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Abstract—Online sales forecasting has become an essential 

aspect of effective business planning in the digital era. The 

widespread adoption of digital transformation has enabled 

companies to collect substantial datasets related to consumer 

behavior, market trends, and sales drivers. This study attempts to 

uncover patterns and predict sales growth by utilizing product 

images and their associated filenames as input. To achieve this, we 

use EDA combined with LSTM and Gated Recurrent Unit (GRU), 

which excel in processing sequential data. However, the 

performance of these networks is significantly affected by the 

quality of data and the preprocessing methods applied. This study 

highlights the importance of Exploratory Data Analysis (EDA) 

and Ensemble Methods in enhancing the efficacy of RNNs for 

online sales forecasting. EDA plays a crucial role in identifying 

significant patterns such as trends, seasonality, and 

autocorrelation while addressing data irregularities such as 

missing values and outliers. These findings show that integrating 

EDA substantially improves the performance metrics of RNN, as 

indicated by the reduction in loss and mean absolute error (MAE) 

values across training epochs (e.g. loss: 0.0720, MAE: 0.1918 at 

epoch 15). These results indicate that EDA improves the accuracy, 

stability, and efficiency of the model, allowing RNN to provide 

more reliable sales predictions while minimizing the risk of 

overfitting. 
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I. INTRODUCTION 

The digital business era has fundamentally reshaped sales 
forecasting and management by harnessing the power of big data 
and advanced analytics [1]. Technology-driven digital 
transformation has brought significant changes to sales 
processes and environments, altering their functions and 
strategies [2][3][4]. Deep learning models, particularly in e-
commerce systems, have emerged as essential tools for 
predicting and enhancing sales outcomes. This trend is 
emblematic of a broader shift toward digital business, with the 
e-commerce sector serving as a prime example of this ongoing 
evolution [4]. 

Extensive research has compared traditional sales 
forecasting methods with machine learning techniques, yielding 
diverse findings. Pustokhina [5] noted that machine learning 
often surpasses traditional methods in accuracy, yet certain 
traditional techniques, such as the Holt-Winters method, remain 

effective under specific conditions. Zhang [6] proposed an 
innovative model that integrates online reviews and search 
engine data, significantly enhancing forecasting precision. 
Furthermore, Bajaj [7] and Cheriyan [8] emphasized the utility 
of machine learning algorithms in sales forecasting, with Bajaj 
exploring models such as Linear Regression, K-Neighbors 
Regressor, XGBoost Regressor, and Random Forest Regressor, 
while Cheriyan recognized Gradient Boosting as the most 
effective method for forecasting sales trends.  

Deep learning, a focused domain within machine learning, 
has achieved significant progress in recent years, [9] showcasing 
its value in solving complex classification challenges. Its 
capability to derive robust statistical features from data sets it 
apart as a powerful tool. Research [10] highlighted the critical 
role of raw data in optimizing machine learning performance. 
Studies [11][12][13] the evidence presented illustrates that state-
of-the-art deep learning methodologies, such as Long-Short 
Term Memory (LSTM) networks and Convolutional Neural 
Networks (CNN), substantially exceed the performance of 
conventional machine learning methodologies in the domain of 
retail sales forecasting.. Furthermore, evidence from 
[14][15][16][17][18] reinforces this, demonstrating that deep 
learning models excel in generating accurate customer 
predictions for marketing intelligence applications. Together, 
these findings highlight deep learning’s substantial impact on 
enhancing sales prediction accuracy and operational efficiency. 

This study aims to identify sales trends and analyze the 
factors that influence sales growth within the digital business 
environment. To fill the existing research gap, we propose an 
innovative approach that integrates Exploratory Data Analysis 
(EDA) for feature preprocessing with Ensemble Methods 
applied to Recurrent Neural Networks (RNNs) to predict 
product similarity based on e-commerce image data. This 
research underscores the significant role of sequential learning 
techniques and vector embedding in enhancing the accuracy of 
product similarity predictions. Furthermore, EDA is highlighted 
as a crucial tool for deriving insights and ensuring data quality 
in the analysis of time series and sequential data. 

II. PREVIOUS RESEARCH STUDY 

Jelonek [19] asserts that Big Data analytics is a vital asset for 
business management, providing diverse benefits across 
numerous activities. Ansari [20] highlights how the integration 
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of cloud computing with Big Data analytics ensures cost-
effective and scalable solutions for storing and analyzing vast 
enterprise datasets. Nevertheless, the literature lacks a focused 
discussion on leveraging deep learning for sales prediction. 
Alsghaier [21] explains that Big Data analytics equips 
organizations with actionable insights, enhancing business 
performance and fostering a competitive edge. Ayuningtyas [22] 
emphasizes that descriptive, predictive, and prescriptive 
analytics within Big Data are indispensable for strategic 
decision-making across industries. Singh [23] investigates the 
vast possibilities of deep learning within the automotive 
industry, including its use in self-driving cars, safety systems, 
virtual sensors, and cutting-edge product development. 

Recent developments in research have concentrated on 
employing deep learning techniques to forecast consumer 
purchasing behavior. Geetha [15] introduces a deep neural 
network model that leverages multitask learning to predict 
consumer preferences by analyzing underlying factors and 
sentiment. Xia [24] develops a multi-task LSTM model to 
capture the complexities of the consumer buying decision-
making process and estimate purchase probabilities. Nisha [25] 
conducts a comparative analysis of various neural network 
architectures, including MLP, LSTM, and TCN, for predicting 
future purchase behavior in e-commerce. These models 
consistently outperform traditional machine learning methods 
across multiple dimensions of consumer behavior prediction. 

Liu [26] underscores the transformative impact of computer 
vision technology on e-commerce platforms, particularly in the 
realm of sales forecasting. Deep learning models enable the 
automatic extraction of crucial features from product images, 
providing valuable insights for predicting sales outcomes. Zhao 
[27] illustrates how Convolutional Neural Networks (CNNs) 
can efficiently extract features from structured data, improving 
forecasting accuracy without requiring manual feature 
engineering. Qi [28] introduces DSF, a deep neural framework 
designed to tackle the complexities of promotional activities and 
product competition in sales forecasting, surpassing traditional 
baseline models and other deep learning techniques in 
performance. Yang [29] highlights that the application of 
computer vision in e-commerce extends far beyond sales 
forecasting, driving improvements in operational efficiency and 
customer satisfaction across various areas of online shopping. 

Kassem [30] proposed models that classify reviews as either 
positive or negative and compare them with the ratings provided 
by users to identify any inconsistencies. These strategies aim to 
enhance the accuracy and reliability of product information for 
consumers. Wang [31] developed CLUE, a fraud detection 
system that leverages recurrent neural networks to analyze user 
click behavior and detect suspicious transactions. 

III. PROPOSED RESEARCH METHODOLOGY 

The methodology for this study is illustrated in Fig. 1 which 
depicts the process of creating an Exploratory Data Analysis 
(EDA) algorithm model utilizing LSTM and GRU to forecast 
online sales. 

In Fig. 1, Flowchart combining Exploratory Data Analysis 
(EDA) with LSTM and GRU frameworks. 

 

Fig. 1. Flowchart combining exploratory data analysis (EDA) with LSTM 

and GRU frameworks. 

A. Load Data 

The initial step involves loading the data from a CSV file. 
This file, generated during data collection, is stored in a tabular 
format containing five columns: posting_id, image, 
image_phash, title, and label_group. 

B. Exploratory Data Analysis (EDA) 

EDA functions are useful for identifying anomalies, trends, 
or outliers in sequential data that might obstruct model 
convergence. It primarily serves as a process for visualizing and 
understanding data. Below are some commonly used formulas 
in EDA, for the equation as in (1-6): 

 Mean 

The mean reflects the central tendency of a dataset, 
calculated by summing all individual values and dividing 
the total by the number of data points. 

𝑀𝑒𝑎𝑛(𝜇) =  
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1                    (1) 

Where: 

𝑥𝑖 = value to- i 

𝑛 = 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 

 Variance 

Variance quantifies the extent to which data values deviate 
from the mean. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜎2) =
1

𝑛
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1              (2) 

Where: 

µ = mean 
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𝑥𝑖 = value to- i 

 Standard Deviation 

The standard deviation constitutes the principal square root 
of the variance. 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝜎) = √
1

𝑛
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1      (3) 

 Covariance 

Covariance measures the degree of interdependence between 
two variables in a dataset. 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋, 𝑌) =  
1

𝑛
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛

𝑖=1      (4) 

Where: 

𝑥𝑖 = value to- i from X 

𝑦𝑖 = value to- i from Y 

𝑥, 𝑦 = mean from X and Y 

 Correlation 

Pearson correlation quantifies the degree of linear 
association between two variables. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝜏) =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥)2 ∑ (𝑦𝑖−𝑦)2𝑛
𝑖−1

𝑛
𝑖=1

         (5) 

Correlations can vary between −1 and 1, with 1 indicating a 
perfect positive correlation, 0 denoting no correlation, and −1 
representing a perfect negative correlation. 

 Autocorrelation assesses the relationship between values 
at a specific moment and values from a prior moment 
(lag) for the purpose of correlation. 

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑘) =
∑ (𝑥𝑖−𝑥)(𝑥𝑖−𝑘−𝑥)𝑛

𝑖=𝑘+1

∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1

       (6) 

k is the lag, which is how far back in time we look 

C. Recurrent Neural Networks (RNN) 

Forward Pass 

In a standard RNN, the output of a neuron at time t (ht) is 
influenced by the current input (xt) and the hidden state from the 

previous time step (ht−1), for the equation as in (7-8). 

 State (Hidden State) 

ℎ𝑡 = ∅(𝑊𝑥ℎ . 𝑥𝑡 + 𝑊ℎℎ. ℎ𝑡−1 + 𝑏ℎ)          (7) 

Where: 

ℎ𝑡 = hidden state at the time t 

𝑥𝑡 = input at time t 

𝑊𝑥ℎ  = weight between input and hidden state 

𝑊ℎℎ  = weight between previous hidden state and 

the current hidden state 

𝑏ℎ  = bias 

∅  = activation function (usually tanh or ReLU) 

 Output 

𝑦𝑡 = ∅(𝑊ℎ𝑦 . ℎ𝑡 + 𝑏𝑦)              (8) 

Where: 

𝑦𝑡 = output at the time t 

𝑊ℎ𝑦  = weight between output and hidden state 

𝑏ℎ  = bias output 

∅  = activation function (softmax or sigmoid) 

Backpropagation Through Time 

The training process employs Backpropagation Through 
Time (BPTT) to compute the gradient and adjust the weights. 
The gradient at time step t is determined by taking into account 
all preceding time steps. 

The error gradient 𝐿 for parameter 𝑊, for the equation as 
in (9): 

𝜕𝐿

𝜕𝑊
= ∑

𝜕𝐿𝑡

𝜕𝑊

𝑇
𝑡−1                               (9) 

T is the total number of times in the sequence 

LSTM is designed to address the vanishing gradient issue 
commonly encountered in standard RNNs. It employs three 
primary gates: the input gate, the output gate, and the forget gate, 
for the equation as in (10-14). 

 Forget Gate  

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)              (10) 

𝑓𝑡 = the forget gate that determines what information will 

be forgotten 

 Input Gate 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)               (11) 

𝑖𝑡  = the input gate that determines what new information 

will be stored 

 Update Cell State 

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1. 𝑖𝑡                        (12) 

𝐶𝑡 = the cell state at time 𝑡 

 Output Gate 

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)            (13) 

𝑜𝑡 = the output gate that determines the output of the LSTM 

at time 𝑡 

 Hidden State 

ℎ𝑡 = 𝑜𝑡 . tanh (𝐶𝑡)                          (14) 

ℎ𝑡 = the hidden state or output of the LSTM 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

285 | P a g e  

www.ijacsa.thesai.org 

IV. EXPERIMENTAL RESULT AND ANALYSIS 

During the training of our EDA using both LSTM and GRU 
models, we began by performing an exploratory analysis on the 
label groups found in Train.csv, examining their data 
distributions. The results before using EDA are presented in 
Fig. 2. While the results after using EDA are presented in Fig. 3. 

 

Fig. 2. The distribution of label_group in Train.csv without performing 

EDA. 

 

Fig. 3. The distribution of label_group in Train.csv with performing EDA. 

From Fig. 2, the figure presents a bar chart. The horizontal 
axis (x-axis) denotes the label_groups, while the vertical axis (y-
axis) displays the count or frequency of occurrences for each 
label_group. The distribution of label_groups is notably skewed 
and unbalanced. Some label groups exhibit very high 
frequencies, surpassing 50, whereas the majority have 
significantly lower frequencies, frequently below 10, with many 
falling under 5. The presence of several tall bars indicates that 
certain label groups are particularly dominant within the dataset. 
This suggests a bias in the data towards specific labels. Such an 
imbalanced distribution of labels has important implications for 
machine learning modeling. If a model were trained directly on 
this data, it would likely favor the dominant label groups and 
perform poorly on those that occur less frequently. 

From Fig. 3, this figure illustrates the distribution of 
label_groups in the Train.csv dataset after conducting 
Exploratory Data Analysis (EDA). Unlike Fig. 2, which shows 
a significant imbalance, this figure presents a much more 
balanced distribution. The histogram displays the frequency of 
each label_group value range as bars, while the KDE (blue line) 
provides a smoother estimate of the variable's probability 
distribution. Compared to Fig. 2, the distribution of label_groups 
here is notably more uniform, with no excessively tall bars. This 
indicates that the occurrence frequency of each label_group 
value range is relatively equal. Such a balanced distribution has 

positive implications for machine learning modeling. The main 
difference between Fig. 2 and Fig. 3 is the degree of imbalance: 
Fig. 2 reveals extreme disparity, where some label_groups are 
highly prevalent while most others are rarely observed. In 
contrast, Fig. 3 illustrates a more equitable distribution 
following EDA. This suggests that EDA has resulted in a 
significant transformation of the data, possibly involving 
clustering or other modifications to the label_groups. 

The test results to explore the distribution of text length in 
title_image in text.csv can be shown in Fig. 4. 

 

Fig. 4. Title image text length distribution. 

Fig. 4 depicts the distribution of lengths for image caption 
texts. The X-axis represents text lengths, which range from 
about 8 to 16 characters or words. This shows that the lengths of 
the image captions fall within this range. The Y-axis indicates 
the frequency of occurrences for each range of text lengths. 

 

Fig. 5. The results of the EDA calculation. 

Fig. 5 shows the EDA calculation results. Fig. 6 displays the 
results of the Exploratory Data Analysis (EDA) for the 
label_group variable. Below is a detailed explanation of the 
statistics: 

 Count: The value 3.425000e+04 (34,250) indicates that 
there are 34,250 data points or observations in the 
label_group variable, representing the total number of 
entries analyzed. 

 Mean: The value 2.128611e+09 (2,128,611,000) 
represents the average of all label_group values, 
providing insight into the central tendency of the data. 

 Standard Deviation (std): The value of 1.234630e+09 
(1,234,630,000) indicates the extent to which the data 
varies from the mean. A high standard deviation implies 
that the data points are significantly dispersed, whereas a 
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low standard deviation suggests that they are closely 
grouped around the mean. In this instance, the large 
standard deviation in relation to the mean indicates 
substantial variability within the data. 

 Minimum (min): The value 2.580470e+05 (258,047) 
denotes the smallest value in the label_group variable. 

 First Quartile (25%): The value 1.050720e+09 
(1,050,720,000) represents the first quartile. This 
indicates that 25% of the data falls below or is equal to 
this value. 

 Median (50% / Second Quartile Q2): The value 
2.120410e+09 (2,120,410,000) is the median or second 
quartile. This is the midpoint of the dataset; half of the 
values are below this point and half are above it. Notably, 
the median (2.120410e+09) is very close to the mean 
(2.128611e+09), suggesting a relatively symmetric 
distribution despite a large standard deviation. 

 Third Quartile (75%): The value 3.187910e+09 
(3,187,910,000) indicates that 75% of the data has values 
less than or equal to this figure. 

 Maximum (max): The value 4.294197e+09 
(4,294,197,000) represents the largest value in the 
label_group variable. 

 

Fig. 6. Example image from label_group. 

After the EDA process results, continued with the RNN 
process which is continued by carrying out the Split Data 
process for Training and Validation. 

TABLE I.  RESULTS OF THE SPLIT DATA PROCESS FOR TRAINING AND 

VALIDATION 

Description Result 

Training data shape (27400, 100) (27400,) 

Validation data shape (6850, 100) (6850,) 

Table I shows the results of dividing the training data into 
Training Data and Validation Data. The results of the Training 
Data (X_train, y_train) are shown in Table I: (27400, 100) 
(27400,) (27400, 100). This signifies that the training dataset 
consists of 27,400 samples or observations, with each sample 
containing 100 features or time steps (27400,). This represents 
the shape of the labels or target variables for the training data, 

indicating that there are 27,400 labels, corresponding to one 
label for each sample in the training set. 

The results of the Validation Data (X_val, y_val) are shown 
in Table I: TABLE I. (6850, 100) (6850,). (6850, 100). This 
indicates that the validation dataset consists of 6,850 samples, 
with each sample containing 100 features or time steps, similar 
to the training data. The validation data is utilized to assess the 
model's performance during training and to mitigate the risk of 
overfitting. (6850,): This represents the shape of the labels or 
target variables for the validation data, indicating there are 6,850 
labels—one corresponding to each validation sample. 

 

Fig. 7. Training Loss and MAE results with LSTM model without EDA. 

In Fig. 7, the document exhibits two graphical 
representations that monitor the efficacy of the model 
throughout the training process: the Loss graph and the Mean 
Absolute Error (MAE) graph, both of which are charted in 
relation to the epochs. 

1) Loss graph: X-axis (Epoch): Represents the number of 

training epochs, ranging from 0 to 14. Each epoch corresponds 

to a complete iteration in which the model processes the entire 

training dataset. Y-axis (Loss): Displays the loss value, which 

measures the discrepancy between the model's predictions and 

the actual values. A lower loss value indicates better model 

performance. Training Loss (Blue Line): Sharp Decline at the 

Start: The training loss experiences a rapid decrease from 

approximately 0.0035 at epoch 0 to below 0.001 around epoch 

5. This indicates that the model is quickly learning and 

enhancing its performance on the training data in the early 

stages. Relatively Stable After Epoch 5: Following epoch 5, 

while the training loss continues to decline, the rate of decrease 

becomes less significant and exhibits slight fluctuations. 

Validation Loss (Orange Line): Generally Stable: The 

validation loss remains relatively stable at around 0.0045 

throughout the training process. Although there are minor 

fluctuations, there is no clear downward trend as seen in the 

training loss. A notable gap exists between training loss and 

validation loss, with the training loss being significantly lower 

than the validation loss. 

2) Mean absolute error (MAE) graph: X-Axis (Epoch): 

Similar to the loss graph, this axis represents the number of 

training epochs. Y-Axis (MAE): This axis indicates the MAE 

value, which measures the average absolute difference between 

the model's predictions and the actual values. A lower MAE 

signifies better model performance. Training MAE (Blue Line): 

Sharp Decline at the Start: Like the training loss, the training 

MAE also decreases rapidly during the initial stages of training. 

Relatively Stable After Epoch 5: After epoch 5, the training 
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MAE stabilizes and shows only minor fluctuations. Validation 

MAE (Orange Line): Initial Increase Followed by Fluctuations: 

The validation MAE experiences a slight increase at the 

beginning of training and then tends to fluctuate around 0.032 

to 0.036, without a consistent downward trend. There is a 

considerable difference between the training MAE and 

validation MAE, with the training MAE consistently being 

lower than the validation MAE. 

 

Fig. 8. Training Loss and MAE results with the LSTM model after using 

EDA. 

Fig. 8 presents two graphs that track the model's 
performance during training, utilizing the Loss and Mean 
Absolute Error (MAE) metrics plotted against epochs. These 
metrics are commonly employed to assess regression models. 
Below are detailed descriptions of each graph. 

3) Loss graph: X-axis (Epoch): Displays the number of 

training epochs, ranging from 0 to 14. Each epoch represents a 

complete iteration in which the model processes the entire 

training dataset. Y-axis (Loss): Represents the loss value, which 

measures the extent to which the model's predictions deviate 

from the actual values. A lower loss value indicates better 

model performance. Training Loss (Blue Line): Rapid Decline 

at the Start: The training loss decreases quickly and consistently 

from approximately 0.09 at epoch 0 to below 0.02 at epoch 14. 

This suggests that the model is effectively learning and 

enhancing its performance on the training data. Consistent 

Decrease: This steady decline indicates that the model 

continues to learn throughout the epochs. Validation Loss 

(Orange Line): Relatively Stable After Initial Decrease: The 

validation loss shows a slight decrease at the beginning of 

training, but after a few epochs, it stabilizes and fluctuates 

slightly around 0.07. There is a notable difference between 

training loss and validation loss, with training loss consistently 

lower than validation loss. This difference remains small and 

stable from the midpoint to the end of the epochs. 

4) Mean absolute error (MAE) graph: X-axis (Epoch): 

Similar to the loss graph, this axis indicates the number of 

training epochs. Y-axis (MAE): Displays the MAE value, 

which measures the average absolute difference between the 

model's predictions and actual values. A lower MAE signifies 

better model performance. Training MAE (Blue Line): Sharp 

and Consistent Decline: The training MAE decreases rapidly 

and steadily from around 0.25 at epoch 0 to below 0.10 at epoch 

14. This trend parallels the decrease in training loss, indicating 

an improvement in model performance on the training data. 

Validation MAE (Orange Line): Relatively Stable After Initial 

Decrease: Similar to validation loss, validation MAE 

experiences a slight initial decrease before remaining relatively 

stable, fluctuating around 0.20 from mid-epoch to the end. A 

significant difference exists between training MAE and 

validation MAE, with training MAE consistently lower. This 

difference is small and stable from mid-epoch to end. 

 

Fig. 9. Training Loss and MAE results with the GRU  model after using 

EDA. 

Fig. 9 below presents two graphs that track the model's 
performance during training, utilizing Loss and Mean Absolute 
Error (MAE) metrics plotted against epochs. These metrics are 
commonly employed to assess regression models. Below is a 
detailed description: 

5) Loss graph: X-axis (Epoch): Displays the number of 

training epochs, ranging from 0 to 14. Each epoch represents a 

complete iteration during which the model processes the entire 

training dataset. Y-axis (Loss): Represents the loss value, which 

quantifies how poorly the model's predictions align with the 

actual values. A lower loss value indicates better model 

performance. Training Loss (Blue Line): Sharp Early Decline: 

The training loss decreases rapidly from approximately 0.0035 

at epoch 0 to below 0.001 around epoch 5, indicating that the 

model is quickly learning and enhancing its performance on the 

training data in the early stages. Relatively Stable After Epoch 

5: After epoch 5, while the training loss continues to decline, 

the rate of decrease becomes less significant and shows slight 

fluctuations. Validation Loss (Orange Line): Generally Stable: 

The validation loss remains relatively stable at around 0.0045 

throughout the training process, exhibiting minor fluctuations 

without a clear downward trend as seen in the training loss. A 

notable difference exists between training loss and validation 

loss, with training loss consistently being much lower than 

validation loss. 

6) Mean absolute error (MAE) graph: X-axis (Epoch): 

Similar to the loss graph, this axis indicates the number of 

training epochs. Y-axis (MAE): Displays the MAE value, 

which measures the average absolute difference between the 

model's predictions and actual values. A lower MAE signifies 

improved model performance. Training MAE (Blue Line): 

Sharp Decline at the Start: Like the training loss, the training 

MAE decreases rapidly during the initial phase of training. 

Relatively Stable After Epoch 5: Following epoch 5, the 

training MAE also stabilizes and exhibits only minor 

fluctuations. Validation MAE (Orange Line): Initial Increase 

Followed by Fluctuations: The validation MAE shows a slight 

increase at the beginning of training before fluctuating around 
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0.042 to 0.046, without a consistent downward trend. There is 

a significant difference between training MAE and validation 

MAE, with training MAE consistently lower than validation 

MAE. 

7) The model evaluation results highlight two key metrics: 

Mean Squared Error (MSE) and Mean Absolute Error (MAE). 

MSE quantifies the average of the squared differences between 

the model's predictions and the actual values, with a lower MSE 

indicating greater accuracy in predicting the target value. On 

the other hand, MAE assesses the average of the absolute 

differences between the model's predictions and the actual 

values, where a lower MAE also signifies improved accuracy 

in predicting the target value. In this study, three tests were 

conducted, and the results are presented in Table II. 

TABLE II.  THE MODEL EVALUATION RESULTS 

Epoch Value 
Test Results 

MSE MAE 

LSTM without 

EDA 
 2.7837  2.818866014480591 

LSTM with 
EDA 

 0.07274550944566727  0.1918681412935257 

GRU with EDA 0.0053 0.046813491731882095 

From Table II, it can be observed that the results for the 
LSTM model without EDA show a significant disparity between 
the training metrics (both loss and MAE) and the validation 
metrics, indicating a strong likelihood of overfitting. The model 
performs exceptionally well on the training data but struggles 
with the validation data that it has not encountered before. In 
contrast, the results for the LSTM model with EDA demonstrate 
a consistent decline in both training loss and training MAE, 
suggesting effective learning on the training data. Although 
there is a difference between the training and validation metrics, 
this difference is relatively small and stable from the midpoint 
of the epochs to the end, indicating that overfitting may be 
minimal or effectively managed. On the other hand, the results 
for the GRU model with EDA reveal a considerable difference 
between the training MAE and validation MAE, with training 
MAE consistently lower than validation MAE. This significant 
gap between the training metrics (both loss and MAE) and 
validation metrics strongly suggests overfitting. The model 
learns very well from the training data but performs poorly on 
unseen validation data, as evidenced by the continuous decrease 
in training loss/MAE while validation loss/MAE remains stable 
or even increases. 

V. CONCLUSION 

The extensive results of this study indicate that EDA 
significantly improves the preparation of sequential data for 
processing by RNNs, allowing essential patterns in the data to 
be identified and incorporated into the modeling process. By 
employing EDA techniques specifically for LSTM and GRU 
models, the risk of overfitting can be reduced. As a result, EDA 
positively impacts the performance, stability, and 
interpretability of the RNN model, helping to minimize biases 
and variances in predictions. The findings—loss: 0.0724; MAE: 
0.1913—at epoch 15 show that, in general, higher epoch 

numbers correspond to lower loss and MAE values. However, it 
is important to note that if training loss continues to decrease 
while validation loss begins to rise, this may indicate overfitting. 
This situation suggests that the model has become too dependent 
on the specifics of the training data and is failing to develop the 
robust capabilities needed for accurate predictions on new 
datasets. 
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