
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

255 | P a g e

www.ijacsa.thesai.org

Detection of Stopwords in Classical Chinese Poetry

Lei Peng1, Xiaodong Ma2, Zheng Teng3

Library and Information Science Center, Chongqing Three Gorges Medical College, Chongqing, China1

Faculty of Data Science and Information Technology, INTI International University, Nilai, N. Sembilan, Malaysia2

School of International, Huanghe Science and Technology University, Zhengzhou, Henan, China2

School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, China3

Abstract—In this research, we address the problem of

stopword detection in Classical Chinese Poetry, an area that has

not been explored previously. Stopword detection is crucial in

text mining tasks, as identifying and removing stopwords is

essential for improving the performance of various natural

language processing models. Inspired by the TF-IDF method, we

propose a novel approach that utilizes external knowledge to

reconstruct the Term Weight matrix. Our key finding is that

incorporating external knowledge significantly refines the

granularity of the term weight, thereby improving the

effectiveness of stopword detection. Based on these findings, we

conclude that external knowledge can enhance the ability of text

representation, especially for the short texts in Classical Chinese

Poetry.

Keywords—TF-IDF; stopwords; Chinese; poetry; frequency

I. INTRODUCTION

Stopwords are words that contain little semantic
information and do not significantly contribute to text
processing, despite their high frequency of occurrence [1, 2]. In
text mining and information processing tasks (such as text
classification and clustering), stopwords should generally be
removed during the preprocessing stage [3, 4]. Removing
stopwords can significantly improve the results of tasks such as
feature extraction [5, 6], topic modeling [7], classification [8],
ontology construction [9], and keyword extraction [10].
Stopwords have domain-specific characteristics, meaning that
different domains have different stopword lists. They are
typically a cluster of non-restrictive words. Since there is no
fixed scope for stopwords, detecting them remains an evolving
research field.

With the increasing popularity of classical Chinese poetry
worldwide, more and more scholars are paying attention to it.
Classical Chinese poetry is the pinnacle of Chinese traditional
culture, and research on it will contribute to the development of
Chinese culture. Currently, research in information retrieval
and natural language processing in the Chinese language is
mostly focused on modern Chinese, rather than classical
Chinese. To the best of our knowledge, no researchers has yet
conducted research on stopwords in classical Chinese poetry.
Therefore, the significance of this study lies in our being the
first to explore this area.

However, classical Chinese poetry is characterized by short
texts, with many articles containing fewer than 20 tokens.
These texts have low token repetition rates and are sparse,
which makes them different from typical longer texts in text
mining. Traditional methods, which rely solely on term

frequency for stopword detection, face a challenge in this
context, as they tend to result in nearly identical term
frequencies for almost all terms. This leads to the issue of
treating all terms equally. As a result, traditional methods often
perform poorly when dealing with short texts. In this paper, we
attempt to enhance the ability of text representation by using
the TextRank method. We replace traditional Term Frequency
with a finer measure of Term Importance, allowing for greater
term index diversity in the text.

The structure of this paper is as follows: the first section
introduces the research on stopwords in classical poetry; the
second section reviews related research; the third section
presents our proposed method; the fourth section describes our
experiments, including the source of datasets, experimental
processes, results, and discussion; finally, we conclude with a
summary and outlook.

II. RELATED WORKS

Over the years, many researchers have explored stopwords
issues, but we find that there has been little research on
stopwords in Chinese classical poetry.

Zou et al. proposed a novel stopword list evaluation method
using a mutual information-based Chinese segmentation
approach [11]. Since this paper was published before the
advent of Chinese automatic segmenters, its application
scenario involved directly detecting stopwords in complete
sentences. It uses mutual information values and sets
thresholds and boundaries to calculate the association between
grams.

Kucukyilmaz et al. used a classification approach to detect
stopwords by constructing various features [12]. The features
they used include frequency, term frequency, inverse document
frequency, mean probability, variance probability, entropy,
information model, and word positioning. They then evaluated
their method using different classifiers.

Ferilli et al. employed Kullback-Leibler (KL) divergence as
a measurement method and tested it on Italian language
corpora [13]. This method is suitable for very small datasets,
even those containing just one document.

Gerlach et al. used conditional entropy and a random null
model to process stopwords [14]. Conditional entropy was used
as the upper bound for the entropy of idealized stopwords,
while the random null model was applied to compensate for
undersampling. The difference between the two was then used
as a criterion for measuring stopwords. The authors used
quality assessment metrics such as NMI (Normalized Mutual

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

256 | P a g e

www.ijacsa.thesai.org

Information) for topic models and accuracy for classification
tasks to experiment with the stopwords they detected.

Achsan et al. used the Term Frequency Inverse Document
Frequency (TF-IDF) method to extract stopwords from a
corpus collected from Indonesian online newspapers [15].
Since our method was inspired by their work, a detailed
introduction to the method they used is provided here.

Specifically, 𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐹(𝑡, 𝑑) ∙ 𝐼𝐷𝐹(𝑡, 𝐷) ,
where 𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) represents the TF-IDF score of a
term t in the document d given the document collection D. For
a vocabulary of size V and a total documents of number M, TF-
IDF forms a M*V matrix, which has M rows (corresponding to

the number of documents) and V columns (corresponding to
the vocabulary size). Each entry in the matrix corresponds to a
TF-IDF score of a specific term t.

𝑇𝐹(𝑡, 𝑑) refers to the frequency of a term t in the document
d, calculated as the number of occurrences of the term in the
document divided by the total number of terms in the
document which is also the document length.

𝑇𝐹(𝑡, 𝑑) =
𝑓(𝑡,𝑑)

∑ 𝑓(𝑡′,𝑑)
𝑡′∈𝑑

 (1)

in which, 𝑓(𝑡, 𝑑) is the number of times the term t appears
in document d, and ∑ 𝑓(𝑡′, 𝑑)𝑡′∈𝑑 is the total number of
occurrences of all terms in document d.

Fig. 1. Overall workflow comprising the proposed model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

257 | P a g e

www.ijacsa.thesai.org

𝐼𝐷𝐹(𝑡, 𝐷) stands for Inverse Document Frequency of the
documents comprising term t in total document collection D.
The concept was introduced based on the idea that if a term t
appears in most of the documents, it means the term does not
help to distinguish between documents, and therefore it is not
an important word. Its calculation method is the inverse
operation of the proportion mentioned above with a
logarithmic operation outside. It is a vector, as it is calculated
for each term, making it a vector of length V.

𝐼𝐷𝐹(𝑡, 𝐷) = log (
𝑁

𝑑𝑓(𝑡)
) (2)

in which, 𝐷 is the document collection, 𝑁 is the total
number of documents in the document collection, and 𝑑𝑓(𝑡) is
the number of documents that the word t appears in.

Finally, multiplying 𝑇𝐹(𝑀,𝑉) by 𝐼𝐷𝐹(𝑉) results in an
M*V matrix. For each term's TF-IDF score, according to
Achsan et al’s method, it should iterate through all documents,
summing and averaging the TF-IDF values of the term. Then
we list the average TF-IDF values of all terms in ascending
order. Terms at the top are more likely to be stopwords, while
terms at the bottom have a higher distinguishing ability for the
document collection, meaning they are more likely to be
significant terms.

Chinese language is considered a low-resource language,
and research on stopwords in Chinese is still relatively scarce.
Moreover, most available studies focus on modern Chinese,
with seldom literature found on stopwords in Classical
Chinese. The method proposed by Zou et al. is no longer
applicable with the existence of Chinese word segmentation
tools. Other studies primarily focus on long texts, which cannot
be applied to short text corpora like Classical Chinese poetry.
Kucukyilmaz et al. used a classification approach relying on
various features such as word frequency and inverse document
frequency. However, these features may not be effective for
short texts with high contextual dependencies. Ferilli et al.'s
use of the KL divergence method mainly measures the
difference between two distributions, but for Classical Chinese
poetry, which is structurally complex, lexically rich, and
relatively short, KL divergence may not effectively capture the
distributional characteristics. Gerlach et al.'s method relies on
calculating conditional entropy, which is based on word
frequency and may not effectively capture contextual
relationships.

The Chinese poems are always short texts, while the all
above methods are designed for long texts. Specifically, for the
method used by Achsan et al., since each document researched
in our research contains only a few terms, and each term
appears only once, this leads to almost identical term frequency
(TF) values for all terms in most documents. This creates
significant challenges for the subsequent calculations.

III. PROPOSED MODEL

A. Overall Process

First, we crawl the required data from the Internet, which
includes not only the classical Chinese poetry for this research
but also the related external knowledge corpora. After
obtaining all the data, we clean it according to the actual

requirements. Once the data is cleaned, we divide it into two
parts and feed them into the model.

On one hand, for the cleaned classical Chinese poetry, we
perform character segmentation for each document and use
Vector Space Model (VSM) to obtain vectorization. This is
used to calculate the IDF vector for the entire poetry dataset.
On the other hand, for the external knowledge, we perform
word vector training and TextRank computation. This produces
a Term Importance (TI) matrix, which we will explain in more
detail in the next subsection. Afterward, we merge the TI and
IDF to perform the Term Importance Inverse Document
Frequency (TI-IDF) calculation. This is the core of our
computation. Finally, we sort the resulting TI-IDF values in
ascending order, and the terms on the top are more likely to be
identified as stopwords. The overall workflow is shown in
Fig. 1.

B. External Knowledge

 Step 1: We use word embedding technology to train the
external knowledge corpus and obtain a word vector
model. Word embedding is a technique that maps
tokens from natural language into a real-valued space. It
was first introduced by Bengio et al. in 2003 [16].
However, due to the complexity, it has not been given
much attention until Mikolov et al. simplified the neural
network architecture in 2013 [17]. After that Google
implemented it and released the Word2Vec (W2V),
which greatly advanced the development and
application of word embedding technology. After
training the word vector model, we can easily obtain the
vector corresponding to each word, and then calculate
the semantic similarity between words. The reason we
obtain word vectors here is to perform the subsequent
term importance (TI) computation in step 2.

 Step 2: The word vectors obtained in the previous step
are then input into the TextRank algorithm. TextRank
was proposed by Mihalcea et al. and inspired by
Google’s foundational algorithm, PageRank [18]. The
basic idea of PageRank is that if a page is referenced by
many other pages, its importance is higher than that of
others. TextRank applies this concept to text analysis.
The computation unit is focused from web pages to
sentences, and the link structure between web pages is
replaced by the semantic similarity between sentences.
The result is a ranking of sentence importance, and it is
commonly used for tasks like key sentence
identification and summary extraction. The TextRank
formula is calculated as:

𝑊𝑆(𝑉𝑖) = (1 − 𝑑) + 𝑑 ∗ ∑
𝑊𝑗𝑖

∑ 𝑊𝑗𝑘𝑉𝑘∈𝑂𝑢𝑡(𝑉𝑗)

𝑊𝑆(𝑉𝑗)𝑉𝑗∈𝐼𝑛(𝑉𝑖)
(3)

in which, 𝑊𝑆(𝑉𝑖) represents the weight of sentence i, and
the sum on the right represents the contribution of each
sentence to this sentence. In a single document, we can roughly
think that all sentences are adjacent. 𝑊𝑗𝑖 represents the

similarity of sentence j and i, and 𝑊𝑆(𝑉𝑗) represents the

weight of the last iterated sentence 𝑉𝑗 . 𝐼𝑛(𝑉𝑖) means the

precursor nodes of 𝑉𝑖 , that the nodes point to 𝑉𝑖 . 𝑂𝑢𝑡(𝑉𝑗)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

258 | P a g e

www.ijacsa.thesai.org

means the follow-up nodes of 𝑉𝑗, that the nodes point out from

𝑉𝑗.

In our model, we adjust the TextRank method by changing
the computation unit from a sentence to a token. Using the
word vectors from the previous step, we calculate the semantic
similarity between terms. We then input the constructed token
similarity matrix into TextRank, ultimately obtaining the term
importance matrix. This process is described in Algorithm 1.

Algorithm 1: Compute term importance
Input: The word embedding pretrained model wv: {term:
term_vec}, the document index d.
Output: The term importance dict, the corresponding term
count dict.

term count

token_id_list[] = Document[d].get_tokens()

term_count_dict = {}

for token_id in token_id_list:

 if token not in term_count_dict:

 term_count_dict[token_id] = 1

 else:

 term_count_dict[token_id] += 1

compute distinguished terms list

term_id_list[] = term_count_dict.keys()

compute TextrRank value

similarity = [][]

 for term_1 in term_id_list:

 for term_2 in term_id_list:

similarity[term_1][term_2] =
compute_similarity(wv(term_1),wv(term_2))

term_TR_dict{} = TextrRank(similarity)

return term_TR_dict, term_count_dict

C. Core Computation

For the obtained term_TR_dict (term TextRank dictionary)
and term_count_dict (term count dictionary), we will arrange
the keys according to the vocabulary order in the VSM to get

the term importance vector 𝜁𝑑⃗⃗ ⃗ = [𝜁𝑑_1, 𝜁𝑑_2, ⋯ , 𝜁𝑑_𝑣] and the

corresponding term count vector 𝜆𝑑
⃗⃗⃗⃗ = [𝜆𝑑_1, 𝜆𝑑_2, ⋯ , 𝜆𝑑_𝑣] .

Here, 𝑑_𝑖 represents the i-th term in the vocabulary of
document d. 𝜁𝑡𝑒𝑟𝑚 and 𝜆𝑡𝑒𝑟𝑚 represent the importance value

and count value corresponding to the term. We multiply 𝜁𝑑⃗⃗ ⃗

with 𝜆𝑑
⃗⃗⃗⃗ , and then apply softmax to obtain the term importance

result. It is important to note that the softmax operation is used
to smooth the data and ensure that all values fall within the
range of 0 to 1.

𝑇𝑒𝑟𝑚 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑑_𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜁𝑑_𝑖 ∙ 𝜆𝑑_𝑖)

=
𝑒
𝜁𝑑_𝑖∙𝜆𝑑_𝑖

∑ 𝑒
𝜁𝑑_𝑗∙𝜆𝑑_𝑗𝑑𝑣

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1,2,⋯ , 𝑑𝑣 (4)

After obtaining the term importance list, its length will be
d_v, which is the number of terms in the document, d’s
vocabulary, rather than the length of the entire vocabulary V,
D’s vocabulary. We should map it to the entire vocabulary to
obtain the vector, which will be constructed as row in the Term
Importance matrix. For terms that do not appear in the

document, we set their values to 0. Below is the pseudocode
for this process:

z_d_final[] = zero(V)

for i in [1, V]:

 z_d_final[i] = Term Importance[vocabulary[i]]

return z_d_final

This is for just one document, and we need to perform this
operation on all documents to ultimately obtain the entire term
importance matrix. For IDF, we still use the calculation method
from the TF-IDF approach. Therefore, the final calculation
formula is:

𝑇𝐼 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐼(𝑡, 𝑑) ∙ 𝐼𝐷𝐹(𝑡, 𝐷) (5)

in which:

𝑇𝐼(𝑡, 𝑑) = 𝑇𝑒𝑟𝑚 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑡) 𝑜𝑛 𝐷𝑜𝑐[𝑑] (6)

and

𝐼𝐷𝐹(𝑡, 𝐷) = log (
𝑁

𝑑𝑓(𝑡)
) (7)

For all terms, we also apply the method used in Achsan’s
paper, computing the average to obtain the final result.

𝑇𝐼 − 𝐼𝐷𝐹(𝑡, 𝐷) =
∑ 𝑇𝐼(𝑡,𝑑)𝑁

𝑑=1

𝑑𝑓(𝑡)
∙ log (

𝑁

𝑑𝑓(𝑡)
) (8)

IV. EXPERIMENT

A. Dataset

The Tang poetry and Song poetry, with one representing
the highest quality and the other the largest quantity, are
suitable to be the subjects in this research. Since these two
datasets are publicly available on the Internet, we crawled them
from online sources 1 , 2 . Finally, we obtain Complete Tang
Poems (CTP) dataset and Poems of Song Dynasty (PSD)
dataset. As the main focus of this paper is on stopword
detection, the details of the crawling, storing, tokenizing, and
cleaning process are not elaborated here due to space
limitations.

TABLE I. DATASETS DETAILS

- CTP Dataset PSD Dataset

Document # 42,479 182,213

Vocabulary Size 7,062 11,230

Min length 3 5

Max length 3,750 2,013

Avg length 58.62 58.71

To verify the efficiency of our stopword detection, we need
to set some stopwords as criteria. We invited three graduate
students majoring in Chinese language and literature to each
list some stopwords based on their knowledge of poetry. Then,
we extracted the common words from the three lists, which
totals 54 words. Finally, this stopwords list have received

1 http://www.wenxue100.com/book_GuDianShiCiWen/5.thtml
2 http://www.wenxue100.com/book_GuDianShiCiWen/26.thtml

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

259 | P a g e

www.ijacsa.thesai.org

unanimous approval from the three volunteers, and we
published it here.3

B. External Information

We downloaded a dataset used as studying classical
Chinese texts for ancient Chinese people from the website4.
The dataset includes Confucian classics (Jing), History (Shi),
Philosophy (Zi), and Literature (Ji). It contains 43 million
Chinese characters and a vocabulary length of 16,413, making
it well-suited for training word embedding model.

C. Running Configuration

Our program runs in the following environment: a PC with
Windows 10, an Intel Xeon E5-2680 CPU (2.4GHz 2 Cores),
64GB of RAM, and a 1TB hard drive. The programming
language is Python 3.7, with the development environment
PyCharm 2021.3 and Anaconda 4.7.10. For word embeddings,
we use Gensim 4.2.0, with parameters set to CBOW and
Negative Sampling, and a word vector dimension of 100. For
TextRank, we use NetworkX 2.6.3 for the implementation, and
the damping factor d is set to 0.85, as in most other researches.

D. Results

We can observe that the trend of our model is similar to
that of the original model shown in Fig. 2. As shown in Fig. 2,
in nearly all regions, the number of stopwords detected by our
method exceeds that of the TF-IDF method, except for a few
specific intervals, such as in Fig. 2(a) when the TOP-N range is
approximately within [1750, 1800] and [3300, 3400], and in
Fig. 2(b) when the TOP-N range is approximately within
[6900, 7000].

In Fig. 2(a), when TOP-N is in the range of 0 to 2000, the
number of stopwords increases rapidly. After TOP-N exceeds
2000, the growth rate of stopword numbers levels off. In
Fig. 2(b), when TOP-N is in the range of 0 to 1000, the number
of stopwords significantly increases, then slows down between
1000 and 3500, and eventually experiences a smooth upward
trend after TOP-N exceeds 3500.

(a) Stopwords count details on CTP dataset.

3 https://github.com/powerwings0377/stwords_list
4 https://so.gushiwen.cn/guwen

(b) Stopwords count details on PSD dataset.

Fig. 2. Stopwords count comprised in top-n terms.

(a). Statistical features comparison on CTP dataset.

(b). Statistical features comparison on PSD dataset.

Fig. 3. Statistical features comparison of the results.

Additionally, we compared our results with those of the
TF-IDF method, using these two sets of data for analysis
through the mean, standard deviation, and t-test. The results are
shown in Fig. 3, where Fig. 3(a) shows the comparison on the
CTP dataset and Fig. 3(b) shows the comparison on the PSD
dataset. We found that the mean of our method exceeds that of
the TF-IDF method by approximately 0.9 percentage points
across both datasets. In terms of standard deviation, our
method generally has a smaller standard deviation compared to
the TF-IDF method, except in the CTP dataset, where the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

260 | P a g e

www.ijacsa.thesai.org

standard deviation of the TI-IDF method is slightly higher than
that of the TF-IDF method. The p-values for both datasets in t-
test are far less than 0.01, indicating that the results of our
method show statistical significance in the comparison
experiment.

E. Discussion

Our model exhibits similar performance across the two
corpora. For example, when TOP-N is 1000, the stopwords
count for both corpora is approximately 30, and when TOP-N
is 2000, the stopwords count is around 40. However, there are
differences in performance between the two corpora. For
instance, the rate of increase in stopwords count differs due to
the size of the vocabulary. The CTP corpus has a vocabulary
size of around 6000, while the PSD corpus has a vocabulary
size of over 11,000. The vocabulary in the CTP corpus is more
condensed, which causes a steeper increase in stopwords count.
When TOP-N reaches 4000, the stopwords count in the PSD
corpus exceeds 50 and starts to level off, while in the CTP
corpus, the stopwords count is still rising. Additionally, as
shown in Fig. 3, we can conclude that as the number of
documents and the vocabulary size increase, the detection of
stopwords improves.

The reason our method outperforms the original method in
most areas is that we incorporate external knowledge into the
term weight calculation, which introduces a "preference" factor
into the weight computation. In the original method, the weight
is computed based on term frequency, which leads to equal
weights for equal frequencies. Since most terms in a poetry
document appear only once, terms, whether important or
unimportant, are treated the same. In our method, important
terms are assigned higher weights, making previously equal
weights become fine-grained. This increases the term index
diversity and makes the calculation results more rational.

V. CONCLUSION

As a low-resource language, classical Chinese desires
information technology processing all the time. As the
detection of stopwords in Chinese classical poetry has never
been researched before, in this paper, we proposed a TI-IDF
method to address this issue, in which large-scale classical
Chinese resources are used as an external knowledge base. By
utilizing word embeddings and TextRank, we constructed a
Term Importance matrix to replace the Term Frequency matrix
in the original TF-IDF method. We found that the Term
Importance matrix constructed in this paper provided a more
refined calculation of term weights compared to the Term
Frequency matrix, as external knowledge plays a key role in
fine-tuning the process. Our excellent performance on the CTP
and PSD datasets also validates the reliability of our method.

This paper explores stopword detection in classical Chinese
poetry. The effectiveness of our proposed method largely
depends on the selection of external knowledge. Due to the use
of a pre-trained word embedding model and the construction of
the TextRank network, there was an increase in training time;
however, this does not affect the improvement in model
performance. For future work, we aim to explore labeled
datasets and conduct research on the impact of text analysis
performance with stopword removal.

ACKNOWLEDGMENT

This work was supported by the Chongqing Three Gorges
Medical College of China (No. 2019XZYB13) and by the
Chongqing Association of Higher Education under Chongqing
Municipal of China (No. CQGJ21B128).

REFERENCES

[1] J. Kaur and P. K. Buttar, "A systematic review on stopword removal
algorithms," International Journal on Future Revolution in Computer
Science & Communication Engineering, vol. 4, no. 4, pp. 207-210,
2018.

[2] M. Dehghani and M. Manthouri, "Semi-automatic detection of Persian
stopwords using FastText library," in 9781665402088, 2021.

[3] S. Sahu and S. Pal, "Effect of stopwords in Indian language IR,"
Sadhana - Academy Proceedings in Engineering Sciences, vol. 47, no. 1,
pp. -, 2022.

[4] A. Bichi, R. Samsudin and R. Hassan, "Automatic construction of
generic stop words list for hausa text," Indonesian Journal of Electrical
Engineering and Computer Science, vol. 25, no. 3, pp. 1501-1507, 2022.

[5] R. Arlitt, S. Khan and L. Blessing, "Feature engineering for design
thinking assessment," in International Conference on Engineering
Design, 2019.

[6] K. Goucher-Lambert and J. Cagan, "Crowdsourcing inspiration: using
crowd generated inspirational stimuli to support designer ideation,"
Design Studies, vol. 61, pp. 1-29, 2019.

[7] H. Song, J. Evans and K. Fu, "An exploration-based approach to
computationally supported design-by-analogy using D3," AI EDAM,
vol. 34, pp. 444-457, 2020.

[8] S. Urologin, "Sentiment analysis, visualization and classification of
summarized news articles: a novel approach," (IJACSA) International
Journal of Advanced Computer Science and Applications,, vol. 9, no. 8,
pp. 616-625, 2018.

[9] F. Shi, L. Chen, J. Han and P. Childs, "A data-driven text mining and
semantic network analysis for design information retrieval," Journal of
Mechanical Design, vol. 139, no. 11, 2017.

[10] B. Guda, B. K. Nuhu, J. Agajo and I. Aliyu, "Performance evaluation of
keyword extraction techniques and stop word lists on speech-to-text
corpus," International Arab Journal of Information Technology, vol. 20,
no. 1, pp. 134-140, 2023.

[11] F. Zou, F. L. Wang, X. Deng, and S. Han, "Evaluation of Stop Word
Lists in Chinese Language," in Proceedings of the Fifth International
Conference on Language Resources and Evaluation, LREC 2006,
Genoa, Italy, May 22-28, 2006, pp. 2497-2500.

[12] T. Kucukyilmaz and T. Akin, "A Feature-based Approach on Automatic
Stopword Detection," in Intelligent Systems and Applications, K. Arai,
Ed., Lecture Notes in Networks and Systems, vol. 825, Springer, Cham,
2024.

[13] S. Ferilli, G. L. Izzi, and T. Franza, "Automatic Stopwords Identification
from Very Small Corpora," in Intelligent Systems in Industrial
Applications, M. Stettinger, G. Leitner, A. Felfernig, and Z. W. Ras,
Eds., Studies in Computational Intelligence, vol. 949, Springer, Cham,
2021.

[14] M. Gerlach, H. Shi, and L. A. N. Amaral, "A universal information
theoretic approach to the identification of stopwords," Nat Mach Intell,
vol. 1, pp. 606–612, 2019. https://doi.org/10.1038/s42256-019-0112-6.

[15] H. T. Yani Achsan, H. Suhartanto, W. C. Wibowo, D. A. Dewi, and K.
Ismed, "Automatic Extraction of Indonesian Stopwords," International
Journal of Advanced Computer Science and Applications (IJACSA),
vol. 14, no. 2, 2023.

[16] Y. Bengio, R. Ducharme, and P. Vincent, "A neural probabilistic
language model," Journal of Machine Learning Research, vol. 3, pp.
1137-1155, 2003.

[17] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, "Efficient
estimation of word representations in vector space," Proceedings of the
International Conference on Learning Representations (ICLR 2013).
Available: http://arxiv.org/abs/1301.3781.

https://doi.org/10.1038/s42256-019-0112-6
http://arxiv.org/abs/1301.3781

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

261 | P a g e

www.ijacsa.thesai.org

[18] R. Mihalcea and P. Tarau, "TextRank: Bringing order into texts,"
Proceedings of the 2004 Conference on Empirical Methods in Natural

Language Processing (EMNLP 2004), pp. 404-411. Available:
https://www.aclweb.org/anthology/W04-3252/.

https://www.aclweb.org/anthology/W04-3252/

