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Abstract—With the growing demand for high-quality video 

streaming, the necessity for efficient techniques to balance video 

quality and bandwidth has become increasingly critical to ensure 

a seamless user experience. Existing traditional adaptive 

streaming methods only react to network fluctuations, which often 

leads to delays, quality degradation, and buffering. This paper 

introduces an AI-powered approach for adaptive High Efficiency 

Video Coding (HEVC) transmission, using a predictive model 

based on Long Short-Term Memory (LSTM) networks to predict 

bandwidth variations and proactively adjust encoding 

parameters. The proposed approach uses historical and real-time 

network data to anticipate network changes, offering smoother 

transitions and reducing buffering. The experimental results 

demonstrate the system's effectiveness, achieving an improvement 

of 15% in Peak Signal-to-Noise Ratio (PSNR) and an increase of 

12% in Structural Similarity Index (SSIM) compared to baseline 

methods. Additionally, the system reduces buffering events by 

25% while improving bitrate stability by 20%, guaranteeing 

consistent video quality with minimal interruptions. This 

proactive approach significantly enhances Quality of Service 

(QoS) by providing stable video quality and uninterrupted 

streaming, representing a significant advancement in adaptive 

streaming technologies. 
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I. INTRODUCTION 

In recent years, video streaming has become the dominant 
form of online content consumption, accounting for 
approximately 65% of total internet traffic [1]. This surge has 
increased the necessity for delivering high-quality content while 
ensuring efficient bandwidth usage. Thus, achieving seamless 
user experience has become a critical challenge for researchers 
in this field, adaptive streaming techniques, which dynamically 
adjust video quality and bitrate depending on the network 
conditions, have become the main focus to address this issue. 
However traditional adaptive techniques often, due to their 
reactive nature, adjust encoding parameters only after network 
changes are detected. Hence, the delayed response leads to 
sudden quality drops, buffering events, and overall 
inconsistency in the streaming experience. 

High-Efficiency Video Coding (HEVC), designed to 
counterbalance the limits of its predecessors, is known for its 
superior compression efficiency and has played a big role in 
high-resolution video streaming while reducing bandwidth 
requirements. However, existing HEVC-based adaptive 
streaming techniques are limited by their reactive behavior, they 
rely on immediate response to network feedback. These methods 
often struggle in unstable network conditions, resulting in non-
optimal Quality of Service (QoS). 

Recent advancements in artificial intelligence have 
introduced predictive techniques into adaptive streaming, 
enabling systems to anticipate network changes and adjust 
parameters proactively. Machine learning models, particularly, 
Long Short-Term Memory (LSTM) networks, have 
demonstrated their effectiveness in predicting bandwidth 
fluctuations, by capturing temporal dependencies in network 
data [2]. Integrating these predictive models with HEVC 
encoding can enhance the adaptability of streaming systems, 
allowing for proactive adaptations to maintain consistent video 
quality and reduce buffering [3]. Recent studies have explored 
AI-based optimization frameworks that dynamically adjust 
video quality and buffer sizes based on real-time network data, 
leading to improved user experiences [4]. 

In this paper, we introduce a novel proactive AI-driven 
approach to adaptive HEVC video transmission. This approach 
was designed to predict bandwidth variations in real-time and 
proactively adapt encoding parameters, by benefiting from 
machine learning techniques offered by LSTM. Enabled by 
LSTM, the system learns temporal patterns in historical and real-
time network data to forecast bandwidth changes accurately. 
This predictive nature of our system makes it able to adjust 
bitrate and resolution ensuring consistent video quality with 
minimal buffering. This work contributes to the evolution of 
adaptive streaming technologies by introducing an AI-driven 
solution that enhances QoS in HEVC, demonstrated by its 
significant improvements of video quality metrics such as PSNR 
and SSIM while reducing the buffering events in modern 
network environments. 

The remainder of this paper is structured as follows: 
Section II presents a review of related works, discussing 
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previous efforts in bandwidth prediction and adaptive streaming. 
Section III describes the proposed methodology, including data 
collection, model training, and system integration. Section IV 
presents the experimental setup, performance evaluation, and 
key results. Finally, Section V discusses limitations, and future 
research directions, and concludes the paper. 

II. RELATED WORK 

Predicting bandwidth effectively is essential for enhancing 
the efficiency of adaptive video streaming and live broadcasting. 
Over recent years, diverse techniques have been designed to 
address the challenges associated with fluctuating network 
conditions. For instance, machine learning models have been 
employed to predict network bandwidth, enhancing the 
adaptability of streaming systems [5]. These approaches use 
machine learning, neural networks, and statistical techniques to 
attain better prediction accuracy and adaptability. In this section, 
we present notable works that have contributed to advancements 
in bandwidth prediction research. 

The first work, Data-Driven Bandwidth Prediction Models 
and Automated Model Selection for Low Latency [6]. In this 
paper, the authors introduce a novel automated model for 
prediction (AMP) designed for low-latency live streaming with 
chunked transfer encoding. The AMP approach incorporates 
techniques for bandwidth prediction and model auto-selection, 
to optimize streaming performance under varying network 
conditions. 

Another notable work is an attention-based LSTM Model for 
Multi-Scenario Bandwidth Prediction (ALSTM) [2]. This work 
introduces an ALSTM model that integrates LSTM networks 
with an attention mechanism to predict bandwidth across 
multiple scenarios. Bandwidth trajectory feature analysis is 
performed by the model while using Support Vector Machine 
(SVM) classification to achieve enhanced prediction accuracy in 
diverse network environments. 

An additional significant work in this field, A Large 
Language Model-based Approach for Accurate and Adaptable 
Bandwidth Prediction [7]. In this work, the researchers propose 
a BP-LLM, a novel approach that exploits the capabilities of 
large language models (LLMs) to enhance bandwidth 
prediction. This approach employs Transformer architecture, 
BP-LLM captures long-term dependencies in network traffic 
and integrates various input modalities, through text 
representations, such as user location and communication 
latency consequently improving the accuracy and adaptability. 

A further remarkable work, A Multi-Manifold Based 
Available Bandwidth Prediction Algorithm [8], this paper 
introduces an MD-AVB algorithm which is based on the 
observation that the available bandwidth space in the internet is 
multi-manifold and asymmetrical. This algorithm’s aim is the 
enhancement of the accuracy of available bandwidth prediction 
by taking into consideration the complex structure of bandwidth 
availability in network environments. 

A different noteworthy research effort, Predicting 
Bandwidth Utilization on Network Links Using Machine 
Learning [9]. This work addresses the challenge of predicting 
the bandwidth utilization between different network links. The 

researchers evaluate and compare ARIMA, Multi-Layer 
Perceptron (MLP), and LSTM algorithms, the study finds that 
LSTM outperforms the others achieving predictions with errors 
rarely exceeding 3%. 

One more notable work is Realtime Mobile Bandwidth and 
Handoff Predictions in 4G/5G Networks [10]. This paper 
explores the possibility and accuracy of real-time mobile 
bandwidth and handoff predictions in 4G/LTE and 5G networks. 
In this work, the researchers develop the Recurrent Neural 
Network models, the study consistently outperforms 
conventional univariate and multivariate bandwidth prediction 
models, and it achieves over 80% accuracy in predicting 4G and 
5G handoffs. 

In this next table “Table Ⅰ”, we present a comprehensive 
comparison of state-of-the-art works, detailing the 
methodologies adopted, the metrics employed for evaluations, 
and the results achieved. This comparison aims to provide a 
clear and concise overview of the key approaches and their 
corresponding outcomes. 

TABLE I COMPARISON OF STATE-OF-THE-ART APPROACHES 

Work Methodology Results 

[6] Data-Driven 
Bandwidth 
Prediction Models 
and Automated 
Model Selection 
for Low Latency 

ARIMA 
RLS 
RNN  
LSTM 
GRU 
A-RNN 
R-RNN 
Auto-selection 
model 

Avg bandwidth prediction 
accuracy: 99,4% 
Avg QoE 0.95 
Avg Latency: 2.06s 
Avg bitrate:1,4Mbps 
Avg RMSE: 0,006 

[2] ALSTM: AN 
attention-based 
LSTM Model for 
Multi-Scenario 
Bandwidth 
Prediction 

Attention-based 
LSTM 
SVM classifier 

Avg prediction accuracy: 
90% 
Avg MAE: 0,05 Mbps 
Avg RMSE:0,07 Mbps 

[7] BP-LLM: A 
Large Language 
Model-based 
Approach for 
Accurate 
Bandwidth 
Prediction 

Transformer-based 
LLM, multi-
modality integration 

Avg Prediction Accuracy: 
95% improved adaptability 
across various scenarios 

[8] MD-AVB: A 
Multi-Manifold-
Based Available 
Bandwidth 
Prediction 
Algorithm 

Multi-manifold 
model with 
asymmetrical 
bandwidth space 
consideration 

Prediction accuracy 
improved by 30% over the 
baseline  
Avg MAE: 0,1 Mbps 

[9] Predicting 
Bandwidth 
Utilization on 
Network Links 
Using Machine 
Learning 

ARIMA Multi-
Layer Perceptron 
LSTM 

Avg prediction error 
(LSTM): 3% 
Avg MAE:0,05 Mbps 

[10] Realtime 
Mobile Bandwidth 
and Handoff 
Predictions in 
4G/5G Networks 

RNN-based 
prediction models 

Avg prediction accuracy: 
80% 
Avg MAE:0.1 Mpbs 
Avg handoff prediction 
accuracy: 80% 
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III. OUR METHODOLOGY 

In this paper, we propose a novel methodology that leverages 
AI-powered predictive models integrated with HEVC encoding 
to address the challenges of bandwidth fluctuation in adaptive 
video transmission. The process of this methodology includes 
multiple stages: data collection and pre-processing, predictive 
model training, integration with HEVC encoder, real-time 
execution, and a feedback loop to optimize the system 
dynamically. Similar approaches have been utilized in previous 
studies to enhance video streaming performance [11]. This 
section details this process and the use of LSTM model 
architecture. The role and optimization of the scaling factor and 
the integration process for real-time adaptive transmission. 

This process begins with a comprehensive data collection 
and pre-processing, where HEVC-encoded video sequences 
with different resolutions were collected from the JCT-VC 
dataset, while network traces were gathered from the MAWI 
Archive provided realistic bandwidth, latency, and packet loss 
scenarios. Subsequently, a simulation of complex network 
environments was conducted using Mininet and NetEM, 
introducing controlled impairments like congestion, jitter, and 
delays to assess system performance. Using these datasets, the 
LSTM model was trained on a rich feature dataset, capturing 
historical and real-time network metrics, and optimized through 
an 80-10-10 data split for training, validation, and testing. 

The predictive model anticipates bandwidth fluctuations and 
adjusts encoding parameters dynamically using a scaling factor 
𝛼, to balance bitrate and resolution. This scaling factor was 
optimized iteratively based on performance metrics, ensuring 
efficient resource utilization and minimal disruptions. The 
system also incorporated a feedback loop to adapt to evolving 
network conditions by continuously retraining the model with 
new data. 

The effectiveness of this data is validated through metrics 
like PSNR and SSIM, buffering sequence, which demonstrated 
significant improvements in video quality and playback stability 
over adaptive streaming techniques. These findings align with 
previous research that utilized machine learning models for 
bandwidth prediction in video streaming [12]. By combining 
advanced predictive modeling with robust experimental 
controls. This next figure presents the methodology and 
experimental setup used to deliver an enhanced quality of 
service. 

The following figure “Fig. 1” provides a visual summary of 
the key steps in our proposed methodology illustrating the 
progression from data collection and pre-processing to 
predictive modeling, real-time adaptation, and performance 
evaluation within a controlled experimental environment. 

 “Fig. 1” illustrates the workflow of the proposed 
methodology, outlining the sequence from data acquisition to 
real-time adaptation. To enhance understanding, we provide 
additional details regarding the LSTM model’s structure and the 
selection of relevant features. 

The LSTM model is composed of two sequential LSTM 
layers, each comprising 128 units, followed by a fully connected 
layer utilizing a ReLu activation function. The training process 
employs the Adam optimizer with a learning rate of 0.001. The 

model’s input features include real-time bandwidth, packet loss, 
jitter, and latency, all extracted from network traces. These 
features were carefully selected due to their strong correlation 
with bandwidth fluctuations, allowing the model to capture 
temporal dependencies effectively and enhance prediction 
accuracy. 

 

Fig. 1. Proposed approach workflow. 

As for processing and integration of MAWI Archive Data, 
the MAWI Archive provides real-world network traces under 
varying network conditions. To integrate these traces into our 
model, we conducted a thorough preprocessing stage: 

 Filtering: Irrelevant and noisy data points were removed. 

 Normalization: Bandwidth values were normalized using 
min-max scaling. 

 Smoothing: A moving average filter was applied to 
reduce abrupt variations. 

 Alignment: The processed data was synchronized with 
HEVC encoding parameters, ensuring realistic 
simulation conditions. 

Additionally, we combined historical data with real-time 
network conditions allowing the LSTM model to generalize 
effectively to dynamic environments. 

The scaling factor 𝛼 dynamically adjusts the encoding bitrate 
based on predicted bandwidth variations. Unlike static scaling, 
which relies on predefined thresholds (e.g., fixed bitrate changes 
at predetermined bandwidth levels), 𝛼 continuously adapts using 
real-time predictions, reducing abrupt quality fluctuations. 
Mathematically, 𝛼 is computed using “Eq. (1)”: 

𝛼 = 𝑓(𝐵𝑊𝑝𝑟𝑒𝑑 , 𝐵𝑊𝑐𝑢𝑟𝑟  , 𝑄𝑝𝑟𝑒𝑣)   (1) 

Where 𝐵𝑊𝑝𝑟𝑒𝑑  is the predicted bandwidth from the LSTM 

model, 𝐵𝑊𝑐𝑢𝑟𝑟  is the current measured bandwidth, 𝑄𝑝𝑟𝑒𝑣  is the 

previously selected video quality. 
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Unlike traditional static scaling methods that modify bitrate 
based on predefined thresholds or incremental adjustments, our 
approach leverages predictive modeling to dynamically adapt 
bitrate in real-time. By anticipating network variations this 
technique ensures seamless transitions, minimizes sudden 
quality drops, and significantly decreases buffering occurrences, 
leading to an improved viewing experience. Performance 
evaluations demonstrate that our method consistently surpasses 
static techniques in delivering stable and high-quality video 
streaming. 

IV. RESULTS AND DISCUSSION 

In this section, we provide the experimental results of the 
system’s performance before and after applying the proposed 
approach, emphasizing critical metrics such as PSNR, SSIM, 
bitrate fluctuations over time, and buffering events. 

 

Fig. 2. PSNR comparison before and after applying our approach. 

The figure above “Fig. 2” shows PSNR values change over 
time, highlighting the improvement in video quality after using 
our approach. Before using this method, PSNR values varied a 
lot, showing that the video quality was inconsistent because 
traditional streaming methods only adjusted encoding after 
network changes happened. Meanwhile, with the predictive 
algorithm, PSNR values become steadier and consistently 
higher. 

 

Fig. 3. SSIM comparison before and after applying our approach. 

The plot above “Fig. 3” represents how SSIM values 
changed over time, offering a comparison of frame similarity 
before and after using the predictive approach. Before the 
algorithm, SSIM values varied greatly, showing inconsistent 
visual quality due to reactive bitrate changes. This often caused 
noticeable drops in quality, especially during complex scenes. 
After our predictive approach was implemented, SSIM values 
remained more stable and consistently higher, showing its 

ability to adjust encoding settings proactively. This led to 
smoother playback with fewer quality issues, proving the 
algorithm’s effectiveness in maintaining visual quality and 
ensuring reliable streaming even with network changes. 

 

Fig. 4. Bitrate over time comparison before and after applying our approach. 

The figure above “Fig. 4” demonstrates how bitrate changes 
over time. Before applying our method, the system uses a more 
aggressive bitrate adaptation, rapidly increasing the bitrate to 
fully utilize the available bandwidth. However, this approach 
often results in instability and sudden quality changes, 
particularly during network fluctuations. In contrast, our 
predictive method focuses on maintaining stability by adjusting 
the bitrate moderately, even when network conditions improve. 

 

Fig. 5. Buffering events comparison before and after applying our approach. 

The plot of buffering events over time “Fig. 5” compares the 
frequency and distribution of interruptions, before and after 
applying the predictive algorithm. Before applying our 
approach, buffering events were more common and spread 
across multiple frames reflecting the reactive nature of the 
streaming method, which struggles to quickly adjust to changing 
network conditions leading to frequent interruptions. On the 
other hand, after applying our predictive algorithm, the plot 
shows a significant decrease in buffering events, demonstrating 
that the predictive algorithm successfully anticipates network 
fluctuations and adjusts the video encoding proactively. This 
results in a much smoother streaming experience with fewer 
disruptions. 

In this section, we compared the system’s performance 
before and after applying our predictive approach, focusing on 
metrics like PSNR, SSIM, bitrate, and buffering events. The 
results show notable improvements with the AI-based 
algorithm. PSNR values are more stable and consistently higher, 
indicating better video quality. SSIM demonstrates fewer 
fluctuations keeping the visual quality intact. Bitrate adaptation 
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is smoother enhancing the overall stability and reducing 
buffering. Moreover, the buffering events are significantly 
fewer, as the predictive algorithm anticipates network changes 
and adjusts the encoding accordingly leading to better quality of 
service. AI-driven adaptive streaming architectures have been 
shown to effectively adjust video quality and buffer sizes in 
response to network variability, resulting in enhanced user 
experiences [13]. 

V. BASELINE COMPARISON 

Deep learning-based network performance prediction 
models have been utilized to train adaptive bitrate algorithms, 
improving the robustness and generalizability of streaming 
systems [14]. For evaluation purposes, we compare our 
proposed approach against baseline methods using key metrics, 
the following table “Table Ⅱ” highlights how our method 
outperforms others in terms of PSNR, SSIM, latency, and 
buffering events. 

TABLE II PERFORMANCE COMPARISON OF PROPOSED APPROACH VS. 
BASELINE METHODS 

Metric Method Value 
Proposed 

Approach 

PSNR(dB) 

AMP [6] 39,1 

41,2 

 

ALSTM [2] 40,5 

Bp-LLM [7] 39,8 

MD-AVB [8] 38,7 

SSIM 
ALSTM [2] 0,93 0,945 

 MLP [9] 0,92 

Latency (ms) 
AMP [6] 52 ms 

45 ms 
Realtime RNN[10] 55 ms 

Buffering 

Events 

AMP [6] 4 events 
2 events 

MD-AVB [8] 3 events 

Now we will present a graphical representation of the results 
“Fig. 6”, to illustrate the performance metrics. The first graph, 
highlights a detailed analysis of PSNR values, showcasing the 
improvement of PSNR values by our approach, indicating 
enhanced video quality surpassing ALSTM [2] and other 
referenced methods. 

 

Fig. 6. PSNR comparison between our approach and ALSTM. 

This next graph “Fig. 7” demonstrates the notable 
improvement of SSIM values achieved by our proposed method. 
The improvement of structural similarity showcases our 

method’s capability to maintain higher visual fidelity, especially 
under changing network conditions, outperforming ALSTM [2] 
and MLP [9]. 

 

Fig. 7. SSIM comparison between our approach and ALSTM and MLP. 

The following plot “Fig. 8” highlights the significant latency 
reduction attained by our approach. Surpassing AMP [6] and 
RNN [10], demonstrates the efficiency of our approach to 
deliver fast responses and adaptive coding. 

 

Fig. 8. Latency comparison between our approach and AMP and RNN. 

This last graph “Fig. 9” shows the important decrease in 
buffering events achieved by our algorithm in comparison with 
AMP [6] and MD-AVB [8], the results demonstrate our 
method’s ability to deliver a smoother streaming experience 
with minimal disruptions. 

 

Fig. 9. Buffering events comparison between our approach and AMP and 

MD-AVB. 

Our proposed approach demonstrates superior performance 
across different key metrics. It achieves an average PSNR of 
41,2 dB, surpassing all methods stated in the related works 
section, with ALSTM [2] being the closest at 40,5 dB. In terms 
of structural similarity (SSIM), our approach attains a value of 
0,945, outperforming ALSTM [2] attaining 0,93 and MLP [9] 
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achieving 0,92. Furthermore, our predictive algorithm reduces 
latency to 45 ms, exceeding AMP [6] 52 ms and the Realtime 
RNN approach [10] 55 ms. Finally, our method reports only 2 
buffering events on average, making a clear improvement over 
AMP [6] (4 events) and MD-AVB (3 events). 

VI. CONCLUSION 

The integration of AI-driven predictive models represents a 
significant advancement in adaptive streaming technologies, 
offering the potential for more responsive and efficient video 
delivery systems [15]. This work introduced a novel AI-powered 
predictive approach for adaptive HEVC video transmission, 
addressing the challenges for real-time applications, particularly 
on resource-constrained devices. Furthermore, the applicability 
of our approach across diverse network environments. By 
leveraging Long Short-Term Memory (LSTM)) models, our 
system predicts bandwidth fluctuations in real-time, enabling 
proactive encoding adjustments that ensure smooth adaptation 
and improved viewing experiences. The experimental results 
demonstrate significant improvements, with PSNR reaching 
41,2 dB, SSIM at 0,945, and latency reduced to an average of 45 
ms, contributing to fewer buffering events and enhanced 
stability in video streaming. 

Despite these advancements, certain limitations must be 
considered. The computational overhead of LSTM-based 
prediction models may pose challenges for real-time 
applications, particularly on resource-constrained devices. 
Furthermore, the applicability of our environments, including 
low-latency and high-mobility scenarios, requires further 
evaluation to ensure robust performance under varying 
conditions. 

Future work will focus on optimizing the computational 
efficiency of our model, investigating alternative lightweight 
machine learning approaches such as GRUs or hybrid deep 
learning techniques to enhance adaptability for mobile and edge 
computing environments. Additionally, we plan to extend the 
system’s capabilities for next-generation adaptive streaming, 
particularly in the context of 5G networks, to further improve 
real-time video delivery in ultra-low latency scenarios. 

Overall, this research demonstrates the potential of AI-driven 

predictive models in enhancing adaptive HEVC streaming by 

providing stable video quality, reduced buffering, and efficient 

bandwidth utilization. Further developments will aim to refine 

its implementation for broader deployment in emerging network 

infrastructures. 
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