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Abstract—In order to minimize the stochasticity of agents 

used in disease diagnosis within the dialogue system, and to 

enable them to interact with users based on the inherent 

connections between symptoms and diseases, while 

simultaneously addressing the issue of limited medical data, we 

propose the Hierarchical Reinforcement Learning with Multi-

expert Feedback framework. The framework constructs a 

reward model in the lower-level networks of the hierarchical 

structure. Here, the discriminator leveraging the concept of 

adversarial networks generates rewards by evaluating the 

authenticity of symptom query sequences generated by the agent, 

and the large language model of human experts synthesizes 

various factors to assess the reasonableness of the agent's current 

symptom queries, thereby guiding the learning of the policy 

network. The algorithm addresses the deficiencies in data 

characteristics and improves the policy's capability to leverage 

feature information, thus making the process of disease diagnosis 

more aligned with clinical practice. Experimental results 

demonstrate that the proposed framework achieves diagnostic 

success rates of 61.5% on synthetic datasets and 84.4% on real-

world datasets, while requiring fewer dialogue turns on average. 

Both metrics surpass those of conventional approaches, further 

indicating the framework's strong generalization ability. 

Keywords—Disease diagnosis; dialogue system; large language 

model; reinforcement learning; reward model; adversarial 
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I. INTRODUCTION 

Due to the broad application prospects and significant 
commercial benefits of task-oriented dialogue systems [1], 
researchers have introduced them into the medical field, 
forming research focused on medical dialogue systems to 
alleviate the problem of strained medical resources [2].The 
rapid development of deep learning has propelled 
advancements in the field of disease diagnosis, and the 
application of deep reinforcement learning in conversational 
disease diagnosis research is gradually emerging [3]. However, 
deep reinforcement learning still faces two major challenges in 
this field: first, it relies too heavily on random sampling [4] and 
lacks a universal reward and punishment mechanism adaptable 
to different application scenarios. For example, Kao et al. 
[5]use +1 and 0 as reward values, whereas Zhong et al. [6] set 
substantial rewards and penalties of +20 and -100. Second, 
medical data resources are scarce and valuable, and the 
available feature information is also very limited, which greatly 
restricts research in disease diagnosis. 

In response to the aforementioned challenges, this study 
introduces a Multi-Expert Feedback-based Hierarchical 
Reinforcement Learning framework (ME-RL), utilizing a 
hierarchical structure to manage complex sequential decision-
making issues, and leveraging the principles of Generative 
Adversarial Networks, it establishes an adversarial workflow 
comprising a generator and a discriminator. Utilizing the 
evaluations from the discriminator and the feedback from the 
large language model of human experts (AIExpert) as low-
level rewards, the framework optimizes the policy and 
improves the agent's learning efficiency and performance 
within dynamic environments. In addition, a novel joint 
evaluation metric is introduced, which simultaneously takes 
into account the diagnostic success rate and the average 
number of dialogue turns in disease diagnosis tasks, thereby 
offering a more comprehensive assessment of the model's 
effectiveness. 

The remainder of this paper is organized as follows: 
Section II introduces the related work. Section III provides an 
overview of the methods. Section IV introduces the 
experimental design. Section V presents the experimental 
results and related analysis. Section VI summarizes the paper 
and proposes future research directions. 

II. RELATED WORK 

Task-oriented dialogue systems have received widespread 
attention in recent years, encompassing areas such as ticket 
booking services and e-commerce [7], [8]. In the context of 
strained medical resources, researchers have begun exploring 
how to integrate dialogue systems into the smart healthcare 
field to improve doctors' time utilization and provide patients 
with preliminary diagnostic references [9]. Through continuous 
development, conversational disease diagnosis systems have 
demonstrated significant potential in simplifying diagnostic 
processes, reducing costs, and efficiently collecting patient 
medical history information [10]. 

Due to the fact that conversational disease diagnosis 
involves multiple consecutive time stages and interactive steps, 
its decision-making characteristics are highly compatible with 
the applicability of reinforcement learning (RL) methods. 
Researchers model the disease diagnosis task as a Markov 
Decision Process and utilize reinforcement learning methods to 
optimize policy learning [6]. By employing policy gradient 
algorithms, the agent can make decisions based on the specific 
symptom information provided by patients. 
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With the continuous advancement of deep learning, many 
researchers have integrated deep learning models [11], [12] for 
disease diagnosis prediction. Deep reinforcement learning, 
which combines deep learning and reinforcement learning, has 
also been rapidly applied to research on conversational disease 
diagnosis [13]. In the context of symptom-oriented disease 
diagnosis dialogue systems, researchers such as Wei et al. [14] 
have designed an automatic diagnostic system based on 
human-computer dialogue. This system models the symptom 
inquiry and disease diagnosis processes as a Markov Decision 
Process and employs a Deep Q-Network (DQN) policy 
learning algorithm. In each interaction cycle, the intelligent 
agent can choose to inquire about specific symptoms or make 
diagnostic judgments based on the situation. The agent learns 
the optimal strategy by continuously optimizing to maximize 
the expected simulated rewards. The dialogue system 
constructed in this manner is relatively comprehensive, 
marking a preliminary breakthrough in addressing automatic 
diagnostic medical dialogue problems. Since then, 
reinforcement learning has gradually become the mainstream 
choice among researchers in this field [15]. 

To further enhance the performance of automatic 
diagnostic models, Chen et al. [16] proposed a multi-action 
policy representation method, enabling agents to timely 
recommend medical examination items to assist in diagnosis. 
Xu et al. [2] further introduced the KR-DS system, which 
integrates Knowledge Path-based Deep Q-Networks (DQN). 
This system incorporates knowledge branches and knowledge 
routing branches that capture the associations between diseases 
and symptoms within the deep reinforcement learning 
framework, thereby considering external probabilistic 
symptom information related to the reinforcement learning 
framework. This integration enhances the rationality and 
accuracy of medical dialogue decision-making. Tiwari et al. 
[17] designed a hierarchical reinforcement learning framework 
that integrates a knowledge-driven mechanism. By embedding 
a Potential Candidate Module (PCM), the framework enhances 
the agent's efficiency in organizing and probing symptom 
information. Yan et al. [18] addressed the challenges of 
insufficient diagnostic evidence and irrelevant symptom 
inquiries by constructing a more comprehensive medical 
dialogue dataset and combining experiential diagnostic 
knowledge with a medical knowledge graph. Subsequently, 
Yan et al. [19] proposed the EIRAD dialogue system based on 
a medical knowledge graph, which enhances the 
interpretability and accuracy of the diagnostic process by 
utilizing the topological structure of the knowledge graph. 

Existing methods have laid the foundation for the 
optimization and development of dialogue-based disease 
diagnosis systems. However, they still largely rely on random 
sampling, lack a universal reward-punishment mechanism 
adaptable to different application scenarios, and are overly 
dependent on scarce medical data resources. To address these 
limitations, the framework proposed in this paper integrates 
hierarchical reinforcement learning, adversarial networks, and 
large language models, constructing a general and effective 
reward model. Additionally, it leverages the rich database of 
large language models to mitigate the issue of sparse data 
features, enabling the dialogue agent to generate reasonable 

disease query sequences, thereby enhancing the performance of 
the disease diagnosis system. Experimental results demonstrate 
that, compared to traditional learning methods, the proposed 
approach significantly improves diagnostic accuracy, reduces 
dialogue turns, and enhances the generalization capability of 
the model. Table I provides a summary and comparison of 
existing research, highlighting their methodologies, strengths 
and weaknesses. 

TABLE I.  RELATED WORK COMPREHENSIVE 

Methodology Strengths Weaknesses Reference 

RL, 

Knowledge 
graph 

Leveraging the 

relationships between 
symptoms and diseases 

Lack of a 

universal reward 
model 

[2] 

RL, 

Prioritization 
of severe 

pathologies 

Exploration-

confirmation 
framework, Severe 

pathology prioritization 

Lack of a 

universal reward 

model, 

Dependency on 

dataset quality 

[3] 

RL, Feature 

rebuilding 

Sparse feature 

exploration, Faster 

diagnosis 

Lack of a 

universal reward 

model 
[4] 

RL, Context-

aware 

symptom 
checking 

Context-aware 

diagnosis, 

Generalization across 
tasks 

Lack of a 

universal reward 

model 
[5] 

RL 
Novel dataset, Task-

oriented framework 

Dependency on 

dataset quality 
[14] 

RL, Label-

guided 

exploration 

Efficient exploration, 

Multiple test 

suggestions 

Lack of real-

world dataset 

validation 
[16] 

RL, Potential 

candidate 

module 

Context-aware and 

knowledge-guided 

investigation 

Lack of real-

world dataset 

validation 

[17] 

RL, Medical 

knowledge 

graph 

Interpretability, 
Integration of medical 

knowledge 

Dependency on 

data quality 
[19] 

III. METHOD DESIGN 

A. Overall Framework 

The structure of the disease diagnosis model based on 
Multi-Expert Feedback Hierarchical Reinforcement Learning is 
illustrated in Fig. 1. Its core component is the diagnostic agent, 
which is divided into a two-tier structure comprising high-level 
and low-level policies, and consists of four key modules: 
controller, generator, evaluator, and classifier. Furthermore, it 
is equipped with a user simulator. Among them, the controller 
is responsible for scheduling the generator or classifier to 
operate. The generator is tasked with inquiring about potential 
symptoms from the patient, the evaluator assesses the 
rationality of the actions chosen by the generator and provides 
rewards, while the classifier is used to inform the user 
simulator of possible disease types based on the currently 
collected information. The user simulator is designed to mimic 
patient behavior, interact with the agent, and return intrinsic 
rewards for the disease classifier. The sum of the rewards 
obtained by the generator and the disease classifier constitutes 
the external rewards received by the controller. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

300 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. Overall framework of ME-RL. 

B. Dialogue Policy 

1) Agent policy: The automatic diagnosis tasks can be 

formulated as a Markov Decision Process and utilize 

reinforcement learning to optimize dialogue policies. In this 

framework, the policy includes the state space S, action space 

A, state transition probabilities TP, and reward model R. Each 

state (s, s ∈ S) in the state space is composed of several 

elements, including the current state of the dialogue agent, the 

symptoms pending inquiry, user symptom feedback, a list of all 

confirmed symptoms, the number of dialogue rounds, and 

reward signals. The action space includes all possible disease 

diagnosis options and symptom inquiry actions, with each 

action corresponding to the examination of a particular 

symptom or the judgment of a disease. State transition 

probabilities dictate how the next state st+1 is formed given the 

current state st and the action a taken, represented as st+1 = 

TP(st, a). The reward model offers the probability of receiving 

an immediate reward rt+1 after taking action at at time step t, 

denoted as rt+1 = R(st, at). 

The agent's goal is to seek an optimal dialogue strategy that 
maximizes the total accumulated reward R during one round of 
interaction [20]. The formula for the total reward R is 
presented below: 

1 0

N T
t

t

i t

R r
 

 
                  (1) 

where N represents the total number of dialogues in a 
round, T represents the total number of dialogue turns in the 
current conversation, γt represents the discount factor, and rt 
represents the immediate reward received by the agent at the t-

th time step.
t 0

T
t

tr


γ can be approximated as [21]: 

*

AQ ( , )  Ε [ max Q*( , )]s' a's a r s' a'   
              (2) 

where Q(s, a) denotes the Q-function representing the state-
action value, which is used to estimate the value acquired after 
performing action a in the current state s, leading to a new state 
s'. During the training process, the estimation of Q(s, a) is 

progressively updated based on experience and learning, until 
it converges and stabilizes. 

2) User simulation: The user simulator is designed to 

emulate the interaction process between real patients and the 

automated diagnostic system. At the beginning of each 

dialogue session, the simulator randomly selects a user 

objective from the experimental dataset as the basis for the 

simulation. Each user objective comprises two types of 

symptom information: one is the explicit symptoms clearly 

expressed by the user, and the other is the implicit symptoms 

that can only be uncovered through dialogue interaction. 

Additionally, the user objective includes the actual disease 

labels. At the initiation of the dialogue, the diagnostic agent 

directly receives the explicit symptoms as the initial 

information. Subsequently, the user simulator engages in 

further dialogue interactions with the agent based on the 

implicit symptoms. During the dialogue process, the simulated 

user will respond based on whether the symptom currently 

inquired by the agent exists in their objective: correctly, 

incorrectly, or with uncertainty. When the agent successfully 

diagnoses the correct disease within the maximum number of 

rounds, the dialogue is considered a successful interaction; 

otherwise, it is deemed a failure. 

C. Hierarchical Structure 

Considering that the agent needs to handle a vast action 
selection space in complex environments, a hierarchical 
structure with two levels of policies has been constructed, as 
shown in Fig. 2. 

 

Fig. 2. Interaction of two layer strategies. 

3) Higher policy: The controller manages the high-level 

policies, with its core function being to schedule and activate 

lower-level policies, and the action space is denoted as 

A { | 1,2,..., } { }m ig i n d   . Here, gi represents the activation 

of generator Gi, and action d represents the activation of the 

disease classifier. At time step t, the controller takes the current 

dialogue state st as input and, based on the policy function πm, 

decides which action am (am ∈ Am) to take, thereby leading to a 

new state st+1.Once the controller activates a lower-level agent, 

the agent will engage in multiple rounds of interaction with the 

user until its subtask is completed. The learning problem of the 

controller can be viewed as a Semi-Markov Decision Process. 

At the t-th time step, after the controller executes action am, the 

immediate reward rm it receives can be expressed as the 

discounted sum of all external rewards accumulated by the 
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lower-level policies it has triggered while performing a series 

of actions ai. Therefore, the external reward for the controller is 

calculated as follows: 

1

1

1

g

1

,

,

T

m t m i

tm

d m

r if a g
r

r if a d







 
 



                           (3) 

where i =1,…,n, rm represents the external rewards obtained 
by the high-level policy at the t-th round, γm is the discount 
factor of the controller, T1 is the number of original actions of 
the generator, and gi and d are the actions to activate generator 
Gi and classifier D, respectively. When the generator is 
activated by the controller's action am, it will select appropriate 
actions ai based on the current state to query symptoms from 
the patient based on the current disease group, thereby 
activating the evaluator to provide corresponding intrinsic 

rewards 
1

g

tr . If the disease classifier is triggered, it will perform 

disease identification and return rewards rd based on the 
diagnostic results. The objective of the high-level agent is to 
maximize external rewards within a round through a Semi-
Markov Decision Process, thus allowing us to derive the 
controller's loss function [22]: 

2

'L( ) [( max Q ( ', ', )) Q ( , , )]m m m a m m m mr s a s a     
   (4) 

where L(m) represents the loss of the controller at time 

step t, while θm and 
m
  are the frozen parameters during the 

current and past training iterations, respectively. 

4) Lower policy: The low-level policy consists of a 

generator and a disease classifier, with an action space 

comprising symptom inquiries and disease classification 

actions. The low-level policy is centrally scheduled by the 

high-level policy, which provides the current environmental 

state (st) as input to guide the low-level policy in selecting the 

most appropriate basic action ai. Once action ai is executed, the 

dialogue environment state updates to st+1, and the low-level 

agent immediately receives rewards or penalties ( g

tr ) based on 

the suitability of the current action ai for the current state st. 

Because the rewards obtained by the low-level policy are direct 

results of the actions currently being executed, these rewards 

are termed intrinsic rewards. The calculation of intrinsic 

rewards is as follows: 

g dis ai

t dis t ai tr w r w r 
                     (5) 

where dis

tr  represents the reward provided by the 

discriminator, ai

tr  represents the feedback evaluation from 

AIExpert, 
disw  and 

aiw  denote their respective weights. Since 

the SD dataset does not include real patient-doctor symptom 

inquiry sequences, 
disw  is set to 0.4 and 

aiw  is set to 0.6.When 

using the MZ4 dataset, which includes real patient-doctor 

symptom inquiry sequences, 
disw  and 

aiw  are both set to 0.4. 

The generator is described in detail in subsequent chapters. 
The classifier adopts a hierarchical classifier structure, 

consisting of group classifiers and specific disease classifiers. 
When the disease classifier is activated by the controller, the 
currently confirmed symptoms are input into the disease 
classifier. The group classifier then designates the appropriate 
specific disease classifier, which conducts a detailed diagnosis 
based on the current disease group. Each specific disease 
classifier for a particular disease group is constructed as a 
three-layer neural network structure, including a hidden layer, 
which is used to accurately identify and diagnose each specific 
disease within the selected disease group, and to feedback the 
disease diagnosis result with the highest probability to the user. 

D. Evaluation Model Based on Multi-Expert Feedback 

The evaluation model based on multi-expert feedback 
consists of multiple discriminators corresponding to the 
generator and one AIExpert. The adversarial structure-based 
evaluation process is illustrated in Fig. 3. Both the generator 
and the discriminator have been pre-trained. The generator 
employs the maximum likelihood estimation method, 
predicting the next possible symptom based on the current state 
during training, ultimately generating a symptom inquiry 
sequence (fake symptom sequence). Additionally, a dedicated 
data repository is established to store both real and fake 
symptom sequences for pre-training the discriminator. The real 
symptom sequences in the database are directly sampled from 
user objectives in the dataset. An example of AIExpert model 
interaction is shown in Fig. 4, where AIExpert uses interaction 
history as the environmental information for large language 
model (LLM) scoring. Firstly, the RL model generates the next 
symptom to inquire, which, along with the interaction history, 
is processed into a prompt. Subsequently, the LLM uses this 
prompt to generate a score for the queried symptom, and 
finally, the score is returned to the RL model as a reward. 

 

Fig. 3. Adversarial structures in low-level policy. 

 

Fig. 4. AIExpert interaction example. 
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1) Generator: In the context of medical disease diagnosis, 

the core task of the sequential query generator is to 

dynamically generate a series of follow-up questions targeting 

the patient's initial chief complaint. This process aims to 

simulate a real medical consultation workflow, guiding patients 

to elaborate in detail on their current medical history and the 

specific manifestations and variations of each related symptom. 

Specifically, it involves intelligently generating the next most 

reasonable and diagnostically beneficial question based on the 

initial information provided by the patient, resulting in patient 

responses of confirmation, denial, or uncertainty. 

The generator is a low-level strategy within the agent. Once 
the high-level strategy selects symptom inquiries, generator Gi 
is activated and interacts with the patient to collect information 
on specific symptom groups. The action workspace of 

generator Gi is: A { | }
iG iy y Y  . Here, y represents the 

requested symptom, and Yi represents the set of specific disease 
symptoms corresponding to this generator. At the t-th time 
step, generator Gi receives the current state st as input from the 
high-level strategy controller and generates the action yt to 
inquire about the next symptom (yt ∈ AGi). Subsequently, the 
dialogue state is updated, and generator Gi immediately 
receives an intrinsic reward. The task of the sequential 
generator is to construct a coherent and seemingly realistic 
situational dialogue sequence starting from the user's initial 
symptom description. Its objective is to "fool" the 
discriminator, making the discriminator believe that the 
generated series of questions and answers belong to actual 
patient-doctor interactions. That is, to generate a symptom 
inquiry sequence from the initial state in order to maximize its 
expected return [23]: 

~ ( | ) D( ) [Q ( , ) | ]a G a sJ s a


 E
                     (6) 

where a represents the inquiry action taken by generator G 
in the current state s. The rewards are derived from the 
evaluation model. QD(s, a) is the state-action value function, 
which approximates the value obtained when taking action a in 
the current state s. 

2) Discriminator: Each generator is equipped with its own 

discriminator, which is pre-trained to assess whether the 

sequence of queries is genuine. The objective is to maximize 

the probability of correctly classifying real data and minimize 

the probability of misclassifying generated data. The output of 

the discriminator serves as a reward for the generator, 

encouraging the generator to produce symptom inquiry 

sequences that are indistinguishable from real symptom 

sequences. The discriminator is trained using a Deep Neural 

Network and outputs a single scalar value that represents the 

probability of a symptom sequence originating from real data 

rather than from the generator. 

For interactive dialogue systems, this paper not only 
focuses on the quality of the final generated complete symptom 
sequences but also emphasizes real-time feedback during the 
diagnostic process. A discriminator model has been trained to 
evaluate and assign rewards to both fully and partially 

observed symptom sequences, enabling it to provide immediate 
rewards for partial symptom information that users gradually 
disclose during the dialogue process. At the t-th time step, 
given the current dialogue state s, the generator produces the 
next inquiry action a. The concatenation of the generated 
action a and the input s is fed into the discriminator, resulting 
in a reward from the discriminator [24]: 

1: 1D( , | G( | ))dis

t t tr s Y a y a s  
              (7) 

where Y1:t-1 represents the symptom sequence contained in 
the current state s. yt represents the next symptom inquiry 
generated by the generator based on s. 

3) AIExpert: The actions generated by the generator in 

each round receive expert evaluation feedback from AIExpert. 

AIExpert is a module designed to simulate human experts 

(doctors) by integrating large language model. AIExpert 

supplements medical data and knowledge related to disease 

diagnosis through a vast knowledge base and utilizes the 

capabilities of LLM to simulate the behavior of experts 

assisting in diagnosis, thereby achieving a dual purpose. 

Each interaction between the RL model and AIExpert 
generates a new interaction record, which is appended to the 
interaction history.  As time steps progress, the interaction 
history grows, potentially exceeding the current LLM's context 
length [25]. To address this issue, before each interaction, 
history retrieval is performed to retrieve the latest 10 
interaction records related to the current disease list from the 
user's interaction history (including symptoms and related 
scores) as the RL model's observation. Then, the RL model 
asks the user about a symptom as its action, and the action and 
observation are subsequently used to generate the prompt. 

Each dialogue generates a prompt containing the detailed 
information required by the LLM, including the symptom 
inquiry history corresponding to the current generator, the 
symptom to be queried, and the current disease list. 
Additionally, the prompt includes system prompts and example 
prompts. The system prompt informs the LLM of its 
positioning as a medical expert and provides guidance on the 
aspects to consider when generating feedback scores (in 
addition to the applicability of symptom sequences for known 
symptoms, it also considers other factors, such as whether the 
current symptom can help distinguish between diseases in the 
current disease list). Example prompts serve as a reference for 
subsequent scoring by the LLM. The purpose of constructing 
the prompt is to enable the LLM to accurately provide a score 
for the current queried symptom.  The output generated by the 
LLM based on the prompt is processed and returned to the RL 
model as a reward from AIExpert feedback. 

IV. EXPERIMENTAL DESIGN 

A. Dataset Description 

This study evaluates all methods on both synthetic and real-
world datasets. The description of the synthetic dataset (SD) is 
shown in Table II. It is a publicly available dataset synthesized 
from medical library knowledge, with the nine elements being 
G1, G4, G5, G6, G7, G12, G13, G14, and G19. Each user goal 
includes one explicit symptom and multiple implicit 
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symptoms. The description of the real-world dataset MZ-4 [14] 
is shown in Table III. It is a publicly available dataset 
constructed from data collected in real medical scenarios. 
Symptoms extracted from the user's self-report are defined as 
explicit symptoms, while symptoms discovered through 
dialogue are defined as implicit symptoms. 

TABLE II.  OVERVIEW OF SYMCAT-SD-90 DATASET 

Entries Value 

# of user goal 30000 

# of disease 90 

# of groups 9 

# of symptoms 266 

Avg. # of implicit symptoms  2.6 

TABLE III.  OVERVIEW OF MZ-4 DATASET 

Entries Value 

# of user goal 1733 

# of disease 4 

# of groups 2 

# of symptoms 230 

Avg. # of implicit symptoms  5.46 

B. Evaluation Metrics 

This paper proposes a new combined evaluation metric that 
assesses the overall performance of the disease automatic 
diagnosis system in real-world scenarios from two 
perspectives: accuracy and average dialogue rounds. This 
combined metric is named ST, and its definition is as follows: 

ST W 100 WSR TurnSR Turn    
          (8) 

where SR represents the success rate, Turn denotes the 
average number of dialogue rounds, and WSR and WTurn 
represent their respective weight coefficients. The success rate 
is a positive evaluation metric for the disease automatic 
diagnosis system, while fewer dialogue rounds are better. 
Therefore, in the experiment, WSR is set to 1 and WTurn to 0.5. 

This paper uses five metrics to evaluate the effectiveness of 
the model: the success rate of disease diagnosis (SR), the 
average number of dialogue rounds (Turn), the ratio of 
symptoms correctly identified by the agent out of those 
requested (AMR), the ratio of the number of hidden symptoms 
identified by the agent to the total number of hidden symptoms 
in the user’s target (SIR), and the ST metric proposed in this 
paper. The calculation methods for SR, AMR, and SIR are as 
follows: 

1SR

EL

i

i

DS

EL




                          (9) 

i 1 1

m /

AMR 100,m

j ti EL

i i

j

i

r
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

 
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

            (10) 

i 1

/ f

SIR 100

i EL

i im

EL



 


                   (11) 

where EL represents the total number of dialogues in the 
simulated dialogue set. DS indicates whether the dialogue was 
successfully completed. t represents the total number of 
dialogue rounds in the i-th conversation, while ri denotes the 
total number of symptoms asked by the dialogue agent in the i-
th conversation. mi represents the cumulative number of 
symptoms that the agent asked which actually match the 
patient's condition. fi indicates the total number of hidden 
symptoms that the patient actually possesses in the i-th 
dialogue. 

C. Baselines 

To demonstrate the effectiveness of the proposed method, 
several benchmark methods were chosen for comparison: 

SVM-ex: A model built using Support Vector Machine 
(SVM) [6], where the input is the one-time encoding of the 
patient's explicit symptoms, and the output is the disease label. 
SVM-ex&im, on the other hand, simultaneously considers both 
the patient's explicit and implicit symptoms, and its 
performance can be considered as the ideal upper limit 
achievable by a reinforcement learning-based dialogue agent. 

HRL: A hierarchical reinforcement learning framework that 
employs a two-layer policy structure and a disease classifier 
[14]. 

KI-CD: A knowledge-driven hierarchical reinforcement 
learning framework [17] that introduces a potential candidate 
module as knowledge assistance and constructs a multi-level 
disease classifier. The KI-CD_PCM model includes only the 
potential candidate module without the multi-level disease 
classifier. 

EIRAD: An automatic diagnostic evidence-based dialogue 
system with interpretable reasoning paths [19], based on the 
Medical Knowledge Graph, which explicitly utilizes the 
topological structure of the Medical Knowledge Graph to 
capture key symptoms of suspected diseases. 

D. Experimental Setup 

In this paper, 80% of the data in the dataset is used for 
training the agent, while 20% is used as the test set. Both the 
master controller and all generators employed a three-layer 
deep Q-learning network (DQN) with 512 nodes in the hidden 
layers. All discriminators used a three-layer neural network 
model, with the input layer dimension matching the number of 
corresponding symptoms, and the output layer consisting of a 
single node. The LLM in AIExpert used Llama-2-7B-Chat-
GPTQ, a model that has been quantized using GPTQ to allow 
it to run within a 24GB memory limit without significantly 
affecting performance. Regarding parameter settings, the 
master controller and generators shared a discount factor of 
0.95 and a learning rate of 0.0005. The learning rate for the 
discriminators was set higher at 0.01 to allow faster weight 
adjustment. The learning rate for the disease classifier was also 
set to 0.0005. During the entire training cycle for the master 
controller, after every 10 training steps, all generators, 
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discriminators, and disease classifiers would undergo a training 
update. Additionally, each cycle consisted of 100 dialogue 
sessions, and all neural networks were trained using the Adam 
optimizer. 

V. RESULT AND ANALYSIS 

A. Performance on SD Dataset 

Five metrics were used to evaluate the model's performance 
on the SD dataset, with the results presented in Table IV. ME-
RL_Adv refers to the model that only includes the 
discriminator, without AIExpert. Compared to the baseline 
methods, ME-RL showed significant advantages across all 
metrics. Except for the number of dialogue rounds, the SR, 
AMR, SIR, and ST increased by 8.08%, 24.72%, 6.15%, and 
15.05%, respectively, compared to KI-CD. Among these, the 
improvement in AMR was particularly notable, indicating a 
significant enhancement in the agent's ability to identify the 
symptoms the user is suffering from, i.e. the model can 
generate more reasonable symptom query sequences. 
Furthermore, both the ME-RL_Adv and ME-RL_AI models 
performed worse than ME-RL, highlighting that the multi-
expert feedback model, which uses both the discriminator and 
AIExpert, outperforms the single-feedback evaluation model. 

TABLE IV.  PERFORMANCE ON SD DATASET WITH DQN 

Model SR Turn AMR(%) SIR(%) ST 

SVM-ex 0.321 - - - - 

HRL 0.504 12.95 10.49 29.56 43.93 

KI-CD 0.569 16.11 09.95 48.33 48.85 

ME-RL_Adv 0.594 15.32 10.66 38.74 51.74 

ME-RL_AI 0.562 13.55 10.02 40.24 49.425 

ME-RL 0.615 10.61 12.41 51.30 56.20 

SVM-ex&im 0.732 - - - - 

TABLE V.  PERFORMANCE ON SD DATASET WITH DUELING DQN 

Model SR Turn AMR(%) SIR(%) ST 

HRL 0.478 8.57 13.80 29.24 43.52 

KI-CD 0.523 14.71 11.02 40.03 46.79 

ME-RL 0.570 12..86 10.85 46.63 50.57 

TABLE VI.  PERFORMANCE ON SD DATASET WITH DDQN 

Model SR Turn AMR(%) SIR(%) ST 

HRL 0.426 7.02 13.52 22.26 39.09 

KI-CD 0.507 10.60 13.70 39.04 45.40 

ME-RL 0.544 7.63 14.85 38.91 50.59 

Experiments were also conducted using Double Deep Q-
Network (DDQN) and Dueling Deep Q-Network (Dueling 
DQN) algorithms to replace the DQN algorithm in the model. 
The experimental results are reported in Tables V and VI. 

Compared to other models using these two algorithms, the ME-
RL model achieved higher accuracy and overall performance 
superior to all baseline models. 

From the above experiments, it can be observed that the 
ME-RL model using DQN and DDQN algorithms has a higher 
average number of dialogue turns compared to the HRL model. 
This is considered reasonable, as more dialogues between the 
agent and the patient allow for the collection of additional 
information about the patient's latent symptoms, ensuring a 
more thorough investigation and accurate diagnosis. 
Meanwhile, the diagnostic success rate is the most crucial 
factor for any automated disease diagnosis system, serving as a 
prerequisite for the system's usability. Additionally, the ME-
RL model consistently achieves the highest overall evaluation 
metric, further proving its effectiveness. 

B. Performance on MZ-4 Dataset 

Due to the limited number of disease types in the dataset, a 
single-layer disease classifier is used for disease diagnosis. The 
proposed model outperforms all baseline models across three 
algorithms (DQN, Double DQN, and Dueling DQN), achieving 
an accuracy rate exceeding 0.8, with an average number of 
dialogue turns remaining below 5. This indicates that the 
model is capable of reaching correct diagnostic results in most 
cases with fewer dialogue turns, demonstrating its outstanding 
performance. The experimental results are shown in Table VII. 

TABLE VII.  PERFORMANCE ON MZ-4 DATASET 

Model SR Turn ST 

EIRAD with DQN 0.770 15.10 69.45 

KI-CD_PCM with DQN 0.808 6.16 77.72 

ME-RL with DQN 0.844 4.32 82.24 

EIRAD with DDQN 0.732 12.23 67.09 

KI-CD_PCM with DDQN 0.778 6.37 74.62 

ME-RL with DDQN 0.813 4.21 79.20 

EIRAD with Dueling DQN 0.720 10.86 66.57 

KI-CD_PCM with Dueling 

DQN 
0.757 4.90 73.25 

ME-RL with Dueling DQN 0.801 3.02 78.59 

C. Error Analysis 

To analyze the agent's misdiagnosis cases, all instances 
where the agent made incorrect diagnoses on the SD dataset 
were collected, and a confusion matrix for the disease classifier 
was constructed. Fig. 5 shows the prediction accuracy for nine 
different disease groups. Upon examining the matrix, it is 
observed that the color intensity on the diagonal blocks is 
darker, indicating that the system tends to misclassify diseases 
into the same broad category. A partial reason for this 
phenomenon is that some diseases share many similar common 
symptoms, making it difficult for the classifier to distinguish 
them. However, it also demonstrates that even if the agent does 
not precisely predict the exact disease type, it can still correctly 
distinguish the general category of the disease to some extent, 
reflecting its diagnostic value. 
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Fig. 5. Confusion matrix between different disease groups. 

D. Performance of Different Generators 

An analysis of the performance of different generators 
using the SD dataset is shown in Table VIII. It is observed that 
the best-performing generators, Generator 1 and Generator 8, 
correspond to disease groups with the fewest average number 
of latent symptoms, which could be one of the factors 
influencing the generator's performance. The average disease 
classification accuracy corresponding to these generators is 
higher than all baseline models, indicating that ME-RL 
facilitates the generation of reasonable symptom query 
sequences, thereby improving the accuracy of the disease 
classifier. 

TABLE VIII.  PERFORMANCE OF DIFFERENT GENERATORS 

Model Accuracy (%) 

HRL_Avg 50.3 

KI-CD_Avg 75.6 

Generator 1(G1) 77.0 

Generator 2(G4) 91.6 

Generator 3(G5) 69.7 

Generator 4(G6) 79.4 

Generator 5(G7) 65.3 

Generator 6(G12) 67.2 

Generator 7(G13) 79.5 

Generator 8(G14) 83.5 

Generator 9(G19) 78.0 

E. Ablation Study 

Fig. 6 shows the accuracy curves of different dialogue 
agents based on ME-RL on the SD dataset, and Table IX 
displays their performance on the test set. The agent used in the 
ME-RL model is named the Unique-dis Agent, which indicates 
that each generator in the low-level agents is assigned a unique 
discriminator. The dialogue agent with only the evaluation 
model set for the master controller is named the Eva-Master 
Agent. The agent with a unified discriminator for all generators 
is named the Unified-dis Agent. All agents use the same 
AIExpert in their evaluation models. The analysis reveals that 
the Adv-Master Agent performs poorly due to the lack of 

reasonable distribution of low-level agent sequence references, 
while the Unified-dis Agent and Unique-dis Agent perform 
significantly better, indicating the validity of setting an 
evaluation model for low-level agents. The Unique-dis Agent 
significantly outperforms the Unified-dis Agent, which may be 
due to the large action space of the generators. Overall, it is 
reasonable to enhance the model's adversarial capability by 
assigning a corresponding discriminator to each generator. 

TABLE IX.  PERFORMANCE ON MZ-4 DATASET 

Model SR Turn AMR(%) SIR(%) ST 

Eva-Master Agent 0.385 7.12 02.77 19.6 33.94 

Unified-dis Agent 0.501 13.04 09.73 40.25 43.58 

Unique-dis Agent 0.615 10.61 12.41 51.30 56.20 

 

Fig. 6. Policy learning curves. 

VI. CONCLUSION 

This paper proposes a multi-expert feedback-based 
hierarchical reinforcement learning framework and 
successfully applies it to the field of automated disease 
diagnosis. The hierarchical structure allows the model to make 
decisions at different levels of abstraction, enhancing the 
model's effectiveness and modularity. Discriminators are 
introduced to the generators in the lower-level networks to 
evaluate symptom query sequences and generate rewards, 
guiding the agent to generate more targeted inquiry symptoms. 
The introduction of the AIExpert feedback model enriches the 
feature information of medical knowledge and data, and the 
powerful understanding and analytical capabilities of the model 
provide evaluations simulating human experts, improving the 
generator's ability to query symptoms. The multi-expert 
feedback model adjusts weights under different conditions, 
compensating for the limitations of a single expert and 
enhancing the model's robustness and generalization capability. 
Experiments show that, compared with baseline technologies, 
although the number of dialogue turns has not been reduced, 
the success rate, AMR, SIR, and the newly proposed 
comprehensive evaluation metric on the SD dataset have 
improved by 8.08%, 13.97%, 4.28%, and 5.22%, respectively. 
Future work will further explore strategies to reduce dialogue 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

306 | P a g e  

www.ijacsa.thesai.org 

turns in order to improve the model's performance. In future 
research, efforts will be made to integrate medical knowledge 
graphs to strengthen the associations between symptoms and 
diseases, thereby further enhancing the decision-making 
process and ensuring consistency with established medical 
knowledge. 

Although the results are promising, the proposed 
framework still faces certain noteworthy limitations. Its 
effectiveness partially depends on high-quality and diverse 
medical data, if data are limited in quantity or unevenly 
distributed, diagnostic accuracy for less common or 
underserved patient populations may be compromised. 
Furthermore, the combination of adversarial training and large 
language models demands substantial computational resources, 
which may pose feasibility issues in resource-constrained 
environments. To address these challenges, future research 
should prioritize enriching and balancing medical datasets, 
which may involve collaborating with healthcare institutions to 
collect more diverse patient data or employing data 
augmentation techniques to better capture rare diseases. 
Meanwhile, adopting strategies such as model compression, 
knowledge distillation, and hardware acceleration (e.g. TPUs) 
can help mitigate high computational demands. Through these 
improvements, the proposed framework is expected to further 
enhance adaptability and reliability, thereby exerting a wider 
clinical impact across a variety of healthcare settings. 
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