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Abstract—With the rapid development of sports technology, 

accurate and real-time recognition of badminton stroke postures 

has become essential for athlete training and match analysis. This 

study presents an improved YOLOv7-based method for 

badminton stroke posture recognition, addressing limitations in 

accuracy, real-time performance, and automation. To optimize 

the model, pruning techniques were applied to the backbone 

structure, significantly enhancing processing speed for real-time 

demands. A parameter-free attention module was integrated to 

improve feature extraction without increasing model complexity. 

Furthermore, key stroke action nodes were defined, and a joint 

point matching module was introduced to enhance recognition 

accuracy. Experimental results show that the improved model 

achieved a mAP@0.5 of 0.955 and a processing speed of 44 

frames per second, demonstrating its capability to deliver precise 

and efficient badminton stroke recognition. This research 

provides valuable technical support for coaches and athletes, 

enabling better analysis and optimization of stroke techniques. 
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I. INTRODUCTION 

The core of badminton lies in the precise and skillful 
execution of movements, such as high shots, smashes, and 
picks. While the sport itself has a low entry barrier, mastering 
its complex technical aspects requires systematic training and 
professional guidance. However, badminton instruction faces 
significant challenges, including limited teacher resources, the 
inability to provide personalized guidance to each student, and 
uneven teaching standards. These factors collectively 
constrain the efficiency and quality of students' learning of 
technical movements. 

Fortunately, technological advancements offer new 
possibilities for addressing these challenges [1] [2]. In 
particular, the development of artificial intelligence, computer 
vision, and deep learning technologies has begun to play an 
increasingly important role in sports training and education [3] 
[4]. By leveraging these technologies, it is possible to develop 
an intelligent badminton technique action recognition system 
that can automatically recognize and analyze athletes' 
movements, provide objective feedback for improvement, and 
assist both amateur enthusiasts and students in learning 
badminton techniques independently and efficiently. 

Building on these advancements, this article proposes an 
improved deep learning model—a badminton posture 
recognition system based on YOLOv7—designed to enhance 

the quality and efficiency of badminton technique instruction 
through precise motion capture and analysis. This system aims 
to improve the recognition accuracy and efficiency of existing 
models by incorporating data augmentation, anchor box fine-
tuning, and the Coordinate Attention (CA) mechanism. The 
proposed system will serve as a valuable tool for both 
instructors and students, providing better support for teaching 
and self-training in badminton. By improving technical 
proficiency and reducing the risk of injuries caused by 
incorrect movements, this system seeks to offer scientific and 
systematic support for learning badminton techniques, 
ultimately enhancing both the quality and effectiveness of 
badminton training. 

The research will explore the integration of these advanced 
methods into a cohesive system, aiming to address the current 
limitations in badminton training and teaching. Through 
thorough experimentation and analysis, this study seeks to 
contribute to the development of more effective and accessible 
tools for badminton instruction, potentially influencing 
broader applications in other sports as well. 

II. LITERATURE REVIEW 

This paper will collect existing work on pose recognition 
in sports to highlight the shortcomings of existing research. 

A. Research on Deep Learning in Sports Action Recognition 

In the realm of sports, particularly in small ball racket 
sports like badminton, tennis, and table tennis, motion 
recognition technology primarily utilizes two approaches: the 
first involves using the acceleration sensors in wearable 
devices to collect and classify data for motion detection, while 
the second applies deep learning technology to extract and 
learn features from video images for action recognition. 

Numerous studies have highlighted the potential of these 
technologies. For instance, Ang et al. [5] developed a tennis 
visualization system that organizes and classifies match 
information, helping users better understand tennis events. 
Johnson et al. [6] introduced a method that enhances 
badminton serving accuracy through 3D tracking technology. 
Building on this, Dierickx et al. [7] further improved the 
accuracy of trajectory detection. Situmeang et al. [8] 
combined multiple visual analysis techniques to study athletes' 
movement characteristics and countermeasures. Jing et al. [9] 
utilized a support vector machine to recognize common swing 
actions in badminton game videos, whereas Wang et al. [10] 
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significantly enhanced action recognition accuracy with a 
double-layer classifier algorithm. 

While deep learning demonstrates high accuracy and 
comprehensive feature analysis in sports action recognition, it 
also presents challenges, such as the need for large data sets 
and the complexity of data collection. In small sample data 
sets, these techniques are prone to overfitting and require 
careful processing and optimization in practical applications. 

B. Human Posture Recognition Method 

The advent of Convolutional Neural Networks (CNNs) has 
led researchers to adopt deep learning-based techniques for 
human pose recognition. This approach essentially involves 
constructing convolutional layers to leverage large datasets, 
thereby extracting effective feature information to represent 
the human body. These features are then used in conjunction 
with efficient classification models for supervised training to 
achieve accurate predictions. The input data typically consists 
of an image or a video sequence, and after training the deep 
learning model, it can identify key body parts in the image, 
such as the head, arms, and knees. 

Currently, there are two main research approaches to deep 
learning-based human pose recognition: direct regression 
based on keypoint coordinates and regression based on 
keypoint heatmaps. In 2014, the release of the MPII dataset 
[11], which contains approximately 25,000 images and covers 
over 40,000 human instances, with each instance including 16 
keypoints, significantly advanced research in this field. In 
2016, Wei et al. designed the CPM deep network [12], which 
extracts receptive fields of different sizes through repeated 
convolution operations and combines contextual information 
from the image to recognize human poses. CPM also 
introduced the concept of intermediate supervision, effectively 
addressing the issues of network depth and vanishing 
gradients, thus improving pose recognition accuracy. 
Additionally, the Stacked Hourglass Network (SHN) [13] 
introduced multi-resolution heatmap regression and multi-
scale receptive field mechanisms, which enhanced the CNN 
structure for feature extraction, yielding excellent results. That 
same year, the release of the MSCOCO dataset [14] further 
enriched research resources, increasing the number of human 
keypoints to 18, making it more precise and comprehensive 
than MPII. 

Pose recognition in complex multi-person scenes involves 
two approaches: top-down and bottom-up. The top-down 
approach first detects each person in the image through object 
detection, then performs keypoint recognition on each 
detected person. This method is straightforward but its 
performance heavily depends on the accuracy of human 
detection, and its processing time increases linearly with the 
number of people. Representative models include HRNet [15] 
and RMPE [16]. The bottom-up approach, on the other hand, 
first identifies all keypoints and then connects them according 
to the human pose model. This method does not slow down 
with an increase in the number of people, but matching 
keypoints in complex scenes can be challenging. 
Representative algorithms include OpenPose [17] and 
DeepCut [18]. 

Despite the achievements in theoretical innovation and 
technological development both domestically and 
internationally, human pose recognition technology still faces 
several challenges and difficulties that require further research 
and optimization. 

C. Research Gaps 

Despite significant progress in badminton stroke posture 
recognition technology, several challenges remain in practical 
applications: 

1) The demand for high-precision recognition: Accurate 

recognition of badminton stroke posture is crucial, as even 

minor differences in movement can significantly affect the 

effectiveness of a stroke. However, existing technologies still 

require improvements in accuracy and robustness, especially 

in complex environments. 

2) Challenges with real-time performance: In actual 

training or matches, there is a critical need for real-time 

posture recognition, enabling coaches and athletes to receive 

immediate feedback and adjust strategies accordingly. Current 

systems continue to face limitations in processing speed and 

providing real-time feedback. 

3) Issues with automation and adaptability: Most current 

posture recognition systems require specific setups, such as 

particular camera angles and lighting conditions, which 

restricts the system's applicability and flexibility. 

The above three points are the key to improving 
badminton hit recognition and also the focus of this study. 

III. DETECTION MODEL 

A. Framework 

Badminton stroke posture recognition technology is 
primarily utilized in sports training and match analysis. By 
recognizing athletes' stroke postures, coaches can more 
effectively guide athletes in adjusting their techniques and 
optimizing training outcomes. This technology captures 
detailed aspects of athletes' movements, thereby aiding in the 
analysis of the precision and efficiency of stroke techniques. 
Currently, this field predominantly relies on video analysis 
and sensor technology, combined with machine learning and 
deep learning methods, to achieve motion capture and data 
analysis. 

To address the limitations of existing methods, a 
badminton stroke posture recognition method based on an 
improved YOLO V7 model is proposed. The enhanced YOLO 
V7 model features a fast detection architecture composed of 
the Backbone module (lite-Darknet), Bottleneck module, Head 
module, and threshold matching module, as illustrated in Fig. 
1. By introducing a parameter-free attention module, the 
model's feature extraction capability is enhanced, allowing it 
to adapt to varying environments and conditions. Additionally, 
model pruning techniques are employed to improve 
processing speed, and key nodes are defined, with a joint point 
matching module integrated to enhance matching accuracy. 
These advancements significantly increase the automation, 
real-time performance, and accuracy of posture recognition, 
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thus better meeting the needs of badminton training and match analysis. 
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Fig. 1. Model architecture diagram. 

To further improve the model's adaptability, the size of the 
input image is first adjusted to 640×640 pixels through scale 
normalization. The Backbone module extracts feature from the 
input images, identifies areas where node features are located, 
and proceeds to fuse these features across layers via the 
Bottleneck module. The semantic features and location 
features are then combined, and the simplified Head layer 
classifies the image. Finally, the classified features are sent to 
the node matching module, which accurately determines the 
connections between human nodes, thereby generating the 
detection result. 

B. Node Feature Definition 

Human body nodes need to be set before model training. 
In this paper, 19 nodes are selected and marked with 1-19 
labels respectively, as shown in Fig. 2. 
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Fig. 2. Human body node diagram. 

In Fig. 2, 1 is forehead, 2 is nose, 3 is left eye, 4 is right 
eye, 5 is left ear, 6 is right ear, 7 is left shoulder, 8 is neck. 9 is 
the right shoulder, 10 is the left elbow, 11 is the right elbow, 
12 is the left wrist, 13 is the right wrist, 14 is the left hip, 15 is 
the right hip, 16 is the left knee, 17 is the right knee, 18 is the 
left ankle, 19 is the right ankle. The marked data set of 19 
nodes was input into the improved YOLO V7 network for 
training, and the inference model was obtained. The inference 

model could detect 19 nodes of the human body in the image 
and preliminarily match them to get the result of human body 
pose. 

C. Node Matching Template 

There may be some errors in the preliminary matching 
result, for example, the node is matched to the wrong target 
body when multiple people overlap, so the node matching 
template needs to be used for accurate matching. According to 
the actual situation, this paper sets up a single human body 
posture of the node template, part of the Fig. 3, mainly 
including human swing, standing, single leg lift, squat and 
other posture. 
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Fig. 3. Single human body posture of the node template. 

In the exact matching operation, we first need to establish 
the threshold node descriptor set of the preliminary matching 
result graph and the template graph and realize the threshold 
node accurate matching by comparing the distance of the 
threshold node descriptor in the two-point sets. The 
calculation of the node descriptor in the template diagram is 
shown in Eq. (1): 

𝑅𝑖 = (𝑟𝑖1, 𝑟𝑖2, … , 𝑟𝑖𝑛)  (1) 

Where, the 𝑅𝑖  presentation template key descriptor in 
figure collection, 𝑟𝑖𝑛  presentation template the key points in 
the graph. Preliminary matches the key descriptor in figure 
calculation as shown in Eq. (2): 
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𝑆𝑖 = (𝑠𝑖1 , 𝑠𝑖2, … , 𝑠𝑖𝑛)  (2) 

Where, the 𝑆𝑖  said preliminary joint point descriptor set, 
match the picture 𝑠𝑖𝑛 said preliminary match key points in the 
figure. Any two-descriptor similarity measure computation as 
shown in Eq. (3): 

𝑑(𝑅𝑖, 𝑆𝑖) = √∑  𝑛
𝑗=1   (𝑟𝑖𝑗 − 𝑠𝑖𝑗)

2
  (3) 

𝑑(𝑅𝑖 , 𝑆𝑖) need satisfaction: 

𝑆𝑗

𝑆𝑝
< 𝛿    (4) 

The 𝑆𝑗  for distance 𝑅𝑖  point recently, 𝑆𝑝  for distance 

𝑅𝑖  near point, 𝛿 for distance threshold, when the threshold 
value is less than the set value to get the final figure. 

D. Size Adaptive Normalization 

In order to make the image have a unified scale, it is 
necessary to carry out size adaptive operation. At the same 
time, in order to deal with the problem of image feature 
intensity decline after operation and stabilize the detection 
accuracy of the model, it is necessary to enhance the image 
first. When image enhancement is carried out, the 
standardization process is carried out first. Common 
standardization methods include linear stretching, mean-
variance normalization, histogram equalization, etc. This 
paper adopts mean-variance normalization method. Variance 
normalized (Z - score Normalization) is put all the data to the 
distribution of mean, variance 1 to 0, calculated as shown in 
Eq. (5): 

𝑥saale =
𝑥−𝜇

𝑆
   (5) 

Where, the 𝑥saale  for the value of the normalized after 𝑥 to 

the value of the normalized 𝜇 for the average of the image 
pixels, 𝑆 as the standard deviation of the image and the 
standard deviation of calculated as shown in Eq. (6): 

𝑆 = 𝑚𝑎𝑥 (𝜎,
1.0

√𝑁
)   (6) 

Where 𝜎 is the standard variance and 𝑁 is the number of 
pixels in the image. Standardized normalized processing after 
processing, the original data is mapped to get image 𝑍 on [0, 1] 
interval, calculated as shown in Eq. (7): 

𝑍 =
𝑥𝑖−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
  (7) 

Where, the 𝑥𝑖 with the value of image pixels, Max (𝑥) and 
min (𝑥) respectively, of the maximum and the minimum of 
image pixels. After normalized image to zoom in, fixed to 640 
x 640 pixels, calculation process is as follows: according to 
the target size and the size of the original image, computing 
needs zoom ratio, can according to the proportion of long or 
short while zooming. For example, suppose the target size is 
640×640 pixels, the scaling ratio needs to be calculated based 
on the width and height of the original image, as shown in Eq. 
(8) and (9): 

 scale 
1

= 𝑚𝑎𝑥 (
𝑤

𝑊
,

ℎ

𝐻
)  (8) 

 scale 
2

= 𝑚𝑖𝑛 (
𝑤

𝑊
,

ℎ

𝐻
)  (9) 

Where, the  scale 
1
 to long side scaling,  scale 

2
 short while 

scaling 𝑤 for target image (this article is 640 pixels), long 𝑊 
𝑍 long, for the image ℎ for target image of high (this article is 
640 pixels), 𝐻 is the height of the 𝑍 image. Will be calculated 
according to the original image to zoom scaling operation, 
during operation (such as bilinear interpolation), using 
interpolation algorithm is used to keep the image quality. 

E. Parameterless Attention Mechanism 

The core idea of Simam is based on the local self-
similarity of images. In an image, there is usually a strong 
similarity between adjacent pixels, while the similarity 
between distant pixels is weak. Simam uses this property to 
generate attention weights by calculating the similarity 
between each pixel in the feature map and its neighbors. The 
following energy function is defined for each neuron: 

𝑒𝑡(𝑤𝑡 , 𝑏𝑡 , 𝑦, 𝑥𝑖) = (𝑦𝑡 − �̂�)2 +
1

𝑀−1
∑ (𝑦𝑜 − �̂�𝑖)2𝑀−1

𝑖=1 (10) 

Where, t̂ = 𝑤𝑡𝑡 + 𝑏𝑡, x̂𝑖 = 𝑤𝑡𝑥𝑖 + 𝑏𝑡 is the target neurons 
and other neurons 𝑥 𝑖 in figure x characteristics of the single 
channel of the linear transformation, i is the index on the 
spatial dimension, T 𝑦𝑡  and 𝑦𝑜 is the target neurons and other 
neurons 𝑥𝑖 two different values, M is the number of neurons 
on one channel. 𝑤𝑡  and 𝑏𝑡 is linear transformation of weights 
and bias. All values are in the scalar type, when t equals 𝑦𝑜, 𝑥𝑖 
equals 𝑦𝑡 , minimum energy function. To minimize the above 
formula is equivalent to the training of neurons within the 
same channel linear separability between t with other neurons. 
For simplicity, we take binary labels and add regular terms, 
and the final energy function is defined as follows: 

𝑒𝑡(𝑤𝑡 , 𝑏𝑡 , 𝑦, 𝑥𝑖) =
1

𝑀−1
∑ (−1 − (𝑤𝑡𝑥𝑖 + 𝑏𝑡))2𝑀−1

𝑖=1 +

(1 − (𝑤𝑡𝑡 + 𝑏𝑡))2 + 𝜆𝑤𝑡
2  (11) 

The analytical solution of the above equation is: 

𝑤𝑡 = −
2(𝑡−𝜇𝑡)

(𝑡−𝜇𝑡)2+2𝜎𝑡
2+2𝜆

  (12) 

𝑏𝑡 = −
𝑤𝑡(𝑡+𝜇𝑡)

2
   (13) 

Since all neurons on each channel follow the same 
distribution, it is possible to first calculate the mean and 
variance of the input features in the H and W dimensions to 
avoid double computation: 

𝑒𝑡
∗ =

4(�̂�2+𝜆)

(𝑡−�̂�)2+2�̂�2+2𝜆
  (14) 

The whole process can be expressed as: 

�̃� = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(
1

𝐸
) ⊙ 𝑋  (15) 

By calculating the mean and variance, the weight of each 
pixel in the feature map is adjusted adaptively, so that 
important pixels are amplified, and unimportant pixels are 
suppressed. Since SimAM does not require additional 
convolutional operations or full connection layers, it has low 
computational overhead and is suitable for embedding in 
various convolutional neural networks. In YOLOv7 target 
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detection algorithm in the whole network structure is divided 
into three parts, respectively is the network part of feature 
extraction, feature fusion network part and YOLO head testing 
part finally. Since the feature extraction network will output 
feature images of three different scales, three attention 
mechanisms need to be added, followed by a three-layer 
feature extraction module LiteR2. Attention mechanism is 
added in the network to determine the image characteristics of 
the channel number, the number of channels can be 
determined by the upper the output of the network structure, 
network structure exist three output in feature extraction, from 
top to bottom respectively is 80 x 80 x 512, 1024, 20 x 40 * 40 
* 20 x 1024, Therefore, the number of channels corresponding 
to the three attention mechanism modules is 512, 1024, and 
1024 respectively. 

IV. EXPERIMENT AND VERIFICATION 

In this section, we will conduct ablation experiments based 
on self-made test data sets to verify the effectiveness of the 
proposed method. 

A. Data Set Construction and Processing 

In this study, an enhanced OpenPose model was selected 
to detect the skeletal key points of badminton technical 
movements. Given the limitations of existing datasets such as 
FineGym and UCF101 in supporting badminton-specific 
scenarios, a new badminton action sample dataset was 
independently constructed. This dataset specifically focuses 
on collecting videos of forehand high shots in badminton, 
which will be used for subsequent feature extraction and 
classification tasks. 

The forehand high shot (using a right-handed racket as an 
example) is a fundamental and crucial technique in badminton, 
as it can effectively force the opponent to the back of the court 
and create an advantageous position. This technique can be 
systematically broken down into the following four steps, as 
shown in Fig. 4. 

1) Preparation Phase 

 Position and Posture: Stand with feet shoulder-width 
apart, left foot forward, right foot back, and body 
positioned sideways to the net, forming a stable 
support base. 

 Grip and Arm Position: Hold the racket in the right 
hand with a moderate grip. Bend the arms naturally, 
point the racket in the direction of the ball, and slightly 
raise the left hand to aid in body balance. 

 Sight: Focus the eyes on the incoming ball, preparing 
to execute the stroke. 

2) Lead-Up Action 

 Racket Head Movement: From the ready position, lift 
the right elbow upward and pull the racket head back 
and upward to a position directly above the head, with 
the racket face oriented forward. 

 Body Coordination: Move the body slightly backward 
in sync with the racket head to increase the power of 

the shot. Gradually shift the weight from the right foot 
to the left, maintaining balanced movement. 

 Racket Face Adjustment: Rotate the racket face slightly 
inward when overhead, ensuring readiness to strike the 
ball at the correct angle. 

3) Swinging to the Ball 

 Hit Point Selection: Select a hitting point slightly above 
shoulder height on the right side of the body, allowing 
better control over the flight and power of the ball. 

 Swing: Swing the racket from the bottom of the lead 
position forward and upward, swiftly and forcefully, 
ensuring that the racket face is aligned with the ball at 
the moment of contact. 

 Wrist Utilization: At the end of the swing, accelerate 
the racket head through rapid wrist action to generate 
more power and control, directing the ball toward the 
opponent’s far court. 

4) Follow-Through and Recovery 

 Finishing Position: After striking the ball, rotate the 
body gently to the left and forward, aiding in returning 
to a stable state and preparing for the next action. 

 Weight Adjustment: Quickly redistribute the weight 
after the shot to be ready to move or return to a 
defensive position, in anticipation of the opponent’s 
return. 

 Racket Face Adjustment: Ensure that the racket face is 
realigned toward the net after the shot, facilitating 
preparation for the next stroke. 

Following these four detailed steps allows for effective 
execution of forehand high shots, thereby not only improving 
the quality of the stroke but also gaining better control over 
the rhythm and strategic layout of the court. 

 

Fig. 4. Forehand high ball technique breakdown diagram. 

B. Collection of Experimental Data Sets 

In this study, a high-quality badminton stroke pose 
recognition dataset was constructed by carefully selecting 20 
right-handed participants, including 10 males and 10 females, 
aged between 22 and 27 years. The participant group consisted 
of half national-level badminton players and half badminton 
enthusiasts with a certain level of skill. All participants passed 
a series of motor stability and reliability tests before inclusion, 
and their heights were controlled between 173 cm and 178 cm 
to minimize variations in technical movements due to 
differences in body shape. 
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Data acquisition was conducted through two methods: 
field acquisition and network video acquisition. Field data 
were collected using DJI Action2 and Nikon D70s cameras 
from May to June 2024 on a standard badminton court, with 
the ADIBO Smart Badminton server A200 used to ensure 
consistent service conditions, as shown in Fig. 5. In addition, 
qualified badminton match videos were screened from online 
video platforms to enhance the diversity and coverage of the 
dataset. To ensure data consistency and repeatability, the 
position of the serve was precisely controlled, and participants 
were required to hit the ball within a specified area, effectively 
reducing data bias caused by variations in participant 
positioning. 

As a result of these methods, a comprehensive badminton 
stroke pose dataset was successfully constructed, including 
data from both professional players and enthusiasts. The aim 
is to promote the scientific analysis of badminton technical 
training and competition by accurately identifying and 
analyzing stroke techniques. This dataset serves as a valuable 
resource not only for the technical analysis of badminton but 
also as an experimental foundation for subsequent research in 
computer vision and machine learning. 

Camera1
Camera2

Landing 

zone

 

Fig. 5. Data acquisition method. 

To further refine the dataset, point coordinates were 
normalized to reduce the influence of body center variations, 
and the body was rotated to a fixed angle to minimize the 
impact of different viewing angles. 

The experimental setup is outlined in Table Ⅰ. The PyTorch 
deep learning framework was utilized for the experiment. 
Stochastic Gradient Descent (SGD) was selected as the 
optimizer, with a batch size of 16. The cross-entropy loss 
function was employed as the loss function. The learning rate 
decay strategy implemented a reduction to one-tenth of the 
original rate at each specified interval. For the JDTD datasets, 
the initial learning rate was set at 0.1. The first dataset was 
trained for 50 epochs in total, with the learning rate reduced at 
the 30th and 40th epochs. The second dataset underwent 65 
epochs of training, with the learning rate decaying at the 45th 
and 50th epochs. 

TABLE I.  ALGORITHM EXPERIMENT ENVIRONMENT 

Environment Version Environment Version 

System 

Graphics card 

Python 
CUDA 

Ubuntu20.04 

GTX1080Ti 

3.7 
11.1 

CPU 

Internal memory 

PyTorch 

CUDNN 

I7-8700k 

32G 

1.2 .0 
8.0 .4 

C. Ablation Experiment 

In order to verify the effectiveness of the improved 
algorithm in this paper, the detection experiment results of 
YOLO V7 original model, YOLO V7+ adaptive input module, 
YOLO V7 pruning model + adaptive input module, YOLO V7 
model + adaptive input module + node matching module were 
studied on the same data set, as shown in Table Ⅱ. 

As can be seen from Table Ⅱ, although the detection speed 
of the model is not improved after the addition of the adaptive 
module, the adaptability of the model to images of different 
sizes is greatly improved, and the detection accuracy is 
improved. When the pruning model is used, the detection 
speed and accuracy of the model are greatly improved when 
the IOU threshold is low, but the detection accuracy is not 
improved when the IOU threshold is high. After the node 
matching module is added, the detection speed and accuracy 
of the model are improved, which proves the effectiveness of 
the model improvement. 

TABLE II.  ABLATION RESULTS 

Model mAP@0.5 mAP@0.75 FPS 

YOLO V7 original model 0.946 0.81 35 

YOLO V7+ adaptive input module 0.947 0.83 35 

YOLO V7 Pruning model + adaptive 

input module 
0.952 0.83 39 

YOLO V7 model + adaptive input 

module + node matching module 
0.955 0.86 44 

Note: mAP@0.5 indicates that the IOU threshold is 0.5, 
and FPS indicates the number of images processed per second 

Fig. 6 illustrates the partial results of badminton stroke 
posture recognition using the trained model. As shown in the 
figure, the model demonstrates effective detection for both 
single-player and multi-player scenarios with minimal 
occlusion. For images with some occlusion, a node matching 
template is employed to enhance the model's detection 
accuracy. This issue arises when multiple players overlap 
significantly or exhibit similar postures, resulting in the 
detected nodes being unable to accurately distinguish the 
target player, thereby leading to detection errors. 

The improved model, which incorporates an attention 
mechanism alongside data augmentation and anchor box 
adjustment, is based on YOLOv7. This enhanced model is 
compared with the baseline model to evaluate the performance 
improvements brought by the addition of the attention 
mechanism as shown in Table Ⅲ and Table Ⅳ. In terms of 
posture recognition accuracy, there is noticeable improvement 
across all phases of the stroke. For instance, the accuracy of 
detecting the "Swinging to the Ball" phase increased from 
86.12% to 88.26%, while the accuracy for the "Follow-
Through and Recovery" phase approached 90%. Similarly, 
recall rates saw significant increases: the "Preparation Phase" 
improved by 1.73%, the "Lead-Up Action" by 2.06%, the 
"Swinging to the Ball" by 1.4%, the "Follow-Through and 
Recovery" by 3%, and overall detection recall exceeded 90% 
for some phases. These comparisons indicate that the 
performance of the YOLOv7 model has been significantly 
enhanced following the integration of the attention mechanism. 
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The mAP (mean Average Precision) for the model is detailed 
in Table Ⅴ. 

In this study, the average accuracy of the badminton stroke 
posture recognition model was improved from an initial 85.25% 

to 88.50%. This 3.25% increase in accuracy was achieved 
through a combination of data augmentation, anchor box 
adjustment, and the incorporation of an attention mechanism. 

TABLE III.  COMPARISON OF MODEL ACCURACY AFTER CA MECHANISM IS ADDED 

Algorithm Preparation Phase Lead-Up Action Swinging to the Ball Follow-Through and Recovery 

YOLOv7+ Data expansion +anchor fine-tuning 86.12% 83.51% 85.52% 88.31% 

YOLOv7+ Data expansion +anchor fine-tuning +CA 88.26% 85.58% 86.92% 89.30% 

TABLE IV.  COMPARISON OF MODEL RECALL RATE AFTER ADDING SIMAM MECHANISM 

Algorithm Preparation Phase Lead-Up Action Swinging to the Ball Follow-Through and Recovery 

YOLOv7+ Data expansion +anchor fine-tuning 86.12% 83.51% 85.52% 88.31% 

YOLOv7+ Data expansion +anchor fine-tuning +CA 87.85% 85.57% 86.92% 91.30% 

TABLE V.  COMPARISON OF MODEL RECALL RATE AFTER ADDING 

SIMAM MECHANISM 

Algorithm mAP 

YOLOv7 85.25% 

YOLOv7+ Data expansion 87.01% 

YOLOv7+ Data expansion +anchors fine tuning 87.50% 

YOLOv7+ Data expansion +anchors trimming +CA 88.50% 

Jiqiu 0.89

Qihsou 0.95

 

Fig. 6. Identify results after adding the simam attention mechanism. 

D. Comparison of Other Algorithms 

In the previous discussion, data augmentation, anchor box 
adjustment, and the integration of an attention mechanism 
were applied to the original YOLOv7 model. These 
modifications ultimately demonstrated an improvement in the 
accuracy of YOLOv7 for badminton stroke posture 
recognition. The enhanced YOLOv7 algorithm is compared 
with other target detection algorithms to demonstrate the 
superiority of the proposed approach. 

In the field of target detection, Faster R-CNN, a two-stage 
detection algorithm, is widely utilized, including in 
transmission line inspections. Similarly, CenterNet, an anchor-
free detection method, has achieved significant results in 3D 
target detection. Other network structures, such as DenseNet 
and BiFPN, are also extensively used in target detection. 
These network structures are applied to badminton stroke 
posture recognition, and the resulting average accuracies are 
compared to validate the advantages of the proposed algorithm. 

 YOLOv3: Utilizes the Darknet53 network structure, 
combining residual learning and multi-scale output to 
optimize deep networks and enhance feature extraction 
capabilities. 

 Faster R-CNN: A typical two-stage target detection 
algorithm that merges Fast R-CNN and RPN networks 
to rapidly and accurately generate candidate regions 
and detect targets. 

 CenterNet: An anchor-free detection method that 
simplifies the detection process and speeds it up by 
detecting the target center and using heatmap 
technology. 

 MobileNet: A lightweight deep neural network that 
employs depthwise separable convolution to 
significantly reduce computation, making it suitable for 
embedded systems. 

 BiFPN: A bidirectional weighted feature pyramid 
network structure that optimizes feature fusion and 
improves the performance and efficiency of the 
detection network. 

As shown in the Table Ⅵ, the average accuracy of the 
improved YOLOv7 algorithm presented in this study is 3.6% 
higher than that of the YOLOv7-BiFPN algorithm, 22.75% 
higher than that of the MobileNet algorithm, and 4.58% higher 
than that of the CenterNet algorithm. It also surpasses the 
Faster R-CNN algorithm by 3.83% and the YOLOv3 
algorithm by 7.34%. 

TABLE VI.  COMPARISON OF MODEL ACCURACY UNDER DIFFERENT 

ALGORITHMS 

Algorithm mAP 

YOLOv3 81.16% 

Faster-RCNN 84.67% 

CenterNet 83.92% 

MobilNet 65.75% 

YOLOv7-BiFPN 84.90% 

YOLOv7+CA 88.50% 

V. CONCLUSION 

Badminton, as a fast-paced and technically demanding 
sport, requires precise analysis of player movements to 
enhance performance and training outcomes. Recognizing this 
need, this study proposes a deep learning-based algorithm for 
badminton player pose recognition. The proposed method 
addresses the challenges of accuracy and efficiency in pose 
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recognition by integrating data augmentation, anchor box fine-
tuning, and the Coordinate Attention (CA) mechanism into the 
YOLOv7 algorithm. These improvements significantly 
enhance the model's recognition capabilities. 

Experimental results demonstrate that the average 
accuracy of the improved YOLOv7 model has increased from 
85.25% to 88.5%, outperforming other popular algorithms 
such as YOLOv3, Faster R-CNN, CenterNet, MobileNet, and 
YOLOv7-BiFPN. Moreover, the introduction of the CA 
attention mechanism has yielded particularly noteworthy 
results in recognizing specific badminton actions, such as 
smashes and picks, by reducing instances of missed or false 
detections. Looking ahead, future research will focus on 
further refining the dataset, exploring additional challenges in 
motion recognition, and considering the integration of edge 
computing techniques to optimize real-time processing 
capabilities. 
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