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Abstract—This study explores the effectiveness of various 

feature selection methods in forecasting next-day PM2.5 levels in 

Banting, Malaysia. The accurate prediction of PM2.5 

concentrations is crucial for public health, enabling authorities to 

take timely actions to mitigate exposure to harmful pollutants. 

This study compares three feature selection methods : Lasso, 

mRMR, and ReliefF using a dataset consisting of 43,824 data 

points collected from Banting air quality monitoring stations 

(CA22B). The dataset includes ten variables, including pollutant 

concentrations such as O3, CO, NO2, SO2, PM10, and PM2.5, 

along with meteorological parameters such as temperature, 

humidity, wind direction and wind speed. The results revealed 

that Lasso outperformed both mRMR and ReliefF in terms of 

various performance metrics, including accuracy, sensitivity, 

precision, F1 score, and AUROC. Lasso demonstrated superior 

ability to handle multicollinearity, significantly improving the 

interpretability of the model by retaining only the most important 

variables. This suggests that the effectiveness of feature selection 

methods is highly dependent on the characteristics of the dataset, 

such as correlations among features. Thus, the top eight features 

to predict PM2.5 levels in Banting selected by Lasso method are 

relative humidity, PM2.5, wind direction, ambient temperature, 

PM10, NO2, wind speed, and O3. The findings from this study 

contribute to the growing body of knowledge on air quality 

prediction models, highlighting the importance of selecting the 

appropriate feature selection method to achieve the best model 

performance. Future research should explore the application of 

Lasso method in other geographical regions, including urban, 

suburban and rural areas, to assess the generalizability of the 

results. 
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I. INTRODUCTION 

There is an increasing emphasis on air quality research, such 
as air quality prediction and the health effects of contaminants. 
This surge in attention is driven by rising pollution levels, 
growing health concerns, and advancements in technology that 
make monitoring and prediction more accessible. According to 
[1], aside from Kuala Selangor, all monitoring stations in the 
Klang Valley reported poor air quality days, with Banting 
having the second-highest occurrence at five days, eventhough 

Banting has less traffic compared to other urban area such as 
Shah Alam. 

Prediction of PM2.5 levels (particulate matter with a 
diameter of less than 2.5 microns) has attracted considerable 
interest because of its significant impact on human health and its 
role as a key indicator of air quality. Previous studies such as in 
study [2] highlight the association between prenatal and 
postnatal PM2.5 exposure and a high incidence of tic disorders 
in children. Additionally, the study in [3] used machine learning 
techniques to predict PM2.5 concentrations using historical air 
quality data from Kuala Lumpur, demonstrating that advanced 
modelling approaches can significantly improve the accuracy of 
air quality predictions, which is critical for public health 
advisories and environmental management. 

More recently, neural networks (a type of machine learning) 
have gained prominence in predicting air quality due to their 
ability to model complex, nonlinear relationships inherent in air 
quality data. One significant study by [4] on artificial neural 
networks (ANNs) in Peninsular Malaysia demonstrated their 
effectiveness in accurately predicting pollutants and the Air 
Pollutant Index. Radial Basis Function Neural Network 
(RBFNN), a machine learning method that has a simple 
architecture consisting of an input, hidden, and output layers, 
demonstrated faster convergence during training compared to 
more complex architectures like Multi-Layer Perceptrons 
(MLP). Moreover, the accuracy of the RBFNN model in 
predicting the occurrence of haloketones in tap water, as shown 
in [5], exhibited high performance, effectively capturing the 
complex relationships between input parameters and the 
predicted outcomes. 

To further improve the accuracy of PM2.5 prediction 
models, researchers have increasingly focused on feature 
selection methods. According to a study by [6], the findings 
indicated that feature selection methods improved prediction 
accuracy by at least 13.7% compared to models that did not 
employ feature selection. ReliefF is a filter-based feature 
selection method that is effectively used to train models for 
classification due to its ability to identify relevant features by 
ranking them based on their capacity to distinguish between 
instances [7]. In addition, the study in [8] noted that many 
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previous studies address multicollinearity issues in feature 
selection methods by removing redundant and irrelevant 
features from high-dimensional data, which can be effective in 
preventing deterioration in model performance. However, 
removing redundant features based solely on the correlation 
between variables might not provide accurate predictions, as the 
removed variables may have unique characteristics. 

Therefore, a feature selection method that focuses on the 
correlation between variables is needed. For example, the study 
in [9] discussed using correlation-embedded attention modules 
to reduce multicollinearity can improve the model performance 
and interpretability. Minimum Redundancy Maximum 
Relevance (mRMR) is a filter-based, correlation-based feature 
selection method that focuses on selecting features that 
maximize relevance to the target variable while minimizing 
redundancy among them, thereby extracting the most 
representative features closely related to the target variable [10]. 
In addition, Least Absolute Shrinkage and Selection Operator 
(Lasso) is another feature selection method that effectively 
addresses multicollinearity by applying regularization to shrink 
less important feature coefficients to zero, thus enhancing model 
interpretability and reducing overfitting [11]. 

There are numerous feature selection techniques, such as 
Recursive Feature Elimination (RFE) and XGBoost Feature 
Importance. However, our study focuses on Lasso, mRMR, and 
ReliefF due to their distinct selection mechanisms and prior 
applications in air quality prediction research. The research in 
[12] points out that while RFE can achieve high performance, it 
suffers from computational inefficiency due to its reliance on 
iterative model training. This issue is particularly relevant when 
dealing with large datasets, as the time required for multiple 
iterations can become prohibitive. Meanwhile, XGBoost 
Feature Importance ranks features based on their contribution to 
decision trees but does not explicitly account for 
multicollinearity. Unlike Lasso, which penalizes correlated 
predictors to improve interpretability, XGBoost may distribute 
importance among correlated variables, making it less effective 
for identifying the most relevant individual predictors in highly 
correlated datasets. 

Additionally, a study by [13] compared the ReliefF, mRMR, 
and Lasso methods using air quality data from Shah Alam. The 
study concluded that ReliefF outperformed the other two 
methods and recommended that future researchers compare 
these three feature selection methods in other urban air quality 
datasets. Based on this recommendation, our study applies these 
methods to air quality data from Banting, providing insights into 
how these methods perform in a different urban setting with 
distinct environmental and meteorological conditions. As an 
industrial area, Shah Alam is influenced by emissions from 
factories, vehicles, and urban activities, leading to higher 
concentrations of pollutants such as PM2.5, PM10, SO2, NO2, 
and CO. In contrast, Banting, an agricultural area, experiences 
pollution primarily from agriculture activities and occasional 
biomass burning, which may result in different pollutant levels 
and patterns compared to Shah Alam. 

Therefore, this study will compare the performance of the 
RBFNN model combined with ReliefF, mRMR, and Lasso 
feature selection methods to determine the most effective 

approach to predict the next day concentration of PM2.5 in 
Banting. The study's findings will benefit policymakers and 
other relevant parties by providing evidence-based insights into 
the most effective feature selection methods for improving air 
quality prediction models. 

II. RESEARCH METHODS 

A. Dataset 

This study used the Banting air quality dataset provided by 
the Department of Environment Malaysia (DOE). Ten variables 
(PM2.5, PM10, SO2, NO2, O3, CO, wind direction, wind speed, 
relative humidity, and ambient temperature) used as 
independent variables, were extracted from hourly data 
spanning four years (2018 to 2022). However, there are missing 
values in the dataset as shown in Table I, with NO2 having the 
highest percentage of missing data at 8.68%, while relative 
humidity is the lowest at 1.39%. In order to address the missing 
data points, we employed linear interpolation method, as was 
suggested in study [14]. 

TABLE I.  PERCENTAGE OF MISSING VALUES 

Variable N Missing Value 

PM2.5 43207 617 (1.41%) 

PM10 43075 749 (1.71%) 

SO2 40938 2886 (6.59%) 

NO2 40021 3803 (8.68%) 

O3 41182 2642 (6.03%) 

CO 40735 3089 (7.05%) 

WD 43135 689 (1.57%) 

WS 42927 897 (2.05%) 

Humidity 43217 607 (1.39%) 

Temperature 42443 1381 (3.15%) 

PM2.5D+1 43207 617 (1.41%) 

The target variable in this study is the PM2.5 levels of the 
next day. Hence, the hourly dataset was transformed to daily 
categorical data by averaging values over 24 hours. The PM2.5 
breakpoint of air quality categories is shown in Table II based 
on guidelines by DOE. Furthermore, this study employed 
classification task, hence the target variable, PM2.5D+1 was 
transformed into binary classification system, not polluted (0) 
and polluted (1) as suggested in [15]. The “good” and 
“moderate” category represent not polluted (0) class, while other 
than that are represent polluted (1) class [15]. 

TABLE II.  LABELS FOR THE RESPECTIVE PM2.5 BREAKPOINT AND AQI 
CATEGORIES 

AQI Category PM2.5 Breakpoints 

Good 0.0-12.0 

Moderate 12.1-35.4 

Unhealthy for Sensitive Groups  35.5-55.4 

Unhealthy 55.5-150.4 

Very Unhealthy 150.5-250.4 

Hazardous 250.5 and above 
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B. Research Framework 

Research framework of this study is shown in Fig. 1. The 
process begins with data extraction as mentioned previously. 
Then, followed by extensive data pre-processing steps which 
include imputation using linear interpolation, converting hourly 
data into daily averages, binary categorization of PM2.5 levels, 
min-max normalization, and balancing the dataset with SMOTE 
technique. Subsequently, the three feature selection methods: 
ReliefF, mRMR, and Lasso are applied to rank and select the top 
eight variables most relevant to PM2.5 prediction as suggested 
in study [13] and study [16]. The selected features are used to 
train a Radial Basis Function Neural Network (RBFNN). A 
comparative evaluation of accuracy, specificity, precision, F1 
score, and AUROC was finally used to identify the most 
effective model. 

 
Fig. 1. Research flowchart. 

C. Feature Selection Method 

1) ReliefF: The ReliefF algorithm is a filter-based feature 

selection method known for its effectiveness in high-

dimensional and noisy datasets [17]. It evaluates feature 

importance by assessing their ability to distinguish between 

instances of different classes. Unlike traditional methods 

relying on statistical correlations, ReliefF employs a distance-

based approach, sampling data points and identifying the k-

nearest neighbors within the same class (nearest hits) and from 

other classes (nearest misses). By comparing feature values 

between these neighbors, ReliefF assigns higher importance to 

features with substantial variation across classes and minimal 

variation within the same class. 

The weight of a feature W[A] is updated iteratively using the 
formula in Eq. (1) [18], where 𝐻𝑖 is the nearest hit (same class), 
while 𝑀𝑖  is the nearest miss (different class). Moreover, the 

difference is calculate as shown in Eq. (2), where 𝑑𝑖𝑓𝑓(𝐴 , X, Y) are 
the difference in feature A values between instances 𝑋 and Y. 

𝑊[𝐴] = 𝑊[𝐴] −
1

𝑚
∑(𝑑𝑖𝑓𝑓(𝐴, 𝐻𝑖)

𝑚

𝑖=1

− 𝑑𝑖𝑓𝑓( 𝐴, 𝑀𝑖)) 

(1) 

 

𝑑𝑖𝑓𝑓(𝐴, X,Y) = {
0 𝑖𝑓 𝑋[𝐴] = 𝑌[𝐴]
1 𝑖𝑓 𝑋[𝐴] ≠ 𝑌[𝐴]

 (2) 
 

2) Maximum Relevance Minimum Redundancy (mRMR): 

Maximum Relevance Minimum Redundancy (mRMR) is a 

feature selection method that aims to choose the most relevant 

features while minimizing redundancy among them. It is 

particularly useful in high-dimensional datasets where feature 

selection is crucial for improving model performance. The 

approach maximizes the relevance of selected features to the 

target variable and minimizes the redundancy between them. 

The relevance of a feature 𝑥𝑖  to the target variable, 𝑐  are 

calculated using mutual information, while redundancy 

between features is determined by the pairwise mutual 

information between features 𝑥𝑖 and 𝑥𝑗 . Eq. (3) and Eq. (4) 

shows the formulas to calculate maximum relevance and 

minimum redundancy, respectively. 

𝑚𝑎𝑥𝐷(𝑆, 𝑐),𝐷 =
1

|𝑠|
∑ 𝐼(𝑥𝑖, 𝑐)
𝑥𝑖 ∈𝑠

 (3) 

𝑚𝑖𝑛𝑅(𝑆), 𝑅 =
1

|𝑠|2 ∑ 𝐼(𝑥𝑖; 𝑥𝐽)
𝑥𝑖,𝑥𝐽∈𝑠

 (4) 

3) Lasso: The Least Absolute Shrinkage and Selection 

Operator (Lasso) is a method that helps improve model 

interpretability and performance by performing feature 

selection and regularization. It is particularly effective when 

working with datasets that contain many features, as it can 

reduce overfitting by penalizing less relevant variables [19]. 

Lasso works by adding a penalty term to the loss function, 

specifically the L1 penalty, which forces some of the feature 

coefficients to become exactly zero [19]. The L1 penalty, 

controlled by a tuning parameter λ, directly influences how 

many coefficients are driven to zero, with larger values of λ 

resulting in more features being eliminated. This regularization 

technique ensures that the model is both efficient and less likely 

to overfit the data. The mathematical formulation of Lasso is 

represented in Eq. (5). Where the first term represents the 

residual sum of squares, and the second term is the L1 penalty. 

𝛽̂ = 𝑚𝑖𝑛 𝛽 {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥 𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2

+ 𝜆 ∑ |

𝑝

𝑗=1

𝑁

𝑖=1

𝛽𝑗|} (5) 

4) Radial basis function neural network: Radial Basis 

Function Neural Networks (RBFNN) are a specialized type of 

artificial neural network that utilize radial basis functions for 

activation. These networks are well-suited for tasks such as 

function approximation, classification, and regression, owing to 
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their capacity to model involved nonlinear relationships. 

RBFNN typically consist of three essential layers: the input 

layer, the hidden layer, and the output layer, with weights 

connecting each layer. 

The input layer receives the source node, representing the 
independent variable, and links it to the surrounding network. 
The hidden layer then applies a nonlinear transformation, 
mapping the input space to a higher-dimensional hidden space. 
The output layer generates the final predicted result based on the 
transformed inputs from the hidden layer. In the hidden layer, 
each unit corresponds to a transfer function, often a Gaussian 
function. The radial basis function (RBF), which has a 
symmetric shape, acts as the transfer function in this case. The 
number of hidden units is directly related to the number of RBF 
employed in the network. The Gaussian RBF is mathematically 
expressed as shown in Eq. (6), meanwhile the output is 
computed by summing the weighted contributions of the RBF 
as shown in Eq. (7). 

∅(𝑥) = exp(−
||𝑥 − 𝑐||2

2𝜎2 ) (6) 

𝑔(𝑋) = ∑ 𝑤𝑗∅𝑗(𝑟‖𝑋 − 𝐶𝑗‖

𝑘

𝑗=1

) (7) 

where 𝑤𝑗   are the weights assigned to each radial basis 

function, 𝐶𝑗 represents the centers of the RBF, and 𝑟 is a scaling 

factor. In the output layer, a logistic (sigmoid) activation 
function is commonly used for binary classification. This 
function transforms the weighted sum of the hidden layer 
outputs into a probability between 0 and 1, and is defined as in 
Eq. (8). Thus, the final output of the RBFNN for binary 
classification is calculated using Eq. (9), where 𝑤0  is the bias 
term. 

𝜎(z) =
1

1 + 𝑒−z (8) 

𝑦 = 𝜎 (𝑤0  + ∑ 𝑤𝑗∅𝑗(𝑟‖𝑋 − 𝐶𝑗‖

𝑘

𝑗=1

)) (9) 

D. Model Performances 

The developed model's performance will be evaluated using 
six metrics: accuracy, sensitivity, specificity, precision, F1 
score, and AUROC. To evaluate the classification performance 
of the developed model, a confusion matrix is first constructed. 
The confusion matrix, shown in Table III provides a detailed 
summary of the model’s predictions by categorizing them into 
four groups: true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). Meanwhile, the total 
number of instances is the sum of all four categories: TP, TN, 
FP, and FN. 

TABLE III.  CONFUSION MATRIX 

 Actual Positive (1) Actual Negative (0) 

Predicted Positive (1) TP FP 

Predictive Negative (0) FN TN 

Accuracy reflects the percentage of correct predictions and 
is calculated as shown in Eq. (10). Sensitivity, or the true 
positive rate, measures the proportion of actual positive cases 
correctly identified in Eq. (11), while specificity, or the true 
negative rate, quantifies the proportion of actual negatives 
accurately calculated using in Eq. (12). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (10) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 (12) 

Precision determines the percentage of correct positive 
predictions among all predicted positives in Eq. (13). The F1 
score, a harmonic mean of precision and sensitivity in Eq. (14), 
assesses the model’s ability to maintain balance between these 
metrics. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (13) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)
 (14) 

The Area Under the ROC Curve (AUROC) curve illustrates 
the relationship between sensitivity and the False Positive Rate, 
with AUROC measuring the model’s ability to differentiate 
between classes. A higher AUROC value, nearing 1.0, signifies 
better classification performance. Collectively, high scores 
across these metrics indicate a reliable and effective model. 

III. RESULTS AND DISCUSSION 

This section discusses the results of the study. Table IV 
summarizes the descriptive statistics of the independent 
variables, revealing a substantial range in standard deviations, 
from 0.001 to 38.15. This wide variability reflects the diverse 
scales of the variables, necessitating data normalization. Based 
on Fig. 2, the histogram reveals PM2.5, PM10, and CO have 
higher variability, suggesting potential impact from external 
factors. The distribution of these variables over the four years 
may have been affected by the COVID-19 period, with changes 
in human activity significantly impacting pollution levels during 
this time. 

To address this, min-max normalization was employed to 
transform all variables to a consistent scale, ensuring 
comparability across features. Min-Max normalization is one of 
the most commonly used normalization methods in various 
applications, including air quality datasets [20].  Additionally, 
Fig. 3 illustrates the distribution of the PM2.5D+1 category, 
highlighting a significant class imbalance in the dataset, where 
one category is disproportionately represented. Such imbalances 
can bias predictive models, undermining their reliability and 
generalizability. To resolve this issue, the Synthetic Minority 
Over-sampling Technique (SMOTE) was applied, a proven 
method for addressing class imbalance by generating synthetic 
samples for underrepresented categories. By balancing the 
dataset, SMOTE enhances the model’s ability to learn from all 
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categories effectively, thereby improving prediction accuracy 
and ensuring robust, reliable outcomes. 

TABLE IV.  DESCRIPTIVE STATISTICS OF BEFORE DATA PRE-PROCESSING 

Variable N Mean Median Std. Dev. Skewness 

PM2.5 1825 21.236 18.648 12.157 3.653 

PM10 1825 30.433 28.016 14.137 3.165 

SO2 1825 0.001 0.001 0.001 1.377 

NO2 1825 0.009 0.009 0.003 0.335 

O3 1825 0.019 0.018 0.006 0.881 

CO 1825 0.596 0.575 0.201 0.883 

WD 1825 163.226 159.162 38.15 0.787 

WS 1825 1.026 0.985 0.329 1.967 

Humidity 1825 83.366 83.827 6.023 -2.678 

Temperature 1825 27.123 27.138 1.14 -0.265 

  
Fig. 2. PM2.5Dt1 Distribution of variables. 

 
Fig. 3. PM2.5Dt1 Distribution of (Before SMOTE). 

Table V presents the descriptive statistics after data 
preprocessing. The application of min-max normalization 
successfully scaled the data, as evidenced by all mean and 
median values now falling within the standard range of 0 to 1. 
The data scaling ensures that the feature scales are consistent, 

which makes model training more successful. Furthermore, the 
skewness values have moved closer to zero, indicating a more 
symmetric and balanced distribution throughout the sample. 

TABLE V.  DESCRIPTIVE STATISTICS OF AFTER DATA PRE-PROCESSING 

Variable N Mean Median Std. Dev 

PM2.5 3288 0.172 0.136 0.143 

PM10 3288 0.201 0.167 0.152 

SO2 3288 0.278 0.255 0.137 

NO2 3288 0.433 0.435 0.17 

O3 3288 0.359 0.34 0.123 

CO 3288 0.319 0.307 0.139 

WD 3288 0.431 0.418 0.122 

WS 3288 0.24 0.229 0.094 

Humidity 3288 0.832 0.834 0.06 

Temperature 3288 0.62 0.626 0.076 

 

 
Fig. 4. PM2.5Dt1 Distribution of (After SMOTE). 

Fig. 4 illustrates the distribution of the PM2.5D+1 category 
following the application of SMOTE for upsampling. This 
technique effectively addressed the class imbalance, resulting in 
a nearly equal representation of both groups: 1692 samples 
(51.5%) classified as "not polluted" and 1596 samples (48.5%) 
as "polluted." This balance dataset can enhance the reliability of 
the dataset for subsequent analyses and model predictions [21]. 

Table VI ranks independent variables according to three 
feature selection methods: Lasso, mRMR, and ReliefF, for 
predicting next-day PM2.5 levels. The rankings of independent 
variables by Lasso, mRMR, and ReliefF reveal both similarities 
and key differences. Lasso identifies relative humidity as the 
most important variable, emphasizing its critical role in PM2.5 
prediction. In contrast, mRMR assigns the top 1 rank is SO2, 
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highlighting its unique contribution to the dataset. ReliefF, 
however, ranks NO2 as the most critical feature, suggesting its 
strong influence on pollutant dispersion and PM2.5 formation. 
These differences in top-ranking features underscore the 
variability in feature importance prioritization across the 
methods. Furthermore, the least important variables and 
exclusions also vary. CO is consistently ranked eighth by both 
Lasso and mRMR. However, ReliefF determine SO2 as the least 
important feature to predict PM2.5 in Banting [22]. 

Additionally, certain features were not selected by the three 
methods. Both particulate matter (PM10 and PM2.5) were 
excluded by mRMR method. Additionally, Lasso did not select 
SO2 and O3 as important feature. On other hand, ReliefF 
exclude both relative humidity and ambient temperature from 
the model. 

TABLE VI.  FEATURE RANKING ACROSS LASSO, MRMR, AND RELIEFF 

METHODS 

Variable Lasso mRMR reliefF 

PM2.5 2 - 7 

PM10 5 - 6 

SO2 - 1 8 

NO2 6 6 1 

O3 - 4 4 

CO 8 8 2 

WD 3 7 3 

WS 7 2 5 

Humidity 1 5 - 

Temperature 4 3 - 

Next, the three feature selection methods will be evaluated 
using the performance of the RBFNN model to predict PM2.5D+1 

in Banting is shown in Table VII. According to the table, the 
Lasso method yields higher values in accuracy (0.771), 
sensitivity (0.765), precision (0.778), F1 score (0.771), and 
AUROC (0.769), when compared to the mRMR and ReliefF 
methods. These findings contradict the results of [13], which 
concluded that ReliefF outperforms Lasso. The discrepancy 
arises from the contrasting characteristics of the study areas. 
Shah Alam, as an industrial area, is heavily influenced by traffic 
and industrial emissions, resulting in more consistent pollution 
sources throughout the year. In contrast, Banting, an agricultural 
region, experiences pollution patterns influenced by seasonal 
meteorological factors. For instance, according to a study in 
[23], during the northeast monsoon, precipitation in Banting 
have influence on air pollution levels. This difference in 
pollution patterns might explain why Lasso outperformed 
ReliefF in Banting, as ReliefF did not select two key 
meteorological factors, humidity and temperature, which are 
more significant in this region. 

However, this study aligns with [23], which found that the 
Lasso algorithm enhances model performance more effectively 
than the ReliefF method. According to study [19], Lasso is 
known for its ability to handle multicollinearity in predictors, 
reducing the impact of correlated features, and enhancing model 

interpretability by retaining only significant variables. This 
explains why Lasso performs better than the ReliefF method. 
Moreover, the mRMR method also demonstrates better 
performance compared to ReliefF. This may be attributed to the 
high correlations among variables in the Banting air quality 
dataset. 

TABLE VII.  COMPARISON MODEL PERFORMANCE 

Model Lasso mRMR ReliefF 

Accuracy 0.771 0.725 0.568 

Sensitivity 0.731 0.623 0.544 

Specificity 0.807 0.819 0.591 

Precision 0.778 0.761 0.551 

F1 Score 0.754 0.685 0.548 

AUROC 0.829 0.777 0.608 

Table VIII shows the confusion matrix provides a detailed 
breakdown of the Lasso-based RBFNN model’s classification 
performance in predicting PM2.5 levels. In this case, the model 
correctly classified 231 polluted instances (TP) and 276 non-
polluted instances (TN), while misclassifying 66 non-polluted 
instances as polluted (FP) and 85 polluted instances as non-
polluted (FN). The total number of instances used for evaluation 
is 658, calculated as the sum of TP, TN, FP, and FN. 

TABLE VIII.  CONFUSION MATRIX 

 Actual Positive (1) Actual Negative (0) 

Predicted Positive (1) 231 66 

Predictive Negative (0) 85 276 

IV. CONCLUSION 

In conclusion, this study highlights the significant role of 
feature selection methods in enhancing the predictive 
performance of air quality models in Banting, Malaysia. Among 
the three methods evaluated, Lasso emerged as the most 
effective for predicting next-day PM2.5 levels, consistently 
outperforming both mRMR and ReliefF in key performance 
metrics such as accuracy, sensitivity, precision, F1 score, and 
AUROC. Thus, Thus, the top eight features to predict PM2.5 
levels in Banting selected by Lasso method is relative humidity, 
PM2.5, wind direction, ambient temperature, PM10, NO2, wind 
speed, and O3. While previous studies have recognized the 
strengths of ReliefF in detecting relevant features, this research 
reinforces the advantages of Lasso, particularly in its ability to 
improve model performance by addressing feature redundancy 
and focusing on the most impactful variables. 

The superior performance of Lasso can be attributed to its 
ability to handle multicollinearity, reduce the impact of 
correlated features, and enhance model interpretability by 
retaining only the most significant predictors. Given the success 
of Lasso, future research should further explore its application 
in different settings, including suburban and rural areas, to 
evaluate its generalizability across diverse environments, 
especially dataset that contains high correlation between 
variables. 
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This study uses data from 2018 to 2022, a period that 
includes the COVID-19 years. During this time, air quality is 
likely to have been positively affected due to lower traffic and 
congestion, which may have influenced the results. Future 
studies might compare the results by differentiating between the 
COVID-19 and non-COVID-19 years to better understand how 
these factors impact air quality predictions. The results from this 
study are specific to the Banting dataset and may not be directly 
applicable to other countries due to regional differences in air 
quality patterns. This study benefits researchers, policymakers, 
public health authorities, and technology developers by 
improving air quality prediction models. Policymakers can use 
these predictions to implement real-time air quality monitoring 
systems, establish dynamic traffic control measures to reduce 
vehicular emissions during high-pollution periods, and enforce 
stricter industrial regulations to limit pollutant discharge. 
Additionally, predictions can guide the development of targeted 
public health advisories, such as issuing alerts for vulnerable 
populations and adjusting outdoor activity recommendations 
during hazardous air quality events. This study also supports 
NGOs in advocating for better air quality regulations and raising 
public awareness. Moreover, future researchers can apply the 
methods explored in this study to other areas, such as water 
quality prediction or environmental monitoring in different 
ecosystems. By adapting the feature selection techniques to new 
domains, researchers can validate the approach’s versatility and 
effectiveness in improving prediction models across various 
environmental factors. 
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