
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

342 | P a g e

www.ijacsa.thesai.org

Long-Term Recommendation Model for Online

Education Systems: A Deep Reinforcement Learning

Approach

Wei Wang*

Xianyang Normal University, Xianyang Shaanxi, 712000 Shaanxi, China

Abstract—Intelligent tutoring systems serve as tools capable

of providing personalized learning experiences, with their

efficacy significantly contingent upon the performance of

recommendation models. For long-term instructional plans, these

systems necessitate the provision of highly accurate, enduring

recommendations. However, numerous existing recommendation

models adopt a static perspective, disregarding the sequential

decision-making nature of recommendations, rendering them

often incapable of adapting to novel contexts. While some recent

studies have delved into sequential recommendations, their

emphasis predominantly centers on short-term predictions,

neglecting the objectives of long-term recommendations. To

surmount these challenges, this paper introduces a novel

recommendation approach based on deep reinforcement learning.

We conceptualize the recommendation process as a Markov

Decision Process, employing recurrent neural networks to

simulate the interaction between the recommender system and

the students. Test results demonstrate that our model not only

significantly surpasses traditional Top-N methods in hit rate and

NDCG concerning the enhancement of long-term

recommendations but also adeptly addresses scenarios involving

cold starts. Thus, this model presents a new avenue for enhancing

the performance of intelligent tutoring systems.

Keywords—Deep reinforcement learning; long-term

recommendation; intelligent tutoring system; Markov Decision

Process; recurrent neural network

I. INTRODUCTION

In the current educational landscape, personalized learning
is increasingly gaining prominence. Nevertheless, traditional
educational approaches often employ static teaching
paradigms, overlooking the dynamic and sequential nature of
students' learning progress and personalized needs. This
oversight may lead to uneven allocation of educational
resources, as certain students, regardless of their learning
trajectories, might receive similar instructional resources and
methods. Additionally, these methods are susceptible to the
impact of students' aptitude issues, wherein newly enrolled
students may struggle to receive precise personalized
recommendations due to a lack of historical learning records
[1].

Indeed, education should be construed as a sequential
decision-making process, and adaptability is crucial for
intelligent tutoring systems, given that students' learning
progress and needs invariably evolve over time. To integrate
the capability for sequential processing into intelligent tutoring
systems, recurrent neural networks (RNNs) have recently been

introduced into educational systems. However, the majority of
existing sequential learning methods are applicable only to
short-term predictions, disregarding predictions for long-term
learning. Furthermore, these RNN-based sequence models
entirely overlook the interaction between intelligent tutoring
systems and students, a pivotal component of interactive
reinforcement learning [2].

To address the aforementioned issues, this paper proposes a
novel model based on deep reinforcement learning (DRL) for
long-term learning prediction. Specifically, the model employs
RNN to adaptively evolve the student's learning state to
simulate the sequential interaction between the student and the
intelligent tutoring system. The model is applicable to cold
start scenarios and utilizes an additional gated neural network
to balance the influence between the state of the RNN and the
historical state derived from the student's learning records [3].

To maximize the expected long-term learning outcomes
and optimize model parameters, we present an effective
learning approach based on the popular policy gradient
algorithm REINFORCE. Extensive experiments conducted on
two real-world datasets demonstrate the commendable
performance of our proposed model in cold start scenarios,
surpassing the current state-of-the-art methods in various
learning performance metrics [4].

The remaining part of the paper is organized as follows.
Section II provides a literature review on recommender
systems in intelligent tutoring systems and deep reinforcement
learning, Section III presents the overall framework and
detailed mechanisms of the proposed long-term
recommendation model based on deep reinforcement learning,
Section IV describes the environment and interaction processes
within the model, Section V discusses the recommendation
agent and its training methodologies, Model training is given in
Section VI. Section VII reports on experiments that validate
the performance of the proposed model in long-term
recommendations, and Section VIII concludes the paper by
summarizing the findings and discussing the implications of
the deep reinforcement learning approach for intelligent
tutoring systems.

II. RELATED WORK

A. Recommender Systems

In Intelligent Tutoring Systems (ITS), the role of
recommender systems is to furnish learners with personalized

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

343 | P a g e

www.ijacsa.thesai.org

recommendations, aiding them in selecting suitable learning
resources based on their learning progress and comprehension.

Traditional recommender systems, such as those based on
Collaborative Filtering (CF) methods [6], Matrix Factorization
(MF) methods [5], and neural network-based approaches [7],
prove highly effective when recommending static content (e.g.,
textbooks, videos, exercises). However, these methods often
rely on a substantial volume of historical interaction data and
frequently grapple with the cold start problem when confronted
with new students or content. Moreover, these approaches tend
to overlook the dynamism and sequential nature of the learning
process, wherein the learner's knowledge state gradually
evolves over the course of learning.

In handling sequential data, recommender systems based on
Recurrent Neural Networks (RNNs) have made strides. Hidasi
et al. [8] employed RNNs for predicting students' learning
paths, and other researchers have proposed several RNN-based
enhancements [9]. Nevertheless, these methods primarily focus
on short-term predictions, neglecting the long-term learning
trajectories of students.

In Interactive Recommender Systems (IRS), student
feedback is incorporated into the model. Such models can
iteratively construct and optimize representations of students
and content, thereby holding an advantage in addressing the
cold start problem. Some researchers have utilized Multi-Arm
Bandit (MAB) methods to build IRS, yet these methods
primarily address the exploration-exploitation dilemma and do
not explicitly optimize for long-term returns.

B. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) has made significant
breakthroughs in many interactive systems, such as Atari
games [10] and Go [11], but its application in recommender
systems remains relatively limited. Wang et al. [12] proposed a
DRL approach based on the Actor-Critic (AC) framework for
page recommendations, a hybrid RL method that integrates
value-based and policy-based modules. Li et al. [13]
introduced a method based on Deep Q Network (DQN) for
keyword prompt recommendations. Through this approach,
they achieved effective recommendations in the absence of
explicit student feedback. Sewak et al [14] presented a DRL-
based interactive recommender system for news
recommendations. This method, incorporating a memory
network, better handles historical interaction data. Hernandez-
Leal et al. [15] proposed a DRL method for personalized
recommendations. Their approach learns the latent
representation of students through deep neural networks and
employs reinforcement learning for recommendation decisions.
Ausin et al. [16] introduced a hybrid recommender system
combining deep learning and reinforcement learning. Their
method dynamically updates after each interaction and can
make recommendations without student historical information.
Abdelshiheed et al. [17] proposed a DRL-based recommender
system to address multi-objective recommendation problems.
Their method considers personalized student needs while
taking into account business objectives. Koroveshi et al. [18]
presented a DRL-based sequential recommendation method
that predicts students' future behavior while considering both
long-term and short-term interests. Jung et al. [19] introduced a

DRL-based interactive recommender system to address cold
start problems. Their method effectively recommends in
situations where students lack historical interaction data.

The aforementioned research endeavors underscore the
potential of deep reinforcement learning [22] in recommender
systems, addressing a spectrum of challenges from history-
based recommendations to tackling cold start problems and
resolving multi-objective recommendation issues.

C. Research Gaps and Motivation

In summary, the primary challenges faced by recommender
system research in intelligent tutoring systems include an
overreliance on historical interaction data, neglecting the issue
of students' long-term learning paths, and the difficulty in
handling large action spaces. In the next section, we will
introduce how we address these issues by proposing a new
DRL-based recommender system framework to provide more
effective personalized learning recommendations.

III. OVERALL FRAMEWORK

Typically, reinforcement learning-based systems involve
interaction between the environment and an intelligent agent
[20]. During the training process, the parameters within the
intelligent agent are optimized based on rewards generated
from the continuous interaction between the environment and
the agent [21]. More specifically, this interaction comprises
two consecutive steps: 1) the agent selects and executes an
action based on the environment's state; 2) the environment
responds to the action performed by the agent and returns
feedback and a reward.

In the recommender system scenario considered in this
study, the environment consists of various students, and the
intelligent agent is a recommendation model based on RNN.
Actions correspond to generating Top-N recommendation lists
for specific students, and feedback indicates whether the
student accepts this recommendation list. The entire
recommendation process is illustrated in Fig. 1. It can be
observed that for each individual student, there is a
corresponding recommendation agent. Notably, all
recommendation agents share the same network parameters.
This allocation strategy for recommendation agents has its
advantages as it can prevent mutual interference from different
students.

Fig. 1. The entire recommendation process.

IV. ENVIRONMENT AND INTERACTION

The overall environment in this paper is constructed
through offline datasets, such as the
Secondary_school_curriculum, as online environments are not
always feasible. Typically, offline datasets consist of a student-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

344 | P a g e

www.ijacsa.thesai.org

course rating matrix 𝑅̃ ∈ ℝ𝑈∗𝑀 , where 𝑈 represents the

students and 𝑀 denotes the courses. The elements 𝑅̃𝑢,𝑖 in 𝑅̃

signify the rating given by student 𝑢 to course 𝑖. Specifically,

the explicit rating matrix 𝑅̃ can be transformed into an implicit

feedback matrix 𝐹 , where the element 𝐹𝑢,𝑖 indicates whether

student 𝑢 is associated with course 𝑖.

𝐹𝑢,𝑖 = {
1 𝑅̃𝑢,𝑖 > 0

0 otherwise
 (1)

Based on the implicit feedback matrix 𝐹 , it is
straightforward to derive the set of courses 𝐼𝑢 that interest
student 𝑢. The courses in the set are sorted by timestamp, and

for each course 𝑖 ∈ 𝐼𝑢, the value of 𝐹𝑢,𝑖 must be 1.

To obtain feedback 𝑓𝑢,𝑡 , the student response function

𝕍(𝑃𝑢,𝑡
𝑁 , 𝐼𝑢) used in Eq. (1) can be defined as Eq. (2).

𝑓𝑢,𝑡 = 𝔽(𝑃𝑢,𝑡
𝑁 , 𝐼𝑢) = {

1 𝑃𝑢,𝑡
𝑁 ∩ 𝐼𝑢 ≠ ∅

0 otherwise
 (2)

Here, 𝑓𝑢,𝑡 being 1 indicates positive feedback, and 0

denotes negative feedback. 𝑃𝑢,𝑡
𝑁 ∩ 𝐻𝑢 ≠ ∅ signifies that 𝑃𝑢,𝑡

𝑁

successfully includes at least one course liked by the student.
In practice, positive feedback can refer to student actions such
as clicks or purchases. Similarly, negative feedback refers to
students ignoring the recommended list or clicking on courses
outside the recommended list. The system automatically
provides feedback when the student performs any of these
actions, without requiring the student to provide real-time
feedback.

During the testing phase, the long-term recommendation
performance of a student is the average result obtained over all
steps in the corresponding interaction sequence. More
intuitively, the overall performance of the recommender
system can be evaluated using recall-based metrics, such as hit
rate, and precision-based metrics, such as NDCG. These can be
calculated using Eq. (3) and Eq. (7), respectively.

ℎ𝑖𝑡@𝑁 =
Σ𝑢

1
|𝐼𝑢|

Σ𝑡=1
|𝐼𝑢|𝑓𝑢,𝑡

#𝑢𝑠𝑒𝑟

(3)

.

𝑁𝐷𝐶𝐺@𝑁 =
Σ𝑢

1
|𝐼𝑢|

Σ𝑡=1
|𝐼𝑢| 𝐷𝐶𝐺@𝑁(𝑃𝑢,𝑡

𝑁)
𝑖𝐷𝐶𝐺@𝑁

#𝑢𝑠𝑒𝑟
.

(4)

𝐷𝐶𝐺@𝑁(𝑃𝑢,𝑡
𝑁) =∑  

|𝐾|

𝑖=1

ℎ𝑖
log2⁡1 + 𝑖

.

(5)

ℎ𝑖 = {
1 𝑃𝑢,𝑡,𝑖

𝑁 inI

0 otherwise.
.

(6)

𝑖𝐷𝐶𝐺@𝑁 = 𝐷𝐶𝐺@𝑁 (
𝑁
𝑢, 𝑡

)
(7)

where ⁡𝑢,𝑡
𝑁 represents the recommended sequence, which

includes courses of interest to the student that have not been
recommended previously.

V. RECOMMENDATION AGENT

Within the recommendation agent, the recommendation
process is viewed as a Markov Decision Process (MDP),
providing a more suitable framework for recommender systems
due to its consideration of the long-term impact of each
recommendation and the corresponding expected values. Fig. 2
shows the diagram of the model.

Assuming 𝜋(𝑖 ∣ 𝑠𝑢,𝑡) represents the probability of

recommending course 𝑖 given the student's state 𝑠𝑢,𝑡 , the

generation function 𝔾 can be defined as follows:

𝑃𝑢,𝑡
𝑁 = 𝔾(𝑠𝑢,𝑡 , 𝐼) = Top𝑖∈𝐼⁡𝑁(𝜋(𝑖 ∣ 𝑠𝑢,𝑡) × 𝑚𝑢,𝑖

𝑡) (8)

where, 𝜋(𝑖 ∣ 𝑠𝑢,𝑡) is the recommendation probability of

course 𝑖 at time 𝑡, and 𝑚𝑢,𝑖
𝑡 is the element of course 𝑖 in the

masking vector 𝑚𝑢
𝑡 . The value of 𝑚𝑢,𝑖

𝑡 is 0 or 1, indicating

whether the student has previously selected that course.

At time 𝑡 , the recommendation probability 𝜋(𝑖 ∣ 𝑠𝑢,𝑡) for

course 𝑖 can be obtained as:

𝜋(𝑖 ∣ 𝑠𝑢,𝑡) = Softmax⁡(𝑜𝑢,𝑡
𝑖) (9)

where, 𝑠𝑢,𝑡 is a obtained l-dimensional vector (which will

be discussed later), and 𝑜𝑢,𝑡
𝑖 is the i-th element in the vector

𝑜𝑢,𝑡 defined as:

𝑜𝑢,𝑡 = 𝜎̂(𝑊𝑠𝑠𝑢,𝑡 + 𝑏𝑠). (10)

where 𝜎̂ is the ReLU activation function, 𝑊𝑠 ∈ ℝ𝑀×𝑙 and
𝑏𝑠 ∈ ℝ𝑀 are the parameter matrix and bias, respectively. The
softmax function is defined as:

Softmax⁡(𝑜𝑢,𝑡
𝑖) =

exp𝑜𝑢,𝑡
𝑖

∑  𝑘∈𝐼  exp
𝑜𝑢,𝑡
𝑘 (11)

Fig. 2. Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

345 | P a g e

www.ijacsa.thesai.org

In the formula, 𝑠𝑢,𝑡 is the state of student u at time t,

obtained through the following state transition process:

𝑠𝑢,𝑡 = 𝕋(𝑠𝑢,𝑡−1, 𝑓𝑢,𝑡−1, 𝑃𝑢,𝑡−1
𝑁) = 𝑆(𝑠𝑢,𝑡−1, 𝑎̂𝑢,𝑡−1) (12)

where, 𝑃𝑢,𝑡−1
𝑁 is the recommended list, 𝑓𝑢,𝑡−1 is the

student's feedback, S is the internal state transition process, and

𝑎̂𝑢,𝑡−1 is the action used to represent 𝑃𝑢,𝑡−1
𝑁 and 𝑓𝑢,𝑡−1 defined

as:

𝑎̂𝑢,𝑡−1 = argmax
𝑎∈𝐴𝑢,𝑡−1

(𝜋(𝑎 ∣ 𝑠𝑢,𝑡−1) × 𝑚𝑢,𝑖
𝑡−1). (13)

where, 𝐴𝑢,𝑡−1 is the auxiliary set for feedback in different

situations, defined as:

𝐴𝑢,𝑡−1 = {
𝑃𝑢,𝑡−1
𝑁 ∩ 𝐼𝑢 , 𝑓𝑢,𝑡−1 > 0

𝑃𝑢,𝑡−1
𝑁 , otherwise.

 (14)

The internal state transition process 𝑠𝑢,𝑡 = 𝑆(𝑠𝑢,𝑡−1, 𝑎̂𝑢,𝑡−1)

is obtained through an RNN with Gated Recurrent Unit (GRU).

Firstly, 𝑎̂𝑢,𝑡−1 should be transformed into the input of

RNN𝑥𝑢,𝑡 at time t. To more effectively incorporate feedback

into RNN, the input 𝑥𝑢,𝑡 is obtained through the following

formula:

𝑥𝑢,𝑡 = 𝐸(𝑎̂𝑢,𝑡−1) = {
𝑒̂(𝑎̂𝑢,𝑡), 𝑓𝑢,𝑡 > 0

−𝑒̂(𝑎̂𝑢,𝑡), otherwise.
 (15)

where, 𝑒̂(𝑎̂𝑢,𝑡) ∈ ℝ𝑙 is the l-dimensional embedding of

course 𝑎̂𝑢,𝑡 also a part that needs to be learned in the proposed

model. Using E, positive and negative feedback can be clearly
distinguished for a given 𝑎̂𝑢,𝑡.

According to the state transition of GRU, 𝑠𝑢,𝑡 =

𝑆(𝑠𝑢,𝑡−1, 𝑎̂𝑢,𝑡−1) can be obtained as follows:

𝑠𝑢,𝑡 ⁡= 𝑆(𝑠𝑢,𝑡−1, 𝑎̂𝑢,𝑡−1) = (1 − 𝑍(𝑥𝑢,𝑡, 𝑠𝑢,𝑡−1)) ⊙ 𝑠𝑢,𝑡−1

⁡+𝑍(𝑥𝑢,𝑡, 𝑠𝑢,𝑡−1) ⊙ 𝑆̃(𝑥𝑢,𝑡, 𝑠𝑢,𝑡−1).
 (16)

where, ⊙ represents the element-wise product, Z is the

function of the update gate, 𝑆̃ is the function generating
candidate states, obtained through the following formulas:

𝑍(𝑥𝑢,𝑡 , 𝑠𝑢,𝑡−1) = 𝜎(𝑊𝑧𝑥𝑢,𝑡 + 𝑈𝑧𝑠𝑢,𝑡−1) (17)

𝑆̃(𝑥𝑢,𝑡 , 𝑠𝑢,𝑡−1) = tanh⁡(𝑊𝑥𝑢,𝑡 + 𝑈(𝑗𝑢,𝑡 ⊙ 𝑠𝑢,𝑡−1))

(18)

where, 𝜎 is the sigmoid activation function, 𝑊𝑧 ∈

ℝ𝑙×𝑙 , 𝑈𝑧 ∈ ℝ𝑙×𝑙 ,𝑊 ∈ ℝ𝑙×𝑙 and 𝑈 ∈ ℝ𝑙×𝑙 are parameter
matrices, and 𝑗𝑢,𝑡 is the reset gate, obtained through the

following formula:

𝑗𝑢,𝑡 = 𝜎(𝑊𝑗𝑥𝑢,𝑡 + 𝑈𝑗𝑠𝑢,𝑡−1) (19)

where, 𝑊𝑗 ∈ ℝ𝑙×𝑙 and 𝑈𝑗 ∈ ℝ𝑙×𝑙 are parameter matrices.

In the warm-start model, there is an additional component
used to merge student historical information.

Assuming 𝐼𝑢 is the set containing all historical courses

related to student u (it should be noted that, 𝐼𝑢 ∩ 𝐼𝑢 = ∅, and if

𝑖 ∈ 𝐼𝑢, then 𝑚𝑢,𝑖
0 = 0), i.e., courses from the student's history

cannot be selected during the interaction.

In particular, the latent vector ℎ𝑢 representing student u's
historical items is obtained through the following formula:

ℎ𝑢 = tanh⁡(∑  

𝑖∈𝐼𝑢

 𝑒(𝑖)) (20)

where, 𝑒(𝑖) ∈ ℝ𝑙 is another l-dimensional embedding
defining course i, which also needs to be learned and is
different from 𝑒̂𝑖.

Additionally, to adaptively balance the effects of ℎ𝑢 and

𝑠𝑢,∗ an External Memory Gated Recurrent Unit (EMGRU) is

proposed, with detailed descriptions as follows.

Firstly, the state 𝑠𝑢,𝑡, is obtained according to the formula,

then, a new integrated state 𝑠̂𝑢,𝑡 used to generate course

selection probabilities is obtained through the formula:

𝑠̂𝑢,𝑡 = 𝑑𝑢,𝑡 ⊙ 𝑠𝑢,𝑡 + (1 − 𝑑𝑢,𝑡) ⊙ ℎ𝑢 (21)

where, 𝑑𝑢,𝑡 is the balance gate, which can control the

impact of static ℎ𝑢 and dynamic 𝑠𝑢,𝑡.

The balance gate 𝑑𝑢,𝑡 can be obtained through the

following formula:

𝑑𝑢,𝑡 = 𝜎(𝑊𝑑ℎ𝑢 + 𝑈𝑑𝑠𝑢,𝑡) (22)

where, 𝑊𝑑 ∈ ℝ𝑙×𝑙 and 𝑈𝑑 ∈ ℝ𝑙×𝑙 are parameter matrices.

It is noteworthy that ℎ𝑢 or 𝑠̂𝑢,𝑡 does not affect the transition

process 𝕋 of state 𝑠𝑢,𝑡 and ℎ𝑢 only affects the generation of

course selection probabilities. In other words, the static and
dynamic branches are independent of each other. In summary,
the specific structure of the EMGRU unit is shown in Fig. 3.

Fig. 3. EMGRU unit.

Finally, the selection probability 𝜋(𝑖 ∣ 𝑠̂𝑢,𝑡) is obtained

through 𝑠̂𝑢,𝑡 rather than the state, 𝑠𝑢,𝑡 and thus the course

selection probability is defined as follows:

𝜋(𝑖 ∣ 𝑠̂𝑢,𝑡) = Softmax⁡(𝑜̂𝑢,𝑡
𝑖) (23)

where, 𝑜̂𝑢,𝑡 = 𝜎̂(𝑊𝑠𝑠̂𝑢,𝑡 + 𝑏𝑠).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

346 | P a g e

www.ijacsa.thesai.org

The parameter set of the warm-start model is 𝜃̂ =
𝜃̃⋃{𝑒(∗),𝑊𝑑 , 𝑈𝑑} . The overall architecture of the warm-start
model is shown in Fig. 4.

Fig. 4. The overall architecture of the warm-start model.

VI. MODEL TRAINING

In this section, we will describe how to train the proposed
model in the sequential interaction between the
recommendation agent and the environment.

A. Reinforcement Learning

The goal of the learning algorithm in this section is to
maximize the expected long-term recommendation reward,
where 𝜃 is learned through the interaction process 𝐸𝑢 for each
student 𝑢. Specifically, 𝐸𝑢 represents the complete interaction
process obtained by the recommendation agent for student 𝑢
under the current parameters.

Generally, an 𝐸𝑢 interaction process includes the

immediate reward 𝑉𝑢,𝑡 at time t, state 𝑠𝑢,𝑡 , and action 𝑎̂𝑢,𝑡 ,

defined as:

𝐸𝑢 = [𝑠𝑢,1, 𝑎̂𝑢,1, 𝑓𝑢,1, 𝑉𝑢,1, … , 𝑠𝑢,𝑀 , 𝑎̂𝑢,𝑀 , 𝑓𝑢,𝑀, 𝑉𝑢,𝑀] (24)

where, 𝑠𝑢,𝑡 is generated by Equation (19) 𝑎̂𝑢,𝑡 is obtained

by Equation (16) and 𝑓𝑢,𝑡. Thus, 𝑉𝑢,𝑡 can be computed as:

𝑉𝑢,𝑡 = {
1.0, 𝑓𝑢,𝑡 > 0

−0.2, otherwise.
 (25)

where 1.0 and -0.2 are values determined based on
experience.

To maximize the expected cost 𝐽 , each action 𝑎̂𝑢,𝑡
corresponds not only to an immediate reward 𝑉𝑢,𝑡, but also to

a long-term reward 𝑅𝑢,𝑡, computed as follows:

𝑅𝑢,𝑡 = Σ𝑘=0
𝑀−𝑘𝛾𝑘𝑉𝑢,𝑡+𝑘 (26)

where 𝛾 ∈ [0,1] is the discount factor. The objective
function J is defined as:

𝐽 = 𝔼𝑠𝑢,1,𝑎𝑢,1,…[𝑅𝑢,𝑡] (27)

The parameter 𝜃 of the recommendation agent can be
optimized using the gradient ascent method:

𝜃 = 𝜃 + 𝜂∇𝜃𝐽 (28)

where 𝜂 is the learning rate, and the gradient ∇𝜃𝐽(𝜃) is
given by:

∇𝜃𝐽 = ∑  

𝑀

𝑡=1

𝛾𝑡−1𝑅𝑢,𝑡∇𝜃log⁡𝜋(𝑎̂𝑡 ∣ 𝑠𝑢,𝑡) (29)

In the standard practice of applying REINFORCE, the
interaction process should be a complete 𝐸𝑢, which means the
parameters should be updated after completing the interaction
process for student 𝑢 . However, the lengths of student
interactions 𝐼 ∗ can vary significantly. For example, |𝐼𝐴| = 20,
but |𝐼𝐵| = 200 . This causes large variances infor different
students at the same time t. Moreover, due to the accumulation
of excessive negative rewards, long-term interaction processes
can hide positive results, making it challenging for the
recommendation agent to obtain positive training samples.
Therefore, a recommendation agent trained using traditional
REINFORCE learning cannot achieve satisfactory
recommendation performance.

To address this issue, this paper proposes to divide the
original 𝐸 into 𝐼𝑢/𝐵 sub-interaction processes and restart the
reward accumulation at the beginning of each sub-interaction

process. The learning process for both 𝜃̂ and 𝜃 remains the
same. The detailed processes of the learning process and the
sub-interaction process generation are shown in Algorithm (1)
and Algorithm (2), respectively. It should be noted that in the
warm-start scenario, to ensure sufficient training data, the total
length of the interaction process for each student u in the

training phase is equal to |𝐼𝑢 ∪ 𝐼𝑢| . At the same time, the

recommendation agent can choose courses from 𝐼𝑢. However,
the length of the interaction process is still equal to |𝐼𝑢|, and
during the testing phase, the recommendation agent cannot

select courses from 𝐼𝑢 for each student u.

B. Supervised Learning

Another approach to training the recommendation agent is
to optimize it using supervised learning in a short-term
prediction scenario and then apply it to a long-term testing
environment.

To facilitate the transition of the recommendation agent
from short-term to long-term prediction scenarios, the neural
network architecture for the recommendation agent under
supervised learning and reinforcement learning should be
consistent. The only difference is that explicit labels need to be
provided for supervised learning, and these labels are the actual
course selections made by students at each time step.

Let 𝐼𝑢 denote the actual sequence of courses chosen by
student u over time. To maximize the accuracy of short-term

predictions, this paper uses cross-entropy 𝐽, defined as the cost
function for supervised learning:

𝐽 = −Σ𝑖=1
𝐵 log⁡(𝜋(𝐼𝑢,𝑖 ∣ 𝑠𝑢,𝑖)) (30)

where 𝜃 can be updated as follows:

𝜃 = 𝜃 − 𝜂∇𝜃𝐽 (31)

Compared to the reinforcement learning approach, the
supervised learning method is closer to traditional session-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

347 | P a g e

www.ijacsa.thesai.org

based RNNs, where each recommended step has a specific
corresponding label for the training signal.

Furthermore, before applying reinforcement learning, fine-
tuning the recommendation agent through supervised learning
can be performed. This can help the reinforcement learning-
based recommendation agent start from a relatively good
policy rather than a random one, thus accelerating the
convergence speed of reinforcement learning.

VII. EXPERIMENTS

In this section, a substantial number of experiments were
conducted to demonstrate the advantages of the proposed
method in long-term recommendations and showcase the
effectiveness of the core components of the proposed model.

A. Evaluation Datasets and Experimental Settings

Two offline real-world benchmarks,
Secondary_school_curriculum 100K and
Secondary_school_curriculum 1M, were used to evaluate the
proposed model. Secondary_school_curriculum 100K contains
100,000 rating records about 943 students and 1682 courses.
Secondary_school_curriculum 1M includes one million rating
records about 6040 students and 3900 courses.

The proposed model was evaluated using the previously
mentioned interaction environment to assess the performance
of the proposed method and other methods. In the experiments,
a 1-layer RNN and GRU with a hidden layer size of 100,
matching the embedding size, are used. The size of B is set to
20, and γ is set to 0.9. For experiments on the 100K and 1M
datasets, the proposed model is optimized using Adam with a
learning rate of 0.005.

B. Benchmark

Pop: This algorithm always recommends the most popular
items in the training set. While simple, it often serves as a
powerful baseline.

Linear-UCB (L-UCB): A linear bandit algorithm, a widely
used and mature multi-armed bandit algorithm. In this study, a
context-independent bandit algorithm was used since content
information was not considered. Course embeddings were
obtained through matrix factorization (MF) methods.

ε-greedy: Similar to Linear UCB, but the balance between
exploration and exploitation is adjusted by tuning the ε
parameter. Course embeddings were also obtained through MF.

DQN (Deep Q-Network): A deep reinforcement learning
algorithm based on value functions.

SARSA (State-Action-Reward-State-Action): A classic
policy-based reinforcement learning algorithm commonly used
as a benchmark.

Actor-Critic: A deep reinforcement learning algorithm that
combines value function and policy methods. The architecture
proposed in was used for comparison.

PPO (Proximal Policy Optimization): An advanced
reinforcement learning algorithm that improves training
stability by adding an "agent" constraint during policy updates.

Among these algorithms, Pop, Linear-UCB, and ε-greedy
are traditional recommender systems or multi-armed bandit
algorithms, while DQN, SARSA, Actor-Critic, and PPO are
classical or advanced algorithms in the field of reinforcement
learning.

C. Warm-start Model Comparative Experiment

In the experiment, a comparative study of warm-start
models was conducted on the 100K, and the results are shown
in Table Ⅰ. In this table, 𝑝 = 10% means that 10% of courses
for each student u are retained as the warm-start historical set

𝐼𝑢, and five different p values are considered in the experiment.

Specifically, the historical data 𝐼𝑢 for each student u in the test
set was also used to train static models like BPR and NeuCF
because these static models need to obtain corresponding

student representations and are evaluated without using 𝐼𝑢
during testing. However, the historical data of test students was
not used to train other models.

TABLE I. NDCG@10 COMPARISON OF THE WARM-START MODELS ON

100K DATASET

 p=10% p=30% p=50% p=70% p=90%

Pop 2.90% 2.16% 1.65% 1.31% 1.48%

BPR 3.41% 3.25% 2.89% 2.74% 3.23%

NeuCF 3.51% 3.33% 3.02% 2.86% 3.35%

sRNN 8.54% 6.92% 5.45% 4.05% 3.66%

sl-cold 8.97% 6.76% 5.47% 3.96% 3.40%

rl-cold 14.93% 12.11% 8.88% 1.24% 3.69%

sl+rl-cold 15.54% 12.53% 9.38% 6.32% 3.71%

sl-warm 8.65% 6.79% 5.37% 4.73% 4.42%

rl-warm 13.81% 11.53% 8.37% 6.76% 4.44%

sl+rl-warm 14.34% 12.07% 9.64% 7.90% 6.18%

The proposed method's large-scale warm-start model
significantly outperforms baseline models. With an increase in
p, the warm-start model demonstrates significant
improvements in HR and NDCG. These results suggest that
incorporating historical data can enhance the model's
performance if the historical data is sufficiently rich. It is noted
that experiments with larger p values are more challenging than

those with smaller p values because the total number of 𝐼𝑢 ∪ 𝐼𝑢
is fixed. Specifically, larger p values result in a smaller correct
candidate set 𝐼𝑢 and a shorter reasoning process. Therefore, the
proposed model's performance is relatively better at smaller p
values. Additionally, training the recommendation agent
through supervised learning generally improves HR and
NDCG performance. Furthermore, this is particularly effective
for the larger 1M dataset. Without supervised pre-training, the
rl-warm model cannot even outperform sRNN at p=90%.
Conversely, the gap between sRNN and sl+rl-warm is
significant.

D. Long-Term Prediction Performance Comparison

To validate the performance of the proposed model in long-
term recommendations, Fig. 5 presents the recommendation
results of various comparative methods at different stages. The
experimental results are obtained from selected students in the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

348 | P a g e

www.ijacsa.thesai.org

respective test sets. Specifically, the size of the selected student
set 𝐼𝑢 is above average because students with longer histories
can more clearly reveal the performance of long-term
recommendations. Additionally, the results for student u are
divided into five different stages: [0%,20%), [20%,40%),
[40%,60%), [60%,80%), and [80%,100%], where [𝑠%, 𝑒%)
denotes the steps between (𝑠% × 𝐼𝑢) and (𝑒% × 𝐼𝑢) during the
entire interaction period. Furthermore, e is used to represent the
range [s%,e%) and provides the average results within that
range.

Fig. 5. The Recommendation performance at different stages. (a) HR@10 on

100 K; (b) NDCG@10 on 100 K; (c) HR@10 on 1M; (d)NDCG@10 on 1M.

As shown in Fig. 5, static models like NeuCF and BPR still
achieve good hit rates in the first range [0%,20%). However,
due to the almost unchanged recommendation results obtained
by static methods, their performance sharply drops to 0% in the
subsequent stages. Consequently, their overall HR and NDCG
results are poor, as shown in Table Ⅱ. On the other hand,
sequential methods like sl+rl-warm and sRNN can achieve hits
in all ranges, adapting their respective recommendation results.
Compared to sRNN, the proposed sl+rl-warm model
significantly surpasses sRNN in the ranges [0%, 20%) to [60%,
80%) because the proposed model already obtains a sufficient
hit rate in the early stages. Since 𝐼𝑢 has a fixed size, fewer
courses can be hit in the last range [80%, 100%]. Therefore, the
performance of sl+rl-warm is almost equivalent to that of RNN
in the last range [80%, 100%]. All these results indicate that
the proposed method can effectively adopt recommendation
transfer in long-term recommendations.

TABLE II. TAB.6 HR@10 COMPARISON OF THE WARM-START MODELS

ON 1M DATASET

 p=10% p=30% p=50% p=70% p=90%

Pop 6.83% 5.73% 5.04% 4.52% 4.10%

BPR 4.73% 4.73% 4.95% 4.99% 5.15%

NeuCF 6.27% 6.56% 6.65% 6.99% 7.78%

sRNN 16.55% 17.16% 17.27% 17.67% 18.52%

sl-cold 31.31% 26.99% 22.92% 17.82% 9.63%

rl-cold 41.65% 36.93% 32.07% 26.07% 14.73%

sl+rl-cold 45.15% 40.98% 33.24% 27.28% 15.15%

sl-warm 23.39% 23.23% 22.07% 16.89% 8.59%

rl-warm 42.23% 35.32% 29.53% 26.51% 16.09%

sl+rl-warm 45.06% 43.88% 37.14% 31.58% 21.20%

E. Impact of EMGRU

EMGRU is crucial in the warm-start model as it can
adaptively adjust the dynamic RNN state and static historical
representation to generate 𝑠̂𝑢,𝑡 . To study the impact of this

adaptive balance, the experiment considered four different
settings combining RNN states and historical states: 1) using
only RNN states (s); 2) using only historical representations
(ℎ); 3) the combination of historical representations and RNN
states (𝑠 + ℎ); 4) the combination of historical representations
and RNN states with a balanced gate (𝑠 + ℎw/).

As shown in the Table Ⅲ, the method with only ℎ performs
poorly because ℎ𝑢 is unchangeable throughout all interaction
processes, and the fixed ℎ𝑢 cannot generate different
recommendation results at different times. On the other hand,
when the minimum setting is 𝑝 = 10%, the method with only s
surpasses the combination methods 𝑠 + ℎ and 𝑠 + ℎw/ gate in
terms of HR because the data volume of ℎ𝑢 is not sufficient.
However, as p increases, the combination methods can
outperform the method with only s. Moreover, adapting the
combination of h and s with a gate generally has a better effect
than mixing h and s with an equal constant. These results
indicate that the effects between 𝑠𝑢,𝑡 and ℎ𝑢 are non-fixed and

should be adjusted according to the current situation.

TABLE III. NDCG@10 COMPARISON OF THE WARM-START MODELS ON

1M DATASET

 p=10% p=30% p=50% p=70% p=90%

Pop 2.03% 1.50% 1.18% 0.92% 0.81%

BPR 1.14% 1.05% 0.96% 0.84% 0.92%

NeuCF 1.74% 1.62% 1.37% 1.26% 1.53%

sRNN 3.26% 3.55% 3.37% 3.30% 3.79%

sl-cold 5.63% 4.37% 3.37% 2.53% 1.31%

rl-cold 8.74% 7.09% 5.41% 3.92% 2.28%

sl+rl-cold 11.30% 9.31% 6.78% 4.96% 2.50%

sl-warm 3.97% 3.51% 2.98% 2.08% 1.11%

rl-warm 9.02% 7.47% 5.44% 4.19% 2.71%

sl+rl-warm 11.62% 9.91% 7.02% 5.09% 3.61%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

349 | P a g e

www.ijacsa.thesai.org

F. Convergence Analysis

To demonstrate the effectiveness of the settings in the
REINFORCE algorithm, Fig. 6 illustrates the performance
curves of different optimization algorithms in the warm-start
(p=50%) scenario on the Secondary_school_curriculum 100K
dataset.

Fig. 6. The Learning curves of different algorithms in the warm-start.

Clearly, the performance of supervised learning methods
with complete interaction processes (blue line) or the
corresponding separated sub-interaction processes (red line) is
similar, indicating that dividing the entire interaction process
into several sub-interaction processes does not improve the
accuracy of recommendations. Similarly, the performance of
the basic REINFORCE algorithm (yellow line) is inferior and
even significantly different from methods based on supervised
learning. However, the performance of the special
REINFORCE method (purple line) shows a significant
improvement, as separating and restarting the reward
accumulation for overly long interaction processes can obtain
more useful self-generated training labels for reinforcement
learning. Although this approach is simple, it is highly
effective.

G. Recommendation Behavior Analysis

To analyze the recommendation behavior of the
recommendation agent, the experiment provides the average
results of the relevant popularity and Hit@10 for all test
students on the Secondary_school_curriculum 100K dataset at
each step t in the warm-start scenario, as shown in Fig. 7.

Thus, the recommendation agent in this study gradually
evolves from widespread recommendations to personalized
recommendations and can accurately hit courses within the
specified range.

H. Dynamic Recommendation Analysis

To evaluate the effectiveness of the dynamic
recommendation process, the experiment randomly selected
several cases and provided the recommendation results of the
proposed model on the dataset. For each case, a sequence of
sequentially recommended courses is displayed for a specific
student. It is important to note that, for ease of presentation,
only one course is displayed in the Top-10 ranking list, i.e.
𝑎̂𝑢, 𝑡. Specifically, for each case from (a) to (c), the results
from step 0 to step 14 are always shown. On the other hand, for
each case from (d) to (e), the results of a randomly selected
consecutive 15 steps within the specified range are displayed.

Fig. 7. Characteristics at different time steps in the warm-start scenario. (a)

Hit@10; (b) The average results of the relevant popularity.

It can be observed that the proposed method can adaptively
adjust recommendations based on past unsuccessful
experiences. For example, in case (a), the first two
recommendations are incorrect, but the subsequent four
recommendations are correct. These results indicate that the
proposed method can effectively change recommended courses
based on previous feedback from students. Generally, the
proposed model can dynamically update student states and
modify recommendation results based on corresponding
feedback.

In contrast, static methods cannot automatically adjust
recommendation results and only make positive predictions at
the beginning by correctly predicting recommendations, but
they always make negative predictions. Therefore, compared to
static methods, the recommendation approach in the proposed
model is more effective.

VIII. CONCLUSION

In this paper, a new Top-N deep reinforcement learning
recommender system is proposed to address the problem of
long-term recommendations. In the proposed model, the
recommendation process is considered as a Markov decision
process. Thus, an RNN is used to simulate the sequential
interaction between the agent (recommender system) and the
environment (students). Moreover, the proposed model can be
applied to warm-start scenarios. Additionally, the proposed
model does not depend on any content information but only
relies on the interaction between the environment and the
agent, meaning it can effectively be applied in environments
without sufficient content information. Experimental results
show that, compared to traditional Top-N recommendation
methods, the proposed method has better recommendation
performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

350 | P a g e

www.ijacsa.thesai.org

ACKNOWLEDGMENT

The preferred spelling of the word “acknowledgment” in
America is without an “e” after the “g.” Avoid the stilted
expression, “One of us (R. B. G.) thanks . . .” Instead, try “R.
B. G. thanks.”

REFERENCES

[1] Shen X, Liu S, Zhang C, et al. Intelligent material distribution and
optimization in the assembly process of large offshore crane lifting
equipment[J]. Computers & Industrial Engineering, 2021, 159: 107496.

[2] Xu M, Liu S, Shen H, et al. Process-oriented unstable state monitoring
and strategy recommendation for burr suppression of weak rigid drilling
system driven by digital twin[J]. The International Journal of Advanced
Manufacturing Technology, 2022: 1-17.

[3] Fu T, Liu S, Li P. Intelligent smelting process, management system:
Efficient and intelligent management strategy by incorporating large
language model[J]. Frontiers of Engineering Management, 2024, 11(3):
396-412.

[4] Zheng H, Liu S, Zhang H, et al. Visual-triggered contextual guidance for
lithium battery disassembly: A multi-modal event knowledge graph
approach[J]. Journal of Engineering Design, 2024: 1-26.

[5] Nwana, H. S. (1990). Intelligent tutoring systems: An overview.
Artificial Intelligence Review, 4(4), 251-277.

[6] Yazdani, M. (1986). Intelligent tutoring systems: An overview. Expert
Systems, 3(3), 154-163.

[7] Alhabbash, M. I., Mahdi, A. O., & Naser, S. S. A. (2016). An intelligent
tutoring system for teaching English grammar tenses.

[8] Sarrafzadeh, A., Alexander, S., Dadgostar, F., et al. (2008). “How do
you know that I don’t understand?” A look at the future of intelligent
tutoring systems. Computers in Human Behavior, 24(4), 1342-1363.

[9] Hamed, M. A., & Naser, S. S. A. (2017). An intelligent tutoring system
for teaching the seven characteristics of living things.

[10] Al-Bastami, B. G., & Naser, S. S. A. (2017). Design and development of
an intelligent tutoring system for C#.

[11] Garnier, P., Viquerat, J., Rabault, J., et al. (2021). A review on deep
reinforcement learning for fluid mechanics. Computers & Fluids, 225,
104973.

[12] Wang, H., Liu, N., Zhang, Y., et al. (2020). Deep reinforcement learning:
A survey. Frontiers of Information Technology & Electronic
Engineering, 21(12), 1726-1744.

[13] Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274.

[14] Sewak, M. (2019). Deep reinforcement learning. Singapore: Springer
Singapore.

[15] Hernandez-Leal, P., Kartal, B., & Taylor, M. E. (2019). A survey and
critique of multiagent deep reinforcement learning. Autonomous Agents
and Multi-Agent Systems, 33(6), 750-797.

[16] Ausin, M. S. (2019). Leveraging deep reinforcement learning for
pedagogical policy induction in an intelligent tutoring system. In
Proceedings of the 12th International Conference on Educational Data
Mining (EDM 2019).

[17] Abdelshiheed, M., Hostetter, J. W., Barnes, T., et al. (2023). Leveraging
deep reinforcement learning for metacognitive interventions across
intelligent tutoring systems. In International Conference on Artificial
Intelligence in Education (pp. 291-303). Cham: Springer Nature
Switzerland.

[18] Koroveshi, J., & Ktona, A. (2021). Training an intelligent tutoring
system using reinforcement learning. International Journal of Computer
Science and Information Security (IJCSIS), 19(3).

[19] Jung, G. (2023). Exploring batch deep reinforcement learning and multi-
task learning across intelligent tutoring systems: Lessons learned.

[20] Paduraru, C., Paduraru, M., & Iordache, S. (2022). Using deep
reinforcement learning to build intelligent tutoring systems.

[21] Milani, S., Fan, Z., Gulati, S., et al. (2020). Intelligent tutoring strategies
for students with autism spectrum disorder: A reinforcement learning
approach. In The 2020 CMU Symposium on Artificial Intelligence and
Social Good.

[22] Subramanian, J., & Mostow, J. (2021). Deep reinforcement learning to
simulate, train, and evaluate instructional sequencing policies. Spotlight
presentation at the Reinforcement Learning for Education workshop at
the Educational Data Mining 2021 conference.

