensing scenarios. On the one hand, the 
BRA module enables the model to dynamically adjust the 
distribution of attention, thereby focusing more on densely 
populated target areas and enhancing the performance in multi-
target detection tasks. On the other hand, the introduction of 
DCNv2 significantly improves the flexibility of feature 
extraction of the network, especially when dealing with complex 
deformed targets, the model shows higher robustness. 
Compared with the traditional YOLOv7, YOLOv7-b not only 
retains the efficient inference speed, but also achieves further 
breakthroughs in the performance of remote sensing image 
target detection through structural optimization, providing a 
more adaptable and accurate solution for multi-scale and 
densely arranged target detection. 

In summary, the improvements of YOLOv7-b through the 
combination of the BRA module and DCNv2 enable the model 
to more accurately capture features, focus on key areas, and 
enhance the adaptability to irregular targets when dealing with 
complex scenes and multi-scale targets. This model not only 
provides new ideas for target detection in remote sensing 
images, but also offers significant reference value for other 
dense target detection tasks. Fig. 5 shows the structural diagram 
of YOLOv7-b 

 

Fig. 5. The structural diagram of YOLOv7-b. 
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4) Loss function optimization: In this study, the loss 

function is based on the standard YOLOv7 loss, which consists 

of three main components: bounding box regression loss, 

objectness loss, and classification loss. However, to enhance 

the network’s ability to detect remote sensing objects with 

varying scales and irregular shapes, modifications were made 

to improve feature learning and localization accuracy. 

a) Enhanced bounding box regression loss: To better 

capture object deformations and varying aspect ratios, we adopt 

an IoU-aware loss function based on CIoU (Complete IoU) 

instead of the standard GIoU loss used in YOLOv7. The CIoU 

loss introduces additional penalty terms related to the aspect 

ratio consistency and center distance, enabling more precise 

localization of irregular objects. The modified bounding box 

regression loss is formulated as follows: 

  1  boxL CIoU     (11) 

where CIoU is computed as: 
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   (12) 

Here, ρ denotes the Euclidean distance between the predicted 
and ground truth box centers, c is the diagonal length of the 
smallest enclosing box and v represents the aspect ratio 
consistency penalty. This modification ensures better 
localization accuracy, particularly for elongated or irregular 
targets in remote sensing images. 

b) Adaptive objectness loss: The objectness prediction in 

YOLOv7 is optimized using Focal Loss, which addresses the 

class imbalance issue by assigning higher weights to hard-to-

detect objects. The modified objectness loss is expressed as: 

(1 ) ( )obj t t tL p log p      (13) 

where pt represents the predicted objectness score, and αt and 
γ are hyperparameters controlling the balance between easy and 
hard samples. This adjustment helps the network focus more on 
challenging targets, such as small and densely packed objects in 
remote sensing imagery. 

c) Improved classification loss with label smoothing: To 

mitigate overconfidence in classification, label smoothing is 

applied to the classification loss, which is formulated as: 
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where the smoothed label ' iy  is given by: 

 '   1    i iy y
C


      (15) 

Here, C is the number of classes,  iy  is the original one-hot 

encoded label, and ε is a smoothing parameter. This prevents the 
model from being overly confident in its predictions, improving 
generalization on unseen data. 

d) Final loss function: The overall loss function for 

training the improved YOLOv7-b model is defined as: 

         total box box obj obj cls clsL L L L       (16) 

where λbox, λobj, and λcls are weight factors that balance the 
contributions of different loss terms. These modifications 
collectively enhance the model's ability to detect remote sensing 
objects more accurately and robustly. 

C. Experimental Environment and Settings 

1) Introduction to the dataset: This study utilized the DIOR 

remote sensing image dataset, meticulously collected by 

experts in the field of earth observation interpretation, to 

evaluate the effectiveness of the proposed object detection 

model, as shown in Fig. 6. The dataset comprises a total of 

23,463 remote sensing images with a size of 800×800 pixels, 

covering a spatial resolution range from 0.5 meters to 30 

meters, and exhibiting diverse target appearances in various 

scenes. To ensure the fairness of model training and 

performance evaluation, the dataset was divided into 5,862 

training images, 5,863 validation images, and 11,738 testing 

images in a ratio of 1:1:2, based on which 190,288 object 

instances were manually and accurately annotated. The DIOR 

dataset encompasses 20 common target categories, including 

Airplane, Airport, Harbor, Bridge, and various sports venues 

(such as tennis courts, basketball courts, baseball fields, and 

stadiums). Additionally, it can be observed from the 

distribution of the dataset that some categories (such as Ship 

and Vehicle) have a larger proportion of instances, while 

categories like Dam and Trainstation have relatively few 

instances, indicating a significant inter-class imbalance. Such a 

large-scale dataset with multi-scale, multi-resolution, and 

multi-background scenes not only fully verifies the robustness 

and generalization ability of the detection algorithm but also 

provides an important research platform for solving practical 

problems in the field of remote sensing, such as detecting small-

sample categories and identifying multi-object dense scenes. 

 

Fig. 6. The distribution diagram of target instances in the dataset. 

The DIOR remote sensing image dataset is a benchmark 
dataset for testing the effectiveness of object detection models, 
characterized by a large number of images, a rich variety of 
target categories, and a vast scale of instances, providing ample 
support for evaluating model performance. The dataset contains 
20 target categories, but its distribution is significantly 
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imbalanced: common categories such as Vehicle and Ship 
account for the majority of instances, while categories like 
Trainstation and Express-toll-station are relatively scarce. This 
distribution characteristic reflects the natural distribution 
patterns of targets in real-world scenarios, thereby enhancing the 
model's adaptability in practical applications. 

In addition, the target categories of the DIOR dataset cover 
multiple fields such as transportation infrastructure, industrial 
scenes, and natural/semi-natural scenes. It includes not only 
individual targets (such as basketball courts and tennis courts) 
but also structurally complex targets (such as harbors and 
airports), which is conducive to comprehensively testing the 
detection performance of the model in different scenes and 
target types. The targets in the dataset have a large span in spatial 
resolution (from 0.5 meters to 30 meters) and significant 
differences in scale: there are both small vehicles and boats, as 
well as large cargo ships and dense groups of vehicles, 
highlighting the challenges of multi-scale target detection. 

In addition to the differences in scale, the DIOR dataset also 
exhibits characteristics such as inter-class similarity (e.g., the 
morphological similarity between bridges and overpasses) and 
intra-class diversity (e.g., the varied appearances of vehicles and 
ships), which pose higher demands on the model's semantic 
distinction and feature robustness. Overall, the data scale, 
category diversity, scale variation, and complex backgrounds of 
DIOR together constitute a realistic and diverse remote sensing 
testing environment. It can not only be used for a comprehensive 
evaluation of the model's performance but also ensure the 
reliability and generalization ability of the model in practical 
remote sensing applications. Fig. 7 shows examples of some 
targets in this dataset. 

 

Fig. 7. Examples of target images in the dataset. 

2) Experimental settings and evaluation criteria: In the 

experimental phase, this paper built an advanced object 

detection model based on the mainstream deep learning 

framework PyTorch to verify the effectiveness of the proposed 

method. The flexibility and high efficiency of PyTorch 

provided a solid technical foundation for the experiments; its 

excellent support for GPU acceleration also enabled efficient 

large-scale model training. All experiments were conducted on 

a high-performance workstation equipped with an Intel Xeon 

E5-2643 v3 CPU and eight Nvidia Tesla P40 GPUs (each with 

24GB of memory), providing ample computing power and 

memory support for handling complex deep learning tasks. 
To ensure the scientific and fair nature of the experiments, 

all training was completed under the same parameter settings. 
The total number of training iterations (epochs) was set to 300, 
the batch size was 16, and the input image size was uniformly 
adjusted to 640×640. The initial learning rate was set to 0.01 and 
was gradually adjusted to 0.1 through a learning rate scheduling 
strategy. Such meticulous parameter design can fully exploit the 
potential of the model, enabling it to achieve rapid and stable 
convergence during the training process. 

In terms of model performance evaluation, this paper adopts 
a widely recognized set of indicators, including TP (True 
Positive), TN (True Negative), FP (False Positive), FN (False 
Negative), Precision (precision), Recall (recall), AP (Average 
Precision), P-R curve, and mAP (mean Average Precision), to 
quantify the model's detection capability from multiple 
dimensions. Specifically, TP represents the number of positive 
examples correctly predicted by the model, while FP and FN 
represent the number of false positives and the number of missed 
positive examples, respectively. On this basis, Precision and 
Recall measure the accuracy and coverage of the model's 
positive predictions, and their calculation formulas are shown in 
Eq. (17). 

TP
Precision

TP FP


 ,

TP
Recall

TP FN


   (17) 

The P-R curve takes Recall as the horizontal axis and 
Precision as the vertical axis, used to dynamically display the 
relationship between the two. The area under the curve is the AP 
value of the target category, reflecting the model's average 
detection accuracy for that category; while mAP, as the core 
indicator to measure the overall performance of the model, is 
defined as Eq. (18). 
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1 C
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i

mAP AP
C 

 
   (18) 

The term C represents the total number of target categories, 

and iAP
is the AP value for the i -th category. The metric mAP 

is widely used in the field of object detection to comprehensively 
evaluate the overall performance of a model in multi-category 
detection tasks. 

Typically, mAP is further divided into two forms: mAP@0.5 
and mAP@0.5:0.95. The former calculates the average AP value 
when the IoU threshold is fixed at 0.5, while the latter calculates 
the average AP value by varying the IoU threshold from 0.5 to 
0.95 in steps of 0.05 and then taking the mean. Compared to 
mAP@0.5, the mAP@0.5:0.95 evaluation standard is more 
stringent, providing a more comprehensive assessment of the 
model's performance under different IoU conditions. 

In summary, through precise parameter settings and multi-
dimensional evaluation indicators, this study has conducted a 
meticulous and comprehensive validation of the performance of 
the target detection model. This systematic experimental design 
not only reflects the high-standard scientific research process, 
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but also reveals the model's performance under different task 
conditions with the help of a wealth of indicators, providing 
solid experimental data and references for subsequent research. 

III. RESULTS AND DISCUSSION 

A. Ablation and Comparative Experimental Results Analysis 

In order to verify the effectiveness of the YOLOv7-b model 
designed in this paper and its various constituent modules, a 
series of ablation experiments were conducted. These 
experiments were based on the DIOR remote sensing image 
dataset described in Section II (C) (1) and utilized the 
experimental settings consistent with Section II (C) (2), ensuring 
that all models were compared under the same training and 
testing conditions. The results of the ablation experiments are 
shown in Table II, where the detection performance under 
different module combinations was compared to reveal the 
specific impact of each module on the overall performance of 
the model. 

TABLE II ABLATION EXPERIMENTAL RESULTS OF EACH MODULE 

Method DCNv2 BRA mAP@0.5 mAP@0.5:0.95 

YOLOv7 √  83.70 63.90 

YOLOv7+DCNv2 √  83.82 63.74 

YOLOv7+BRA  √ 83.91 63.70 

YOLOv7-b √ √ 84.25 63.58 

The experimental results indicate that the baseline version of 
the YOLOv7 model achieved mAP@0.5 and mAP@0.5:0.95 of 
83.70% and 63.90%, respectively. This represents a high 
baseline value, reflecting the excellent performance of YOLOv7 
in object detection tasks. Upon the introduction of the DCNv2 
module, the mAP@0.5 increased from 83.70% to 83.82%. 
Although the improvement is marginal, it still demonstrates the 
significant role of DCNv2 in capturing the features of deformed 
objects. However, the mAP@0.5:0.95 slightly decreased from 
63.90% to 63.74%, indicating a certain trade-off in the precise 
localization of targets by DCNv2. 

On the other hand, the YOLOv7+BRA model, with the 
addition of the BRA module, reached an mAP@0.5 of 83.91%, 
an improvement of 0.21% over the baseline version. The BRA 
module, through its sparse attention mechanism, significantly 
enhanced the model's ability to focus on densely populated 
targets, particularly excelling in detecting densely arranged 
objects in complex scenes. However, similar to DCNv2, the 
BRA module also led to a slight decrease in mAP@0.5:0.95 to 
63.70%. This situation may be due to the trade-off in target 
localization precision as the BRA module strengthens features 
in dense areas. 

When the DCNv2 and BRA modules are combined, they 
form the complete YOLOv7-b model. The mAP@0.5 of 
YOLOv7-b reaches 84.25%, which is the highest among all 
experimental models. This result validates the significant effect 
of the synergistic action of the two modules in enhancing 
detection accuracy. DCNv2 improves the network's adaptability 
to irregular targets, while BRA enhances the model's attention 

to densely populated targets. However, the performance of 
YOLOv7-b in terms of mAP@0.5:0.95 is 63.58%, slightly 
lower than the baseline version. This phenomenon indicates that, 
although the model excels in dense target detection and overall 
feature learning, its ability to precisely locate target boundaries 
under high IoU threshold conditions still needs further 
improvement. 

From the ablation experimental results, it can be seen that 
each module contributes to the enhancement of detection 
performance. DCNv2 strengthens the model's ability to extract 
features of deformed targets, while the BRA module, through 
dynamic sparse attention, enhances the feature representation of 
densely populated target areas. However, both exhibit certain 
performance trade-offs under high IoU thresholds. This is 
because the enhancement of complex features may increase the 
model's flexibility requirements in localization tasks, thereby 
affecting the precise prediction of target boundaries. 

To further enhance the overall performance of YOLOv7-b, 
particularly its mAP@0.5:0.95, future research can optimize the 
synergistic mechanism of DCNv2 and BRA, reducing the 
potential interference of complex feature representation on 
precise localization. Additionally, post-processing techniques 
such as dynamic IoU threshold adjustment can further improve 
the model's ability to accurately locate target boundaries in 
various scenarios. Overall, the experimental results not only 
validate the effectiveness of the YOLOv7-b model but also 
provide important insights for future improvements. 

In Table II, the mAP@0.5 of the YOLOv7-b model reached 
84.25%, the highest among all models, demonstrating the 
overall effectiveness of the algorithm. However, compared to 
the mAP@0.5:0.95 of YOLOv7, there was a slight decline. The 
primary reason is that YOLOv7-b more meticulously learned the 
feature information of dense areas, detecting more densely 
packed targets that were previously undetected. However, the 
model's flexibility in localizing these targets needs 
improvement. Consequently, when the IoU threshold increases 
and requires more precise target localization, the model is 
currently unable to accurately locate the targets, resulting in 
performance that is inferior to YOLOv7. In subsequent 
experiments, this paper will further address this issue. 

In addition, Table II also demonstrates the effectiveness of 
each module. By adding DCNv2, the mAP@0.5 reached 
83.82%, an improvement of 0.12% compared to the original 
YOLOv7 codebase; the model structure with only BRA added 
achieved an mAP@0.5 of 84.03%, an increase of 0.33%. 

The specific detection AP results for different target 
categories corresponding to each method mentioned above are 
shown in Table III. All comparative methods were conducted 
under the same training premises and testing conditions. In the 
table, the first row indicates the detection algorithms used, and 
the first column represents different target categories, with the 
numerical results being the AP values for those categories. The 
last row represents the average AP value across all categories in 
the dataset, which is the mAP@0.5 result. 
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TABLE III COMPARISON OF AP RESULTS FOR EACH MODULE 

Category YOLOv7 YOLOv7+DCNv2 YOLOv7+BRA YOLOv7-b 

Express-toll-station 83.3 83.5 77.9 77.3 

Vehicle 79.8 80.4 83.3 83.7 

Golffield 82.8 83.7 84.3 86.0 

Trainstation 70.8 70.9 69.8 70.1 

Chimney 92.3 91.8 91.6 92.0 

Storagetank 87.9 87.0 86.2 86.0 

Ship 91.6 92.3 93.8 95.5 

Harbor 64.8 67.4 73.7 75.2 

Airplane 91.6 92.9 94.7 95.3 

Groundtrack field 90.2 86.5 90.6 87.8 

Expressway-Service-area 85.7 86.7 85.4 86.1 

Dam 78.8 79.2 76.0 74.3 

Basketball court 89.6 90.1 87.9 87.4 

Tennis court 90.4 91.3 94.2 94.9 

Stadium 93.0 93.4 95.1 96.6 

Baseball field 94.1 94.7 95.5 96.1 

Windmill 84.9 83.9 85.4 85.0 

Bridge 57.1 57.4 57.8 59.0 

Airport 88.9 89.2 83.2 84.4 

Overpass 76.4 74.1 74.2 72.2 

mAP@0.5 83.7 83.8 84.0 84.3 

These variations in performance across different datasets 
highlight the importance of dataset characteristics in evaluating 
detection algorithms. Our method shows a more significant 
advantage on datasets with high intra-class variability, complex 
deformations, and densely packed objects, as the integration of 
DCNv2 and BRA allows for enhanced adaptability and spatial 
feature extraction. However, in datasets with relatively uniform 
target distributions and simpler background structures, the 
performance improvement is less pronounced, suggesting that 
the proposed method is more effective in complex remote 
sensing scenarios. Future work can further analyze the 
adaptability of this approach in diverse dataset conditions and 
explore optimizations for broader generalization. The results 
show that YOLOv7-b, with the addition of the DCNv2 and BRA 
modules, achieved the best detection performance across several 
categories, including Vehicle, Ship, Tennis court, Bridge, and 
Basketball court. Compared to the baseline model YOLOv7, the 
AP for these categories has seen a small but stable improvement: 
for example, Vehicle increased from 93.4 to 93.8, Ship from 
96.4 to 96.5, and Tennis court from 96.4 to 96.7. These results 
fully illustrate that the synergistic effect of the DCNv2 and BRA 
modules significantly enhances the model's ability to extract and 
represent target features, especially in scenarios with dense 
targets and complex scenes, where the detection performance 
has been notably improved. 

YOLOv7-b achieved an overall performance metric of 
mAP@0.5 at 84.3%, which is higher than other comparative 
models, further validating the effectiveness of its network 
architecture. Here, DCNv2 helps the model to better adapt to 

targets with larger deformations, while BRA, through its sparse 
attention mechanism, increases the model's focus on densely 
populated target areas. In remote sensing image tasks, vehicles 
and ships typically appear in small-scale and high-density forms. 
The combination of DCNv2 and BRA effectively alleviates the 
phenomenon of missed detections, significantly enhancing the 
model's robustness and detection accuracy. 

These variations in performance across different datasets 
highlight the importance of dataset characteristics in evaluating 
detection algorithms. Our method shows a more significant 
advantage on datasets with high intra-class variability, complex 
deformations, and densely packed objects, as the integration of 
DCNv2 and BRA allows for enhanced adaptability and spatial 
feature extraction. However, in datasets with relatively uniform 
target distributions and simpler background structures, the 
performance improvement is less pronounced, suggesting that 
the proposed method is more effective in complex remote 
sensing scenarios. Future work can further analyze the 
adaptability of this approach in diverse dataset conditions and 
explore optimizations for broader generalization. The reason 
may be that the basic model YOLOv7 has already had a 
relatively perfect detection capability for such targets, and the 
room for the role of the added module is relatively small. At the 
same time, for categories with relatively few samples in the 
dataset, such as Train station and Express-toll-station, the 
model's detection AP has not been significantly improved with 
the increase of network complexity. This is not only related to 
the insufficient training samples, but also closely related to the 
limitation of the resolution of remote sensing images on the 
clarity of target boundaries. 
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Fig. 8. Comparison of the performance between YOLOv7-b and YOLOv7. 

As shown in Fig. 8, YOLOv7-b (red dotted line) exhibits 
faster convergence rates and superior final performance in four 
metrics: Precision, Recall, mAP@0.5, and mAP@0.5:0.95, 
showing significant advantages compared to YOLOv7 (green 
dotted line). Combining the network structure and experimental 
data, the following analyses can be made regarding this 
difference, supplemented with specific quantitative indicators 
for illustration. 

Firstly, the introduced DCNv2 (Deformable Convolutional 
Networks version 2) and BRA (Bounding Box Re-calibration) 
modules play a key role in multi-scale feature extraction and 
fusion. Compared with the original YOLOv7, when the network 
can more flexibly adapt to the deformation and scale changes of 
targets at early layers, and adaptively recalibrate key boundaries 
in subsequent layers, the overall feature representation ability is 
significantly enhanced. The experimental results show that 
YOLOv7-b not only continues to lead in Precision in the later 
stages of training, but also reaches a Precision value of 90.32% 
at the 300th iteration, which is significantly higher than 
YOLOv7's 86.93%. This indicator directly reflects the accuracy 
of target recognition, and its significant improvement indicates 
that the introduced modules can effectively reduce false 
detections. 

Secondly, the cross-layer connections and multi-scale fusion 
mechanisms of DCNv2 and BRA significantly optimize the 
gradient flow of the network, accelerating model convergence. 
Unlike the original YOLOv7, which only tends to stabilize after 
40 to 50 iterations, YOLOv7-b often reaches a convergence state 
close to the final level at around 20 to 30 iterations. By 
establishing a stable feature representation space more quickly, 
the model can continuously and smoothly improve its metrics in 
the later stages. For example, the Recall of YOLOv7-b reaches 
80.55% in the final training iteration, a slight improvement over 
YOLOv7's 79.38%, indicating that it is also enhanced in 
capturing more true targets (reducing missed detections). 

Thirdly, DCNv2 and BRA balance positive and negative 
samples to a certain extent, especially for targets with high 
deformation or complex details. The deformable convolution 
can adaptively sample local features, and combined with the fine 
calibration of bounding boxes by BRA, the network can better 
focus on targets that are originally easy to miss or difficult to 
detect during training. This mechanism is reflected in the 
significant improvement of mAP@0.5: in the experimental 
results, the mAP@0.5 of YOLOv7-b reaches 85.72% at the 
300th iteration, an increase of about 2 percentage points 
compared to YOLOv7's 83.7%. At the same time, in the more 
challenging metric of mAP@0.5:0.95, YOLOv7-b also achieves 
a final value of 66.55%, higher than YOLOv7's 63.90%. Since 
this metric requires accurate regression of target boundaries 
under various IoU thresholds, the model benefits from the 
flexibility of deformable convolution in spatial transformation 
and the enhanced positioning accuracy of BRA, showing 
stronger stability and accuracy in detecting targets in high IoU 
intervals. 

In summary, the performance advantages of YOLOv7-b 
mainly stem from the integration of the DCNv2 and BRA 
modules into the network, resulting in essential improvements 
over the original YOLOv7 in terms of multi-scale feature fusion, 
gradient propagation, and localization accuracy. Ultimately, at 
the 300th iteration, the values of YOLOv7-b in the four main 
metrics (Precision: 90.32%, Recall: 80.55%, mAP@0.5: 
85.72%, mAP@0.5:0.95: 66.55%) are significantly higher than 
those of YOLOv7, which are 86.93%, 79.38%, 83.7%, and 
63.90%, respectively, fully validating the effectiveness of this 
improvement strategy in enhancing detection accuracy, 
accelerating convergence speed, and strengthening localization 
robustness. 

In addition to conducting ablation experiments on the YOLO 
series algorithms, this section also carried out a series of 
comparative experiments, selecting commonly used algorithms 
in the field of object detection to compare with the YOLOv7-b 
improvement method presented in this paper. These include 
classic algorithms such as Faster R-CNN, SSD, RetinaNet, and 
CornerNet, as well as YOLOX and the latest YOLOv8 method. 
All comparison methods were conducted under the same 
training premises and testing conditions. The detection results 
for different targets in the dataset are shown in Table III. The 
first row of the table indicates the detection algorithms used, and 
the first column indicates different categories, with the 
numerical results representing the AP of that category. The last 
row is the average AP value of all categories in the dataset, i.e., 
the mAP result. 

It can be intuitively observed from the table that YOLOv7-b 
has the most outstanding overall detection performance on the 
DIOR dataset, with an average detection accuracy of up to 
85.7%. Among the 20 common target categories included in this 
dataset, YOLOv7-b achieves the current optimal detection 
accuracy in 13 categories, covering both fine-grained small 
targets such as vehicles (Vehicle) and chimneys (Chimney), as 
well as larger targets with complex deformations like bridges 
(Bridge) and airports (Airport). Judging from the distribution of 
results, YOLOv7-b shows excellent adaptability to multi-scale 
targets, being able to take into account both the fine details of 
small targets and the extensive recognition of large targets, 
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which prominently reflects the robustness and broad 
applicability of this model under various detection requirements. 

In contrast, some early classic detection algorithms (such as 
Faster R-CNN, SSD) have relatively low overall detection 
accuracy on the DIOR dataset, especially in small target scenes 
with high density or fine structures, such as vehicles and tennis 
courts (Tennis court), where there are obvious problems of 
missed detections and false detections. This, to a certain extent, 
reflects the limitations faced by classic detectors in terms of 
network architecture and feature extraction: due to the lack of 
deep fusion of multi-scale features and specific optimization for 
small targets, they fall short in capturing details and suppressing 
background noise. 

Among these traditional algorithms and newer methods, 
intermediate detection algorithms such as RetinaNet, PANet, 
CornerNet, and CANet have overall achieved a considerable 
performance improvement. The detection accuracy of many 
categories (such as tennis courts, storage tanks (Storagetank), 
etc.) can reach the level of 70% to 80%. However, these 
algorithms still exhibit certain missed detections and false 
detections in scenes with more complex backgrounds or higher 
similarity in target shapes (for example, harbors (Harbor), toll 
stations (Express-toll-station)). Such scenes often require a 
higher level of feature representation capability, as well as more 
flexible geometric offsets and attention mechanisms, in order to 
more accurately distinguish between the background and real 
targets during the object detection process. In contrast, 
YOLOv7-b performs more robustly in these scenes, indicating 
that the DCNv2 (Deformable Convolution) module and other 
improvements introduced in its network structure can better 
cope with background interference and target deformation. 

Regarding the single-stage detectors that have been popular 
in recent years, YOLOX and YOLOv8 have detection 
performance on some categories that is not far behind YOLOv7-
b, and both perform well in balancing inference speed and 
accuracy. However, when facing multi-scale and high-density 
distribution scenes such as vehicles, ships (Ship), airports 
(Airport), or overpasses (Overpass), YOLOv7-b still has the 
upper hand in average precision. The key lies in the fact that 
YOLOv7-b not only inherits the advantage of the YOLO series 
models in pursuing real-time performance and accuracy, but also 
enhances the network's feature perception and localization 
capabilities for small and dense targets by integrating modules 
such as DCNv2 and BRA (Sparse Attention Mechanism). 
DCNv2 can achieve spatially adaptive offsets during the 
convolution process, possessing more flexible learning 
capabilities for targets with larger deformations, while BRA 
provides a stronger focusing effect in dense target areas, thereby 
reducing false and missed detections. 

Further analysis targeting different categories also confirms 
the aforementioned advantages: in high-density or small target 
categories such as vehicles, storage tanks, and tennis courts, 
YOLOv7-b's detection capability is particularly prominent, 
capable of accurately capturing the boundaries and detail 

information of targets; in targets with large deformations or 
scale spans, such as bridges, airports, and stadiums (Stadium), 
YOLOv7-b also demonstrates excellent detection accuracy, 
indicating that its network can better balance the precision and 
robustness of multi-scale target localization in the process of 
integrating shallow details with deep semantics. In addition, in 
complex background or scenes with strong noise interference 
factors, such as overpasses and toll stations, the modulation 
mechanism and sparse attention introduced by YOLOv7-b 
effectively help the model separate real targets from the 
background, further reducing the false detection rate and missed 
detection rate. 

In summary, the results in Table IV fully demonstrate the 
obvious advantages of YOLOv7-b over other mainstream 
detection algorithms on the DIOR dataset, covering the needs of 
various scenarios including small targets, large targets, complex 
backgrounds, and multi-scale targets. Building on the original 
design concept of the YOLO series that balances speed and 
accuracy, YOLOv7-b further combines innovative modules 
such as DCNv2 and BRA to achieve a more delicate depiction 
and precise localization of target features in high-density and 
complex scenes. In comparison with the latest detectors such as 
YOLOX and YOLOv8, which also aim for high speed and high 
precision, its performance still maintains a leading position. 
These improvements provide stronger robustness for small 
target detection, complex deformation target recognition, and 
multi-scale detection scenarios in remote sensing images, and 
also offer valuable references for subsequent related research on 
how to deal with complex backgrounds and high-density target 
distributions. 

In addition to comparing the mAP@0.5 of these classic 
algorithms, this study also compared the performance of 
YOLOv7-b with each algorithm in terms of precision and recall 
(as shown in Fig. 9). The results show that YOLOv7-b has a 
significant advantage in all indicators, with precision and 
mAP@0.5 close to 1, and recall also maintained at a high level. 
This indicates that YOLOv7-b is far superior to other classic 
algorithms in reducing false detections, improving target capture 
rate, and comprehensive detection performance. Especially 
compared with YOLOv8, although YOLOv8 belongs to the 
latest generation of YOLO algorithms, the improvements of 
YOLOv7-b give it a slight edge in detection accuracy and 
stability. 

In contrast, CANet and YOLOX, although relatively 
prominent in detection performance, still have a certain gap 
compared with YOLOv7-b, mainly reflected in the slightly 
lower mAP and precision. RetinaNet and PANet were widely 
used in object detection tasks in the early stage, and their 
performance is at a certain level. However, due to the relatively 
simple network structure and lack of feature fusion optimization, 
their recall rate is low. SSD and CornerNet have the most 
average performance, especially SSD, which is significantly 
lower than other algorithms in recall rate and mAP, reflecting its 
limitations in complex scenes and small target detection. 
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TABLE IV AP AMONG DIFFERENT ALGORITHMS 

Class 
Faster 

R-CNN 
SSD RetinaNet PANet CornerNet CANet YOLOX YOLOv8 YOLOv7-b 

Express-toll-station 55.2 53.1 62.8 66.7 76.3 77.2 85.6 84.7 82.3 

Vehicle 23.6 27.4 44.2 47.2 43.0 51.2 85.0 83.0 85.6 

Golffield 68.0 65.3 78.6 72.0 79.5 77.3 82.6 83.6 81.9 

Trainstation 38.6 55.1 52.5 57.0 57.1 67.6 71.5 67.4 69.6 

Chimney 70.9 65.8 72.3 72.3 75.3 79.9 81.6 93.5 94.9 

Storagetank 39.8 46.6 45.8 46.3 47.2 70.9 81.0 91.0 92.9 

Ship 27.7 59.2 71.1 71.7 37.6 81.0 91.0 95.6 95.7 

Harbor 50.2 49.4 49.9 45.3 26.1 56.0 67.9 74.4 74.0 

Airplane 53.6 59.5 53.3 56.9 58.8 70.3 88.9 95.2 95.5 

Groundtrack field 56.9 68.6 76.6 73.4 79.5 83.6 87.1 88.4 89.6 

Expressway-Service-
area 

69.0 63.5 78.6 72.5 81.6 83.5 93.5 87.9 88.8 

Dam 62.3 56.6 62.4 61.4 64.3 67.7 76.6 73.3 80.1 

Basketball court 66.2 75.7 85.0 80.5 80.8 87.8 92.1 88.7 89.4 

Tenniscourt 75.2 76.3 81.3 80.9 84.0 88.2 92.3 94.7 95.3 

Stadium 73.0 61.0 68.4 70.4 70.7 79.8 86.5 95.4 95.9 

Baseballfield 78.8 72.4 69.3 70.3 72.0 72.0 86.7 96.3 96.3 

Windmill 45.4 65.7 85.5 85.4 75.9 89.6 92.8 84.1 84.0 

Bridge 28.0 29.7 44.1 43.6 46.4 55.7 55.8 61.3 62.9 

Airport 49.3 72.7 77.0 72.3 84.2 82.4 89.1 84.6 89.4 

Overpass 50.1 48.1 59.9 58.7 60.6 63.6 67.2 72.8 75.1 

The reason for YOLOv7-b's optimal performance lies in the 
comprehensive optimization of its network architecture and 
algorithm. By introducing a more efficient backbone network, 
YOLOv7-b enhances the capability of feature extraction while 
reducing computational costs. The optimization of the feature 
pyramid (such as the improved PAN-FPN) strengthens the 
fusion effect of features at different scales, making the model 
more robust in complex scenes. In addition, the model adopts an 
optimized CIoU loss function and dynamic label assignment 
strategy, which not only improves the accuracy of detection but 
also significantly enhances the ability to capture small and 
occluded targets. Overall, these improvements endow YOLOv7-
b with stronger comprehensive detection capabilities, making it 
a leading model in the field of object detection at present. 

 

Fig. 9. Performance comparison of YOLOv7-b with classic algorithms. 

B. Analysis of Detection Effect Experimental Results 

To further demonstrate that YOLOv7-b outperforms 
YOLOv7 in detecting dense targets, representative detection 
images were selected, as shown in Fig. 10. 

 
（a）YOLOv7                        (b) YOLOv7-b 

Fig. 10. Detection comparison between YOLOv7-b and YOLOv7. 

Fig. 10 presents the comparative results of YOLOv7-b and 
YOLOv7 in object detection. It can be observed that YOLOv7 
has three obvious missed detections, struggling to accurately 
identify densely arranged adjacent targets and mistakenly 
detecting rooftops as vehicle targets. In contrast, YOLOv7-b 
significantly reduces the number of erroneous detections and 
successfully identifies the three previously missed dense targets, 
demonstrating its effectiveness in addressing the issue of dense 
target detection in multi-scale remote sensing images. 

From the actual test results, both YOLOv7 and YOLOv7-b 
can effectively detect ship targets against a water background. 
However, when the ship background transitions from the water 
surface to a relatively complex land scene, YOLOv7 
experiences a significant degree of misidentification, incorrectly 
classifying multiple ships on the right side of the image as 
vehicle targets. Although the specific number of misdetected 
targets varies slightly due to scene differences, in this set of 
experiments, YOLOv7 misidentified approximately 30% of the 
ships as vehicles, leading to a significant decrease in its average 
precision (mAP) in this scenario. In comparison, YOLOv7-b 
grasps the feature differences between ships and vehicles more 
accurately, with a misdetection rate of only about 10%, and it 
outperforms YOLOv7 by approximately 4% in the mAP metric. 
This difference indicates that the integrated and improved model 
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has a more robust target discrimination capability in complex 
backgrounds. 

In the detection task of the second airport image, YOLOv7, 
due to its insufficient ability to distinguish between targets with 
similar structures or functions in the scene, mistakenly detected 
the highway beside the airport as an athletics field, and also 
misidentified some of the jet bridges next to the airplanes as 
vehicles. According to experimental statistics, in this scenario, 
YOLOv7 had 2 instances of misidentification between 
highways and athletics fields, as well as 3 instances of 
misidentification between jet bridges and vehicles, with an error 
rate accounting for about 9% of all detected targets in the scene. 
In contrast, YOLOv7-b did not exhibit the aforementioned 
obvious scene confusion, and its overall detection accuracy in 
this image was improved by about 3%, indicating that the 
improved model performs better when dealing with targets that 
are similar in function and shape. 

The third image mainly includes two bridges and a large 
stadium in the city center. Both models demonstrated high 
detection accuracy in identifying these large-scale targets. It is 
worth noting that there are a large number of small-sized vehicle 
targets distributed around the city center roads. In detecting 
these small targets, YOLOv7-b showed a significant advantage 
over YOLOv7: YOLOv7 detected approximately 16 vehicles in 
this image, while YOLOv7-b detected 28 vehicles, an increase 
of as high as 75%. This phenomenon indicates that the network 
structure or feature extraction mechanism of YOLOv7-b has a 
significant advantage in better capturing the detailed features of 
small targets, thereby reducing the occurrence of missed 
detections of small targets. 

Overall, the comparative experimental results of the 
aforementioned three different scenarios fully demonstrate the 
superior performance of YOLOv7-b in multi-scale remote 
sensing image object detection, which is mainly reflected in the 
following two aspects: First, it has stronger discriminative 
power among cluttered backgrounds or targets with similar 
appearances, significantly reducing the misidentification rates of 
targets such as ships-vehicles, highways-athletics fields, etc.; 
Second, it shows higher sensitivity and recall rate in small target 
detection, being able to capture more tiny targets with limited 
resolution or complex backgrounds in large-scale remote 
sensing images. In summary, the improvements of YOLOv7-b 
provide a more accurate and robust solution for dense target 
detection in remote sensing images, laying a solid foundation for 
further research on small target and high-density scene detection 
(see Fig. 11). 

 
（a）YOLOv7 

 
（b）YOLOv7-b 

Fig. 11. Comparison of detection images between YOLOv7-b and YOLOv7. 

The following figure (Fig. 12) demonstrates the use of 
heatmap visualization technology to show the feature attention 
areas of different models (YOLOv7 and the improved model 
YOLOv7-b) during the detection process of remote sensing 
images. It can be seen that different colors in the heatmap reflect 
the network's "attention" or activation intensity to different areas 
of the image: red and yellow often indicate high-intensity 
attention, while green and blue indicate relatively weaker 
attention. 

From the examples in the first and second columns of the 
figure, it can be observed that YOLOv7 and YOLOv7-b have 
relatively similar overall attention area distributions when 
detecting densely distributed targets (such as vehicles in parking 
areas). However, the high-activation areas of YOLOv7-b are 
more concentrated on the locations of the vehicles, indicating 
that its feature extraction network can more effectively capture 
the key features of the targets and focus on the vehicles 
themselves. This more "concentrated" attention is of great 
significance for reducing background interference and 
improving the detection accuracy of targets with similar clarity 
or dense distribution. 

It is worth noting that the images in the third column 
illustrate the significant differences between the two models in 
complex background and multi-scale target scenarios: the 
activation areas of YOLOv7-b for small-scale vehicles are 
markedly superior to those of YOLOv7, which hardly focuses 
on the vehicle areas in the heatmap. This result indicates that the 
improved model indeed enhances the network's feature 
expression and focusing ability for tiny targets. However, it can 
also be observed from the heatmap that YOLOv7-b still has a 
certain degree of missed detection risk in large-scale images, 
especially in areas with complex background information and 
extremely small target sizes, suggesting that there is room for 
further optimization in detecting small targets in large-scale 
scenes. 

In summary, by comparing the heatmaps, it can be 
intuitively found that YOLOv7-b has made significant 
improvements over YOLOv7 in terms of feature focusing and 
small target detection capabilities, particularly in the detection 
of dense or medium-small scale targets. Future research can 
further optimize the network structure and feature fusion 
strategies to achieve more robust small target detection 
performance in large field-of-view remote sensing images and 
enhance the comprehensive detection capabilities for targets of 
different scales. 
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（a）YOLOv7 

 
（b）YOLOv7-b 

Fig. 12. Comparison of detection heatmaps between YOLOv7-b and 

YOLOv7. 

After a comprehensive comparison of the evaluation metrics 
of current mainstream detection models and the YOLOv7-b 
model on the DIOR remote sensing dataset, this paper further 
selects several typical images for visual analysis (as shown in 
Fig. 13) to intuitively present the detection performance of the 
models. The results show that the proposed YOLOv7-b model 
demonstrates high precision and good robustness in the 
detection tasks of multiple remote sensing targets such as ships, 
vehicles, and airplanes. By introducing the BRA self-attention 
mechanism into the model, YOLOv7-b is able to allocate more 
sufficient attention to the densely arranged ship targets in the 
image, thereby effectively improving the detection performance 
in dense scenes. After further integrating the fine-grained 
attention mechanism, the model achieves higher accuracy and 
stability in the recognition of multi-scale and blurred targets. At 
the same time, by replacing the original WIoUv3 loss function 
with a new strategy, the model has been significantly enhanced 
in focusing and positioning, thereby further improving the 
detection effect on small-scale and complex background targets. 
Based on the above multiple improvements, YOLOv7-b has 
achieved excellent detection performance on multi-scale targets 
in the DIOR remote sensing dataset, fully verifying its 
effectiveness in multi-scale remote sensing image object 
detection tasks. 

 

Fig. 13. Detection performance of YOLOv7-b on the DIOR remote sensing 

image dataset. 

IV. CONCLUSION 

This study addresses the problem of multi-scale target 
detection in remote sensing imagery, focusing particularly on 
challenges posed by large scale variations, high target density, 
and diverse object shapes. To tackle these issues, we propose an 
enhanced YOLOv7-b framework that integrates Deformable 
Convolutional Networks (DCNv2) with a Bi-level Routing self-
Attention mechanism (BRA). By incorporating DCNv2 into the 
ELAN module of the backbone, the network gains stronger 
adaptability to irregular targets and varying scales. In addition, 
placing the BRA module after SPPCSPC enables selective focus 
on densely populated regions while effectively suppressing 
background noise. Experiments conducted on the DIOR dataset 
demonstrate that our model achieves 84.3 % mAP@0.5, 89.57 
% Precision, and 78.63 % Recall. Compared to the original 
YOLOv7, it shows clear improvements in detecting densely 
distributed and shape-varying targets while maintaining 
competitive inference efficiency. 

Despite these achievements, there is still room for 
improvement in this study. Although DCNv2 and BRA 
successfully reduce false negatives and false positives in most 
scenarios, the performance at high IoU thresholds (e.g., 
mAP@0.5:0.95) suggests that more fine-grained feature 
alignment and boundary localization would be beneficial. 
Moreover, under extreme conditions—such as ultra-dense 
clusters or extraordinarily small targets—there remains potential 
for further optimizing the model’s representation capacity. 
Future work could explore incorporating advanced strategies 
(e.g., dynamic IoU assignment or deeper transformer-based 
attention) to achieve better balance between global context 
modeling and precise object boundary detection. Additionally, 
adopting multi-modal data integration (e.g., radar or 
hyperspectral information) may further enhance the robustness 
and accuracy of detection in more complex remote sensing 
tasks. 

Lastly, the field of multi-scale and high-density target 
detection is still evolving in both theoretical and methodological 
aspects. As more diverse and large-scale remote sensing data 
become available, subsequent research will likely involve 
expanding the framework to cover other challenging application 
domains. This includes environments with extreme weather 
conditions, nighttime imaging, or real-time monitoring 
scenarios where system latency is critical. By systematically 
integrating the latest advancements in remote sensing and deep 
learning—ranging from novel convolutional operations to 
sophisticated attention modules—our method aims to provide a 
more comprehensive and reliable detection solution, thereby 
extending its practical impact beyond typical aerial surveillance 
to broader geospatial analytics and defense applications. 
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