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Abstract—In this research, we address the problem of 

stopword detection in Classical Chinese Poetry, an area that has 

not been explored previously. Stopword detection is crucial in 

text mining tasks, as identifying and removing stopwords is 

essential for improving the performance of various natural 

language processing models. Inspired by the TF-IDF method, we 

propose a novel approach that utilizes external knowledge to 

reconstruct the Term Weight matrix. Our key finding is that 

incorporating external knowledge significantly refines the 

granularity of the term weight, thereby improving the 

effectiveness of stopword detection. Based on these findings, we 

conclude that external knowledge can enhance the ability of text 

representation, especially for the short texts in Classical Chinese 

Poetry. 
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I. INTRODUCTION 

Stopwords are words that contain little semantic 
information and do not significantly contribute to text 
processing, despite their high frequency of occurrence [1, 2]. In 
text mining and information processing tasks (such as text 
classification and clustering), stopwords should generally be 
removed during the preprocessing stage [3, 4]. Removing 
stopwords can significantly improve the results of tasks such as 
feature extraction [5, 6], topic modeling [7], classification [8], 
ontology construction [9], and keyword extraction [10]. 
Stopwords have domain-specific characteristics, meaning that 
different domains have different stopword lists. They are 
typically a cluster of non-restrictive words. Since there is no 
fixed scope for stopwords, detecting them remains an evolving 
research field. 

With the increasing popularity of classical Chinese poetry 
worldwide, more and more scholars are paying attention to it. 
Classical Chinese poetry is the pinnacle of Chinese traditional 
culture, and research on it will contribute to the development of 
Chinese culture. Currently, research in information retrieval 
and natural language processing in the Chinese language is 
mostly focused on modern Chinese, rather than classical 
Chinese. To the best of our knowledge, no researchers has yet 
conducted research on stopwords in classical Chinese poetry. 
Therefore, the significance of this study lies in our being the 
first to explore this area. 

However, classical Chinese poetry is characterized by short 
texts, with many articles containing fewer than 20 tokens. 
These texts have low token repetition rates and are sparse, 
which makes them different from typical longer texts in text 
mining. Traditional methods, which rely solely on term 

frequency for stopword detection, face a challenge in this 
context, as they tend to result in nearly identical term 
frequencies for almost all terms. This leads to the issue of 
treating all terms equally. As a result, traditional methods often 
perform poorly when dealing with short texts. In this paper, we 
attempt to enhance the ability of text representation by using 
the TextRank method. We replace traditional Term Frequency 
with a finer measure of Term Importance, allowing for greater 
term index diversity in the text. 

The structure of this paper is as follows: the first section 
introduces the research on stopwords in classical poetry; the 
second section reviews related research; the third section 
presents our proposed method; the fourth section describes our 
experiments, including the source of datasets, experimental 
processes, results, and discussion; finally, we conclude with a 
summary and outlook. 

II. RELATED WORKS 

Over the years, many researchers have explored stopwords 
issues, but we find that there has been little research on 
stopwords in Chinese classical poetry. 

Zou et al. proposed a novel stopword list evaluation method 
using a mutual information-based Chinese segmentation 
approach [11]. Since this paper was published before the 
advent of Chinese automatic segmenters, its application 
scenario involved directly detecting stopwords in complete 
sentences. It uses mutual information values and sets 
thresholds and boundaries to calculate the association between 
grams. 

Kucukyilmaz et al. used a classification approach to detect 
stopwords by constructing various features [12]. The features 
they used include frequency, term frequency, inverse document 
frequency, mean probability, variance probability, entropy, 
information model, and word positioning. They then evaluated 
their method using different classifiers. 

Ferilli et al. employed Kullback-Leibler (KL) divergence as 
a measurement method and tested it on Italian language 
corpora [13]. This method is suitable for very small datasets, 
even those containing just one document. 

Gerlach et al. used conditional entropy and a random null 
model to process stopwords [14]. Conditional entropy was used 
as the upper bound for the entropy of idealized stopwords, 
while the random null model was applied to compensate for 
undersampling. The difference between the two was then used 
as a criterion for measuring stopwords. The authors used 
quality assessment metrics such as NMI (Normalized Mutual 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

256 | P a g e  

www.ijacsa.thesai.org 

Information) for topic models and accuracy for classification 
tasks to experiment with the stopwords they detected. 

Achsan et al. used the Term Frequency Inverse Document 
Frequency (TF-IDF) method to extract stopwords from a 
corpus collected from Indonesian online newspapers [15]. 
Since our method was inspired by their work, a detailed 
introduction to the method they used is provided here. 

Specifically, 𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐹(𝑡, 𝑑) ∙ 𝐼𝐷𝐹(𝑡, 𝐷) , 
where 𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷)  represents the TF-IDF score of a 
term t in the document d given the document collection D. For 
a vocabulary of size V and a total documents of number M, TF-
IDF forms a M*V matrix, which has M rows (corresponding to 

the number of documents) and V columns (corresponding to 
the vocabulary size). Each entry in the matrix corresponds to a 
TF-IDF score of a specific term t. 

𝑇𝐹(𝑡, 𝑑) refers to the frequency of a term t in the document 
d, calculated as the number of occurrences of the term in the 
document divided by the total number of terms in the 
document which is also the document length. 

𝑇𝐹(𝑡, 𝑑) =
𝑓(𝑡,𝑑)

∑ 𝑓(𝑡′,𝑑)
𝑡′∈𝑑

     (1) 

in which, 𝑓(𝑡, 𝑑) is the number of times the term t appears 
in document d, and ∑ 𝑓(𝑡′, 𝑑)𝑡′∈𝑑  is the total number of 
occurrences of all terms in document d. 

 
Fig. 1. Overall workflow comprising the proposed model. 
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𝐼𝐷𝐹(𝑡, 𝐷) stands for Inverse Document Frequency of the 
documents comprising term t in total document collection D. 
The concept was introduced based on the idea that if a term t 
appears in most of the documents, it means the term does not 
help to distinguish between documents, and therefore it is not 
an important word. Its calculation method is the inverse 
operation of the proportion mentioned above with a 
logarithmic operation outside. It is a vector, as it is calculated 
for each term, making it a vector of length V. 

𝐼𝐷𝐹(𝑡, 𝐷) = log (
𝑁

𝑑𝑓(𝑡)
)   (2) 

in which, 𝐷  is the document collection, 𝑁  is the total 
number of documents in the document collection, and 𝑑𝑓(𝑡) is 
the number of documents that the word t appears in. 

Finally, multiplying 𝑇𝐹(𝑀,𝑉)  by 𝐼𝐷𝐹(𝑉)  results in an 
M*V matrix. For each term's TF-IDF score, according to 
Achsan et al’s method, it should iterate through all documents, 
summing and averaging the TF-IDF values of the term. Then 
we list the average TF-IDF values of all terms in ascending 
order. Terms at the top are more likely to be stopwords, while 
terms at the bottom have a higher distinguishing ability for the 
document collection, meaning they are more likely to be 
significant terms. 

Chinese language is considered a low-resource language, 
and research on stopwords in Chinese is still relatively scarce. 
Moreover, most available studies focus on modern Chinese, 
with seldom literature found on stopwords in Classical 
Chinese. The method proposed by Zou et al. is no longer 
applicable with the existence of Chinese word segmentation 
tools. Other studies primarily focus on long texts, which cannot 
be applied to short text corpora like Classical Chinese poetry. 
Kucukyilmaz et al. used a classification approach relying on 
various features such as word frequency and inverse document 
frequency. However, these features may not be effective for 
short texts with high contextual dependencies. Ferilli et al.'s 
use of the KL divergence method mainly measures the 
difference between two distributions, but for Classical Chinese 
poetry, which is structurally complex, lexically rich, and 
relatively short, KL divergence may not effectively capture the 
distributional characteristics. Gerlach et al.'s method relies on 
calculating conditional entropy, which is based on word 
frequency and may not effectively capture contextual 
relationships. 

The Chinese poems are always short texts, while the all 
above methods are designed for long texts. Specifically, for the 
method used by Achsan et al., since each document researched 
in our research contains only a few terms, and each term 
appears only once, this leads to almost identical term frequency 
(TF) values for all terms in most documents. This creates 
significant challenges for the subsequent calculations. 

III. PROPOSED MODEL 

A. Overall Process 

First, we crawl the required data from the Internet, which 
includes not only the classical Chinese poetry for this research 
but also the related external knowledge corpora. After 
obtaining all the data, we clean it according to the actual 

requirements. Once the data is cleaned, we divide it into two 
parts and feed them into the model. 

On one hand, for the cleaned classical Chinese poetry, we 
perform character segmentation for each document and use 
Vector Space Model (VSM) to obtain vectorization. This is 
used to calculate the IDF vector for the entire poetry dataset. 
On the other hand, for the external knowledge, we perform 
word vector training and TextRank computation. This produces 
a Term Importance (TI) matrix, which we will explain in more 
detail in the next subsection. Afterward, we merge the TI and 
IDF to perform the Term Importance Inverse Document 
Frequency (TI-IDF) calculation. This is the core of our 
computation. Finally, we sort the resulting TI-IDF values in 
ascending order, and the terms on the top are more likely to be 
identified as stopwords. The overall workflow is shown in 
Fig. 1. 

B. External Knowledge 

 Step 1: We use word embedding technology to train the 
external knowledge corpus and obtain a word vector 
model. Word embedding is a technique that maps 
tokens from natural language into a real-valued space. It 
was first introduced by Bengio et al. in 2003 [16]. 
However, due to the complexity, it has not been given 
much attention until Mikolov et al. simplified the neural 
network architecture in 2013 [17]. After that Google 
implemented it and released the Word2Vec (W2V), 
which greatly advanced the development and 
application of word embedding technology. After 
training the word vector model, we can easily obtain the 
vector corresponding to each word, and then calculate 
the semantic similarity between words. The reason we 
obtain word vectors here is to perform the subsequent 
term importance (TI) computation in step 2. 

 Step 2: The word vectors obtained in the previous step 
are then input into the TextRank algorithm. TextRank 
was proposed by Mihalcea et al. and inspired by 
Google’s foundational algorithm, PageRank [18]. The 
basic idea of PageRank is that if a page is referenced by 
many other pages, its importance is higher than that of 
others. TextRank applies this concept to text analysis. 
The computation unit is focused from web pages to 
sentences, and the link structure between web pages is 
replaced by the semantic similarity between sentences. 
The result is a ranking of sentence importance, and it is 
commonly used for tasks like key sentence 
identification and summary extraction. The TextRank 
formula is calculated as: 

𝑊𝑆(𝑉𝑖) = (1 − 𝑑) + 𝑑 ∗ ∑
𝑊𝑗𝑖

∑ 𝑊𝑗𝑘𝑉𝑘∈𝑂𝑢𝑡(𝑉𝑗)

𝑊𝑆(𝑉𝑗)𝑉𝑗∈𝐼𝑛(𝑉𝑖)
(3) 

in which, 𝑊𝑆(𝑉𝑖) represents the weight of sentence i, and 
the sum on the right represents the contribution of each 
sentence to this sentence. In a single document, we can roughly 
think that all sentences are adjacent. 𝑊𝑗𝑖  represents the 

similarity of sentence j and i, and 𝑊𝑆(𝑉𝑗)  represents the 

weight of the last iterated sentence 𝑉𝑗 . 𝐼𝑛(𝑉𝑖)  means the 

precursor nodes of 𝑉𝑖 , that the nodes point to 𝑉𝑖 . 𝑂𝑢𝑡(𝑉𝑗) 
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means the follow-up nodes of 𝑉𝑗, that the nodes point out from 

𝑉𝑗. 

In our model, we adjust the TextRank method by changing 
the computation unit from a sentence to a token. Using the 
word vectors from the previous step, we calculate the semantic 
similarity between terms. We then input the constructed token 
similarity matrix into TextRank, ultimately obtaining the term 
importance matrix. This process is described in Algorithm 1. 

Algorithm 1: Compute term importance 
Input: The word embedding pretrained model wv: {term: 
term_vec}, the document index d. 
Output: The term importance dict, the corresponding term 
count dict. 

# term count 

token_id_list[] = Document[d].get_tokens() 

term_count_dict = {} 

for token_id in token_id_list: 

 if token not in term_count_dict: 

  term_count_dict[token_id] = 1 

 else: 

  term_count_dict[token_id] += 1 

# compute distinguished terms list 

term_id_list[] = term_count_dict.keys() 

# compute TextrRank value 

similarity = [][] 

 for term_1 in term_id_list: 

  for term_2 in term_id_list: 

   
similarity[term_1][term_2] = 
compute_similarity(wv(term_1),wv(term_2)) 

term_TR_dict{} = TextrRank(similarity) 

return term_TR_dict, term_count_dict 

C. Core Computation 

For the obtained term_TR_dict (term TextRank dictionary) 
and term_count_dict (term count dictionary), we will arrange 
the keys according to the vocabulary order in the VSM to get 

the term importance vector 𝜁𝑑⃗⃗  ⃗ = [𝜁𝑑_1, 𝜁𝑑_2, ⋯ , 𝜁𝑑_𝑣]  and the 

corresponding term count vector 𝜆𝑑
⃗⃗⃗⃗ = [𝜆𝑑_1, 𝜆𝑑_2, ⋯ , 𝜆𝑑_𝑣] . 

Here, 𝑑_𝑖  represents the i-th term in the vocabulary of 
document d. 𝜁𝑡𝑒𝑟𝑚  and 𝜆𝑡𝑒𝑟𝑚  represent the importance value 

and count value corresponding to the term. We multiply 𝜁𝑑⃗⃗  ⃗ 

with 𝜆𝑑
⃗⃗⃗⃗ , and then apply softmax to obtain the term importance 

result. It is important to note that the softmax operation is used 
to smooth the data and ensure that all values fall within the 
range of 0 to 1. 

𝑇𝑒𝑟𝑚 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑑_𝑖) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜁𝑑_𝑖 ∙ 𝜆𝑑_𝑖) 

=
𝑒
𝜁𝑑_𝑖∙𝜆𝑑_𝑖

∑ 𝑒
𝜁𝑑_𝑗∙𝜆𝑑_𝑗𝑑𝑣

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1,2,⋯ , 𝑑𝑣  (4) 

After obtaining the term importance list, its length will be 
d_v, which is the number of terms in the document, d’s 
vocabulary, rather than the length of the entire vocabulary V, 
D’s vocabulary. We should map it to the entire vocabulary to 
obtain the vector, which will be constructed as row in the Term 
Importance matrix. For terms that do not appear in the 

document, we set their values to 0. Below is the pseudocode 
for this process: 

z_d_final[] = zero(V) 

for i in [1, V]: 

 z_d_final[i] = Term Importance[vocabulary[i]] 

return z_d_final 

This is for just one document, and we need to perform this 
operation on all documents to ultimately obtain the entire term 
importance matrix. For IDF, we still use the calculation method 
from the TF-IDF approach. Therefore, the final calculation 
formula is: 

𝑇𝐼 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐼(𝑡, 𝑑) ∙ 𝐼𝐷𝐹(𝑡, 𝐷)     (5) 

in which: 

𝑇𝐼(𝑡, 𝑑) = 𝑇𝑒𝑟𝑚 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑡) 𝑜𝑛 𝐷𝑜𝑐[𝑑]      (6) 

and 

𝐼𝐷𝐹(𝑡, 𝐷) = log (
𝑁

𝑑𝑓(𝑡)
)         (7) 

For all terms, we also apply the method used in Achsan’s 
paper, computing the average to obtain the final result. 

𝑇𝐼 − 𝐼𝐷𝐹(𝑡, 𝐷) =
∑ 𝑇𝐼(𝑡,𝑑)𝑁

𝑑=1

𝑑𝑓(𝑡)
∙ log (

𝑁

𝑑𝑓(𝑡)
)    (8) 

IV. EXPERIMENT 

A. Dataset 

The Tang poetry and Song poetry, with one representing 
the highest quality and the other the largest quantity, are 
suitable to be the subjects in this research. Since these two 
datasets are publicly available on the Internet, we crawled them 
from online sources 1 , 2 . Finally, we obtain Complete Tang 
Poems (CTP) dataset and Poems of Song Dynasty (PSD) 
dataset. As the main focus of this paper is on stopword 
detection, the details of the crawling, storing, tokenizing, and 
cleaning process are not elaborated here due to space 
limitations. 

TABLE I.  DATASETS DETAILS 

- CTP Dataset PSD Dataset 

Document # 42,479 182,213 

Vocabulary Size 7,062 11,230 

Min length 3 5 

Max length 3,750 2,013 

Avg length 58.62 58.71 

To verify the efficiency of our stopword detection, we need 
to set some stopwords as criteria. We invited three graduate 
students majoring in Chinese language and literature to each 
list some stopwords based on their knowledge of poetry. Then, 
we extracted the common words from the three lists, which 
totals 54 words. Finally, this stopwords list have received 

                                                           
1 http://www.wenxue100.com/book_GuDianShiCiWen/5.thtml 
2 http://www.wenxue100.com/book_GuDianShiCiWen/26.thtml 
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unanimous approval from the three volunteers, and we 
published it here.3 

B. External Information 

We downloaded a dataset used as studying classical 
Chinese texts for ancient Chinese people from the website4. 
The dataset includes Confucian classics (Jing), History (Shi), 
Philosophy (Zi), and Literature (Ji). It contains 43 million 
Chinese characters and a vocabulary length of 16,413, making 
it well-suited for training word embedding model. 

C. Running Configuration 

Our program runs in the following environment: a PC with 
Windows 10, an Intel Xeon E5-2680 CPU (2.4GHz 2 Cores), 
64GB of RAM, and a 1TB hard drive. The programming 
language is Python 3.7, with the development environment 
PyCharm 2021.3 and Anaconda 4.7.10. For word embeddings, 
we use Gensim 4.2.0, with parameters set to CBOW and 
Negative Sampling, and a word vector dimension of 100. For 
TextRank, we use NetworkX 2.6.3 for the implementation, and 
the damping factor d is set to 0.85, as in most other researches. 

D. Results 

We can observe that the trend of our model is similar to 
that of the original model shown in Fig. 2. As shown in Fig. 2, 
in nearly all regions, the number of stopwords detected by our 
method exceeds that of the TF-IDF method, except for a few 
specific intervals, such as in Fig. 2(a) when the TOP-N range is 
approximately within [1750, 1800] and [3300, 3400], and in 
Fig. 2(b) when the TOP-N range is approximately within 
[6900, 7000]. 

In Fig. 2(a), when TOP-N is in the range of 0 to 2000, the 
number of stopwords increases rapidly. After TOP-N exceeds 
2000, the growth rate of stopword numbers levels off. In 
Fig. 2(b), when TOP-N is in the range of 0 to 1000, the number 
of stopwords significantly increases, then slows down between 
1000 and 3500, and eventually experiences a smooth upward 
trend after TOP-N exceeds 3500. 

 
(a) Stopwords count details on CTP dataset. 

                                                           
3 https://github.com/powerwings0377/stwords_list 
4 https://so.gushiwen.cn/guwen 

 

(b) Stopwords count details on PSD dataset. 

Fig. 2. Stopwords count comprised in top-n terms. 

 
(a). Statistical features comparison on CTP dataset. 

 
(b). Statistical features comparison on PSD dataset. 

Fig. 3. Statistical features comparison of the results. 

Additionally, we compared our results with those of the 
TF-IDF method, using these two sets of data for analysis 
through the mean, standard deviation, and t-test. The results are 
shown in Fig. 3, where Fig. 3(a) shows the comparison on the 
CTP dataset and Fig. 3(b) shows the comparison on the PSD 
dataset. We found that the mean of our method exceeds that of 
the TF-IDF method by approximately 0.9 percentage points 
across both datasets. In terms of standard deviation, our 
method generally has a smaller standard deviation compared to 
the TF-IDF method, except in the CTP dataset, where the 
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standard deviation of the TI-IDF method is slightly higher than 
that of the TF-IDF method. The p-values for both datasets in t-
test are far less than 0.01, indicating that the results of our 
method show statistical significance in the comparison 
experiment. 

E. Discussion 

Our model exhibits similar performance across the two 
corpora. For example, when TOP-N is 1000, the stopwords 
count for both corpora is approximately 30, and when TOP-N 
is 2000, the stopwords count is around 40. However, there are 
differences in performance between the two corpora. For 
instance, the rate of increase in stopwords count differs due to 
the size of the vocabulary. The CTP corpus has a vocabulary 
size of around 6000, while the PSD corpus has a vocabulary 
size of over 11,000. The vocabulary in the CTP corpus is more 
condensed, which causes a steeper increase in stopwords count. 
When TOP-N reaches 4000, the stopwords count in the PSD 
corpus exceeds 50 and starts to level off, while in the CTP 
corpus, the stopwords count is still rising. Additionally, as 
shown in Fig. 3, we can conclude that as the number of 
documents and the vocabulary size increase, the detection of 
stopwords improves. 

The reason our method outperforms the original method in 
most areas is that we incorporate external knowledge into the 
term weight calculation, which introduces a "preference" factor 
into the weight computation. In the original method, the weight 
is computed based on term frequency, which leads to equal 
weights for equal frequencies. Since most terms in a poetry 
document appear only once, terms, whether important or 
unimportant, are treated the same. In our method, important 
terms are assigned higher weights, making previously equal 
weights become fine-grained. This increases the term index 
diversity and makes the calculation results more rational. 

V. CONCLUSION 

As a low-resource language, classical Chinese desires 
information technology processing all the time. As the 
detection of stopwords in Chinese classical poetry has never 
been researched before, in this paper, we proposed a TI-IDF 
method to address this issue, in which large-scale classical 
Chinese resources are used as an external knowledge base. By 
utilizing word embeddings and TextRank, we constructed a 
Term Importance matrix to replace the Term Frequency matrix 
in the original TF-IDF method. We found that the Term 
Importance matrix constructed in this paper provided a more 
refined calculation of term weights compared to the Term 
Frequency matrix, as external knowledge plays a key role in 
fine-tuning the process. Our excellent performance on the CTP 
and PSD datasets also validates the reliability of our method. 

This paper explores stopword detection in classical Chinese 
poetry. The effectiveness of our proposed method largely 
depends on the selection of external knowledge. Due to the use 
of a pre-trained word embedding model and the construction of 
the TextRank network, there was an increase in training time; 
however, this does not affect the improvement in model 
performance. For future work, we aim to explore labeled 
datasets and conduct research on the impact of text analysis 
performance with stopword removal.  
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