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Abstract—Traditional measurement methods in underground 

mining tunnels have faced inefficiencies, limited accuracy, and 

operational challenges, consuming significant time and labor in 

complex environments. These limitations severely restrict the 

efficiency and quality of mine management and engineering 

design. To enhance the efficiency and accuracy of 3D modeling in 

underground tunnels, this study combines portable 3D LiDAR 

scanning technology with simultaneous localization and mapping. 

This integration enables autonomous positioning and efficient 

modeling without external positioning signals. The proposed 

approach effectively acquires high-resolution 3D data in complex 

environments, ensuring data accuracy and model reliability. High-

resolution scanning of multiple critical areas was conducted on-

site, with inertial navigation systems correcting the device's pose 

information. Automated data processing software was used for 

filtering, denoising, and modeling the collected data, leading to 

precise 3D tunnel models. Validation results indicate that portable 

laser scanning technology offers significant advantages in 

efficiency, accuracy, and safety, meeting the geological surveying 

and engineering needs of mining operations. The application of 

portable 3D laser scanning technology demonstrates considerable 

benefits in the rapid modeling of underground tunnels, providing 

effective technical support to improve mine management 

efficiency and safety. It also reveals broad application prospects. 
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I. INTRODUCTION 

As mining resource development deepens, the scale and 
complexity of underground tunnel networks increase, raising 
higher demands for geological measurement and engineering 
management in mines[1], [2], [3]. High-precision 3D modeling 
forms the foundation of safe mining production and is crucial for 
optimizing engineering design and enhancing management 
efficiency [4], [5]. However, achieving efficient and accurate 3D 
modeling in the complex and harsh conditions of underground 
tunnels presents significant challenges. 

Traditional surveying methods rely heavily on total stations 
and distance measuring devices. These methods often require 
manual point setting and observation, which are cumbersome 
and time-consuming, especially in poorly lit and dusty 
underground environments [6], [7]. Such conditions can 
compromise the efficiency and accuracy of data collection. 
Additionally, these methods depend significantly on the 
experience of survey personnel, making them prone to human 

error and limiting rapid responses to unexpected situations. 
Although static 3D laser scanning technology has significantly 
improved measurement accuracy, its application in underground 
spaces remains constrained by the complexity of equipment 
setup and positioning, which reduces flexibility and efficiency. 

Recent advancements in 3D laser scanning technology, 
particularly the emergence of portable laser scanning devices, 
have provided an efficient and flexible solution for 3D modeling 
in complex environments. These portable devices utilize a non-
contact measurement approach, enabling the rapid acquisition of 
high-resolution point cloud data. When combined with 
simultaneous localization and mapping (SLAM) technology, 
these devices achieve autonomous positioning and mapping in 
GPS-denied environments. Due to these technical advantages, 
portable laser scanning devices have increasingly been applied 
in fields such as construction [8], [9], [10], geological 
exploration [11], [12], [13], and autonomous driving [14], [15], 
[16]. Despite such advancements, research and application in 
underground tunnel environments remain limited, necessitating 
further exploration of portable laser scanning technology in 
these settings. 

In this context, this study proposes a technical solution for 
rapid modeling of underground mine tunnels by integrating 
portable 3D laser scanning devices with inertial measurement 
units (IMU). By combining SLAM algorithms with inertial data 
in complex underground environments, this approach addresses 
laser radar positioning error accumulation and generates high-
precision 3D models through automated data processing. The 
objective of this study is to validate the feasibility of portable 3D 
laser scanning technology in underground tunnel modeling and 
evaluate its advantages in terms of efficiency, precision, and 
applicability. Through testing and analysis of actual mining 
projects, the performance of this technology is assessed, and its 
potential applications in mining management and engineering 
design are further explored. This research provides an effective 
technical pathway for efficient modeling of underground tunnels 
and contributes to advancing 3D modeling technology in 
complex environments. 

The remainder of this paper is organized as follows: Section 
II reviews related works and identifies research gaps. Section III 
details the proposed methodology integrating portable LiDAR, 
SLAM, and IMU. Section IV presents experimental results from 
engineering applications. Section V discusses the findings and 
compares with existing methods. Finally, Section VI concludes 
the study and outlines future directions. 
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II. RELATED WORK 

In recent years, research on 3D modeling of mining tunnels 
has gained traction, focusing on the application of 3D laser 
scanning technology, point cloud data processing and analysis, 
and innovations in positioning and navigation technologies. 
Traditional surveying methods for mining tunnels often rely on 
total stations and distance measuring devices. However, these 
methods face challenges such as inadequate measurement 
accuracy, cumbersome operations, and high time costs. In 
contrast, 3D laser scanning technology enables the rapid 
acquisition of high-precision spatial information, making it the 
preferred method for mining tunnel measurement and modeling 
[17], [18], [19]. Particularly in complex underground 
environments, laser radar can obtain data non-contact, 
overcoming the limitations of traditional surveying methods. 

The introduction of SLAM technology has significantly 
enhanced data collection accuracy and efficiency in mining 
tunnel 3D modeling [20], [21], [22]. By continuously updating 
the device's pose, SLAM avoids the reliance on external 
positioning signals, which are often unavailable in GPS-denied 
underground environments. 

IMU have also played a crucial role in mining 3D modeling 
by providing real-time motion state information [23], [24]. This 
data is vital for improving the stability and accuracy of SLAM 
systems in dynamic environments. 

Regarding point cloud data processing, extracting useful 
information from large-scale point cloud datasets and removing 
noise remains a significant challenge [25], [26], [27], [28]. 
Existing studies have addressed this through techniques such as 
point cloud filtering, registration, and down-sampling. Point 
cloud filtering eliminates noise points generated during 
scanning, thereby improving data quality. Point cloud 
registration aligns data collected from different perspectives or 
times to construct continuous and consistent 3D models. 

Despite substantial progress in the field of mining tunnel 3D 
modeling, the integration of portable laser scanning technology 
with SLAM and IMU still faces challenges. It is crucial to 
further minimize positioning errors in confined and complex 
spaces and ensure system stability in harsh environments. The 
maturity of the technology and its widespread application in the 
field require further validation and optimization. In Table I, the 
limitations of existing 3D modeling methods are summarized. 

TABLE I.  LIMITATIONS OF EXISTING 3D MODELING METHODS 

Method Accuracy Efficiency 
Positioning 

Dependency 

Environmental 

Adaptability 

Total 

Station 
Medium Low High 

Poor (dusty/low-

light) 

Static 

LiDAR 
High Medium Medium Moderate 

SLAM-

only 

Systems 
Medium High None 

Good (limited in 

dynamics) 

While prior studies have advanced SLAM and IMU 
integration, three key limitations persist: (1) Cumulative errors 
in SLAM-based systems under prolonged operation, (2) 
Inadequate sensor fusion strategies for dynamic underground 

conditions, and (3) Limited validation in large-scale mining 
networks. Our approach addresses these through tight LiDAR-
IMU coupling with error compensation (Section III.D) and field 
validation in 2.3km tunnel networks (Section IV). 

III. RAPID TUNNEL MODELING 

A. Portable 3D LiDAR Scanning 

Portable 3D laser scanning devices are developed based on 
SLAM technology, as shown in Fig. 1. Initially proposed by 
Smith and Cheeseman in 1986 to address spatial uncertainty 
estimation, SLAM primarily solves navigation and localization 
issues in unknown environments. It determines the device's 
position and orientation by observing features such as corners 
and columns, incrementally constructing an environmental map 
based on positional changes. SLAM enables concurrent 
localization and mapping, making it particularly suitable for 
complex underground mining environments where GPS signals 
are unavailable. 

 

Fig. 1. Portable 3D laser scanning device. 

Portable 3D scanning devices perform rapid and continuous 
scanning of complex environments while in motion, 
automatically capturing accurate three-dimensional spatial 
information. Compared to traditional fixed surveying 
techniques, portable devices address frequent setup issues 
caused by laser line-of-sight limitations, significantly enhancing 
fieldwork efficiency. These devices reduce operator labor 
intensity and safety risks while enabling extensive continuous 
3D scanning tasks in underground mines. 

In underground mining applications, portable 3D laser 
scanning devices integrate SLAM technology for autonomous 
localization and mapping in environments without external 
positioning signals, ensuring high-precision surveying 
capabilities. Their compact, lightweight, and ergonomic designs 
make them easy to transport and operate in confined or complex 
environments. Additionally, the integration of complementary 
sensors such as gyroscopes, accelerometers, and GPS enhances 
the collection of positioning and orientation data, substantially 
improving scanning accuracy and data reliability. These devices 
are capable of scanning various underground features, including 
tunnels, voids, and chutes, supporting tasks such as dimension 
measurement, volume calculations, morphology analysis, over-
excavation and under-excavation assessments, engineering 
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quantity estimations, surface area measurements, and extraction 
of 3D contours and tunnel profiles. 

B. Spatial Calibration Methods 

The working principle of a 3D laser scanning system relies 
on laser ranging technology, which measures the time difference 
between laser emission and reflection to calculate the distance 
to an object’s surface. By emitting a laser beam toward the 
object and receiving its reflected signal, the scanner determines 
the distance d based on the time-of-flight formula, as shown in 
Eq. (1). 

2

c t
d




   (1) 

Where, c is the speed of light, and Δt is the time difference 
between the emission and reception of the laser. 

To determine the three-dimensional coordinates of points on 
the object's surface, it is essential to measure not only the 
distance but also the emission angles of the laser beam. The laser 
scanner is typically mounted on a rotating device, allowing the 
laser beam to cover the entire scanning area through rotation. 
The three-dimensional coordinates (x, y, z) of each laser point 
can be calculated using the measured pitch angle θ, yaw angle 
ϕ, and the measured distance d, as shown in Eq. (2). 

cos( ) cos( )

cos( ) sin( )

sin( )

x d

y d

z d

 

 



  


  
     (2) 

Where, θ is the pitch angle of the laser beam, and ϕ is the 
yaw angle. 

In practical applications, the laser scanner may move or 
rotate, necessitating consideration of its spatial position and 
orientation. Assuming the position of the scanner in space is PP 
and its rotation matrix is R, the three-dimensional coordinates 
(X, Y, Z) of the object's surface can be corrected using Eq. (3). 
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Where, R is the rotation matrix. 

By repeatedly performing this process, the scanner can 
calculate the three-dimensional coordinates of each laser point, 
thereby constructing the complete 3D point cloud data of the 
object or scene. 

C. Mobile Scanning Method 

The mobile scanning method uses highly integrated portable 
3D laser scanning equipment to collect environmental data and 
generate 3D point cloud models during movement. The structure 
of the mobile scanning device, shown in Fig. 2, comprises a 
probe and a backpack. These components are interconnected via 
various communication protocols, including Ethernet, RS-485, 
RS-232, and GPIO control. 

 

Fig. 2. Mobile scanning device structure. 

The probe includes a LiDAR, stepper motor, inertial 
navigation module, and laser rangefinder, responsible for 
generating high-precision 3D point cloud data. The LiDAR 
measures the distance and shape of target objects, the stepper 
motor controls the scanning angle and rotation, the inertial 
navigation module provides device orientation information, and 
the laser rangefinder is used for accurate distance measurement. 

The backpack focuses on performance and portability, 
containing a system cooling module, hot-swappable lithium 
battery, high-performance computing and control module, as 
well as wireless and wired interfaces. The cooling module 
ensures the stability of long-term device operation, the lithium 
battery provides continuous power, and the high-performance 
computing and control module processes data in real-time to 
generate precise point cloud models. The wireless and wired 
interfaces facilitate data transmission and device 
communication, supporting remote monitoring and data 
synchronization. 

The mobile scanning process is illustrated in Fig. 3 and 
consists of four main steps: 

1) Initial scanning and point cloud acquisition: Activate 

the LiDAR and scan the surrounding 3D space with the probe 

to capture the initial point cloud dataset, denoted as 0P
. 

2) Mobile remeasurement and data update: After the probe 

moves, use the LiDAR to rescan the previous area, obtaining 

the updated point cloud data denoted as 1P
. This process 

continues to acquire new datasets 2P
, 3P

, and so on. 

3) Trajectory estimation and spatial reconstruction: By 

comparing the two consecutive point cloud datasets tP
 and 

1tP , estimate the probe's displacement and rotation by 

minimizing 
2

1

1 arg min t t

t t i i
T

i

T P T P

     , where T 

is the transformation matrix. The SLAM pipeline utilizes a 

feature-based Iterative Closest Point (ICP) algorithm that starts 

with feature extraction, where edge features (tunnel ribs) and 

planar features (tunnel walls) are extracted using curvature 

thresholds (edge: curvature > 0.1; planar: curvature < 0.05). 

Following this, dynamic object removal is performed through 

statistical outlier removal (50-neighbor points, 1.5 σ threshold) 

and DBSCAN clustering (ε=0.3m, minPts=15). 
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4) Point cloud registration and data fusion: Utilize the ICP 

algorithm to accurately align and fuse datasets 0P
, 1P

,…, tP
, 

resulting in the creation of a continuous point cloud model  M. 

Fine registration minimizes point-to-plane residuals using 

Huber loss with a threshold of δ=0.2m, expressed as 
2

( )T

j i jE n Rp t q   , where  jn  represents the 

normal vector of the target plane j. 

 

Fig. 3. Mobile scanning process. 

D. Inertial State Integration 

To mitigate positioning errors and inaccuracies caused by 
dynamic motion, an IMU is integrated into the system for spatial 
calibration. Traditional LiDAR systems often require stable 
platforms, but portable devices operating in dynamic 
environments can encounter vibrations and irregular movements 
that impact data accuracy. The IMU enhances measurement 
robustness by providing supplementary pose data. 

The LiDAR is mounted on a linkage mechanism with dual 
rotational axes, as shown in Fig. 4. This configuration enables 
continuous acquisition of both laser ranging and inertial data, 
providing real-time six degrees of freedom (6DOF) trajectory 
estimation. 

 

Fig. 4. Device operation rotation diagram. 

By utilizing encoder information, the specific rotation angle 
of the LiDAR probe relative to the stepper motor at each 
moment can be obtained. Let the rotation angle of the LiDAR 

with respect to the stepper motor be denoted as  t . The 

initial point cloud data P is then corrected to align its coordinate 
system with that of the stepper motor. The corrected point cloud 
data is represented as P', with the transformation given by 

  'P R t P  , where   R t  is the rotation matrix 

based on the angle  t . 

The corrected point cloud data is tightly integrated with 
inertial information. Pre-integration of the inertial data is 
performed to accumulate the sensor's motion trajectory. This 
pre-integration process primarily relies on the acceleration a(t) 
and angular velocity ω(t) measured by the IMU to compute 
increments in position and orientation, as shown in Eq. (4). 
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The IMU-LiDAR fusion utilizes a Kalman filter, which 
includes a state vector representing position, velocity, 
quaternion, and the biases from the accelerometer and 
gyroscope. During the update process, the IMU performs 
predictions at a high frequency, while the LiDAR provides 
corrections at a lower frequency using feature residuals. 
Furthermore, bias compensation is implemented through online 
calibration via sliding window optimization. 

Combining the point cloud constructed through the mobile 
scanning method with the corrected point cloud data and inertial 
data allows for real-time estimation of the sensor's 6DOF 
trajectory. 

E. 3D Model Construction 

The method for constructing a 3D model using LiDAR and 
IMU primarily consists of tightly coupled joint optimization of 
the LiDAR inertial odometry and point cloud mapping, as 
illustrated in Fig. 5. 

 

Fig. 5. System working principle. 

In the tightly coupled joint optimization of the LiDAR 
inertial odometry, the IMU data is pre-integrated, and both intra-
frame and inter-frame motions of the LiDAR are computed. The 
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calculated intra-frame motion is then used to preprocess the 
point cloud data, mitigating the effects of motion distortion 
through motion compensation using the IMU-derived trajectory. 
Additionally, ground segmentation is performed using 
RANSAC plane fitting with a defined inlier threshold, enabling 
the separation of ground points from other data. After this 
preprocessing, voxel downsampling is applied with differing 
resolutions for near-field and far-field regions to balance 
computational efficiency and detail retention. Feature extraction 
is then performed on the processed point cloud data, alongside 
IMU state prediction. Finally, based on the established IMU 
constraints and LiDAR constraints, a nonlinear optimization 
model is constructed to obtain the state variables required for the 
mapping process. The optimization process is supported by 
global techniques facilitated by the Ceres solver using the 
Levenberg-Marquardt algorithm, ensuring robust and accurate 
results. 

In the point cloud mapping phase, the point cloud map is first 
voxelized. Subsequently, the optimized results from the 
odometry phase are used to match the LiDAR point cloud with 
the point cloud map. Lastly, the point cloud map undergoes 
downsampling to reduce its size. 

IV. ENGINEERING APPLICATIONS 

A. Project Background 

The CMC project in the Democratic Republic of the Congo 
is a complex underground mining development system 
engineering project. The underground tunnel network includes 
multiple key areas and structures, with the areas to be scanned 
depicted in Fig. 6. These areas encompass light vehicle ramps, 
heavy vehicle ramps, and various sections such as the 1110, 940, 
and 990 levels, as well as the measures ramp. Additionally, the 
project involves significant underground facilities including 
ventilation shafts, auxiliary shafts, and water chambers. 

 

Fig. 6. Overall view of the underground mine survey area. 

The geographical distribution and functional positioning of 
these tunnels and facilities result in a considerable project 
length, traversing various geological and structural layers. In 
such a complex underground environment, traditional 
measurement and modeling methods may not meet the required 
accuracy and efficiency standards. Therefore, a rapid tunnel 
modeling approach based on portable LiDAR technology is 
employed to achieve high-precision 3D positioning of the 
underground space. 

B. Field Data Collection 

Due to the complexity and long distances of the underground 
tunnel system, multiple data collection methods were employed 
to adapt to different environmental conditions and scenarios, as 
illustrated in Fig. 7. In accessible areas, operators conducted 
scanning with handheld devices. In the light and heavy vehicle 
ramp areas, scanning was performed from vehicles to enhance 
collection efficiency. In the 940 and 1110 level, where rainfall 
was prevalent, handheld scanning was utilized, with operators 
using umbrellas to shield against water spray, particularly in the 
940 level. The device sensor continuously rotated at a steady 
speed to perform panoramic scanning, covering a distance of 
100 meters, allowing for complete scanning with a single pass 
through the scene. For hazardous areas inaccessible to 
personnel, such as chutes and mined-out zones, drones or 
extension poles equipped with scanning devices were employed. 
These methods ensured high-quality data acquisition even in 
complex and dangerous environments. 

 

Fig. 7. Handheld scanning and vehicle-mounted handheld scanning. 

Data collection was conducted in segments due to the overall 
length of the underground tunnels. Each segment's data was 
distinguished by different colors, facilitating subsequent 
stitching and adjustments. To align the data with the geodetic 
coordinate system, the equipment needed to be calibrated to 
control points within the tunnels. In accessible areas, such as the 
tunnel floor, alignment was achieved by overlapping the 
crosshair on the device's base with the control point. In areas 
inaccessible to personnel, such as the tunnel ceiling, a visible 
laser on the device was used to aim at the control point. The 
positions of the control points were recorded on a mobile control 
device. This laser anchoring method did not require additional 
personnel, resulting in higher accuracy and allowing for single-
person operation. 

C. Indoor Data Processing 

After data collection, the coordinates of the control points 
needed to be entered on the mobile control device. In the mobile 
control device's menu, the system for analysis was selected, and 
by clicking “Retrieve Data,” all collected data could be viewed. 
These data packets were named according to the collection time, 
with corresponding control point information displayed on the 
right side of each packet. By clicking on the control point 
information for a specific data packet, a window for inputting 
the control point coordinates would appear, where the geodetic 
coordinates (in meters) for the corresponding control point could 
be entered. After inputting the control point coordinates, the 
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relevant collected data was selected on the left side, followed by 
clicking the "Analyze" button to initiate data processing. The 
control point input interface on the mobile device is shown in 
Fig. 8. 

 

Fig. 8. Mobile interface for control point input. 

After the data processing was completed, the data is 
transmitted to the PC via a network. The data folder contains 
several files, including filtermap.dxf, ControlPoint.txt, map.las, 
filter_map.las, map.pcd, filtermap.pcd, filtermap.ply, and 
Path.txt. Among these, filtermap.dxf contains the 3D model data 
generated automatically by the device, ControlPoint.txt records 
the geodetic and control point coordinates, while map.las and 
filter_map.las represent the original and decimated point cloud 
data of the map, respectively. Additionally, map.pcd and 
filtermap.pcd contain the original and decimated point cloud 
data in PCD format, filtermap.ply is the 3D object format point 
cloud data, and Path.txt contains the trajectory data of the 
device. 

The LAS point cloud data undergoes filtering and denoising 
processes to eliminate noise generated by moving objects within 
the tunnel. This process retains valid points while reducing the 
overall data size to approximately one-tenth of the original. 
After filtering and denoising, a 3D model of the tunnel is 
created, generating a closed triangular mesh model that 
preserves the original morphology of the tunnel, as shown in Fig. 
9. 

 

Fig. 9. Drift 3D model. 

V. RESULTS 

A. Accuracy Validation 

Once the tunnel's 3D model is established in point cloud 
processing software, it can be saved in DXF format and 
imported into 3D mining software such as Dimine for further 
processing. This facilitates a series of tasks related to geological 
surveying and mining operations, including ore body modeling, 
tunnel design, resource estimation, and extraction planning. By 
comparing the 3D model with the CAD base map in detail, the 
accuracy and completeness of the model can be analyzed, as 
shown in Fig. 10. 

 

Fig. 10. Comparison of CAD drawing and model. 

First, the CAD base map and the DXF format 3D model data 
are imported separately into the software. The comparison tool 
is then used to overlay the 3D model with the CAD base map to 
check their alignment. If discrepancies are identified between 
the 3D model and the CAD base map, adjustments and 
corrections can be made based on the comparison results to 
ensure high precision of the model. 

The accuracy assessment involves comparing the 3D model 
with the actual tunnel, measuring deviations in both longitudinal 
and lateral positions. Several representative measurement points 
were selected at different locations within the tunnel, and actual 
measurements were taken. These data were then compared with 
the corresponding data in the 3D model, as shown in Table II. 

TABLE II.  COMPARISON BETWEEN MEASURED MODEL AND ACTUAL 

MEASUREMENTS 

Measureme

nt Point 

Measureme

nt Content 

Actua

l 

Value 

(m) 

Measure

d Value 

(m) 

Absolut

e Error 

(m) 

Relativ

e Error 

(%) 

Vehicle 

Ramp 

Longitudinal 

Deviation 

269.8

7 
270.12 -0.25 0.09 

Lateral 

Deviation 
4.72 4.74 -0.02 0.42 

Water 

Chamber 

Longitudinal 

Deviation 
15.18 15.14 0.04 0.26 

Lateral 

Deviation 
4.21 4.22 -0.01 0.24 

Stope 

Substation 

Longitudinal 

Deviation 
5.37 5.36 0.01 0.19 

Lateral 

Deviation 
4.92 4.93 -0.01 0.20 
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The results demonstrate that the absolute errors across all test 
points were minimal, with relative errors ranging from 0.09% to 
0.42%, ensuring that the generated 3D models meet precision 
requirements for mining applications. These findings indicate 
the reliability of the presented method in achieving high-
accuracy 3D modeling in complex underground environments. 

Beyond validation through direct measurements, 3D models 
were also compared against original design CAD drawings 
within mining software (e.g., DIMINE). The overlay alignment 
evaluation revealed minimal discrepancies, confirming the 
completeness and consistency of the 3D models with the 
engineering designs (Fig. 10). This validation process 
underscores the potential of the proposed method for enhancing 
tunnel design implementation and quality control. 

B. Efficiency Analysis 

The efficiency of the proposed method was assessed by 
examining the time required for data collection and processing 
compared to traditional methods such as total station 
measurements and static LiDAR scanning. The portable LiDAR 
system significantly reduced fieldwork times due to its ability to 
capture spatial data continuously and autonomously while in 
motion. Specifically, the system completed a 2.3 km tunnel 
network survey in approximately 6 hours, including setup, 
scanning, and preliminary control point calibration. Traditional 
methods would typically require at least 2–3 days for similar 
coverage, highlighting the advantages of the portable LiDAR 
solution in terms of operational efficiency. 

Furthermore, the automated data processing workflow 
reduced the time needed for point cloud filtering, denoising, and 
stitching by at least 30% compared to conventional software 
pipelines. The integration of SLAM and IMU technologies 
eliminated the dependency on fixed reference points, further 
streamlining data collection in environments with limited access 
or visibility. 

C. Safety and Adaptability 

The adaptability and safety of the proposed method were 
demonstrated through its successful deployment in hazardous 
and challenging underground environments. The compact and 
portable design of the scanning device facilitated access to 
narrow and confined spaces, eliminating the need for extensive 
manual setups. Additionally, automated scanning from mobile 
platforms (e.g., vehicles) or remote systems (e.g., drones) 
allowed for data collection in areas that were otherwise 
inaccessible or unsafe for personnel, such as waterlogged 
tunnels and mined-out zones. 

The flexibility of the system was further underscored by its 
performance in varying environmental conditions. For instance, 
handheld scanning with umbrellas in the 940 level ensured high-
quality data acquisition despite water spray and poor lighting. 
These capabilities emphasize the robustness of the system in 
adapting to diverse underground scenarios. 

D. Discussion 

The proposed portable LiDAR-based rapid modeling 
method demonstrates significant advancements in accuracy, 
efficiency, and adaptability for underground mining 
applications. The integration of SLAM and IMU technologies 

effectively addresses common challenges in GPS-denied 
environments, ensuring reliable data collection and high-
resolution 3D modeling. Compared to traditional surveying 
methods, the proposed approach achieves superior time 
efficiency and operational flexibility while maintaining 
precision, as evidenced by relative errors below 0.5% and 
successful deployment in complex tunnel networks. 
Furthermore, the system’s portability and ability to operate 
under adverse conditions, such as low light, dust, and water 
spray, highlight its robustness and practical value for diverse 
underground scenarios. 

Despite these advantages, residual challenges remain. Pose 
error accumulation during extended operations and 
computational demands for large-scale point cloud processing 
represent areas for improvement. Environmental factors, such as 
extreme humidity or dust, may also introduce noise, impacting 
data quality. Future research should focus on optimizing SLAM 
algorithms, developing real-time processing capabilities, and 
integrating complementary sensors to enhance system 
performance. Additionally, further miniaturization and 
automation could expand its applications across other industries. 

Overall, this study provides a comprehensive solution for 
efficient and accurate tunnel modeling, addressing critical 
limitations of traditional methods and laying a foundation for 
broader adoption of portable LiDAR technologies in mining and 
beyond. 

VI. CONCLUSION 

This study addresses the challenge of rapid 3D modeling of 
underground mining tunnels by proposing an innovative 
solution based on portable 3D laser scanning technology and 
SLAM techniques. Experimental validation demonstrates the 
feasibility and effectiveness of this approach in complex 
environments. By integrating portable 3D laser scanning 
technology with SLAM algorithms and IMU, this research 
successfully achieves efficient 3D modeling of underground 
tunnels without relying on external positioning signals. This 
method effectively overcomes the limitations of traditional 
measurement techniques, such as low efficiency and restricted 
accuracy in underground settings, significantly enhancing data 
collection speed and quality while providing technical support 
for high-resolution modeling of complex tunnel networks. The 
findings indicate that portable devices can maintain 
measurement stability and precision even in adverse 
underground conditions characterized by poor lighting and air 
quality, offering new insights for 3D modeling in other complex 
subterranean environments. The generated 3D models meet 
practical engineering requirements in terms of accuracy, 
completeness, and visualization, making them applicable in 
various domains, including geological surveying, engineering 
design, construction acceptance, and safety management. 
Moreover, this study demonstrates the flexibility and 
practicality of the technology in complex scenarios, highlighting 
its ease of operation and high degree of automation in data 
processing, thus providing crucial technical support for digital 
mining and intelligent mine management. 

However, this research has certain limitations, and future 
studies will focus on optimizing SLAM algorithms to reduce 
pose error accumulation, as well as integrating multi-sensor 
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fusion technologies (e.g., collaborative use of vision and 
LiDAR) to enhance data collection accuracy. Building on this 
foundation, the development of more compact and efficient 
portable devices to meet the surveying needs of various complex 
environments will be pursued. 
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