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Abstract—Intelligent tutoring systems serve as tools capable 

of providing personalized learning experiences, with their 

efficacy significantly contingent upon the performance of 

recommendation models. For long-term instructional plans, these 

systems necessitate the provision of highly accurate, enduring 

recommendations. However, numerous existing recommendation 

models adopt a static perspective, disregarding the sequential 

decision-making nature of recommendations, rendering them 

often incapable of adapting to novel contexts. While some recent 

studies have delved into sequential recommendations, their 

emphasis predominantly centers on short-term predictions, 

neglecting the objectives of long-term recommendations. To 

surmount these challenges, this paper introduces a novel 

recommendation approach based on deep reinforcement learning. 

We conceptualize the recommendation process as a Markov 

Decision Process, employing recurrent neural networks to 

simulate the interaction between the recommender system and 

the students. Test results demonstrate that our model not only 

significantly surpasses traditional Top-N methods in hit rate and 

NDCG concerning the enhancement of long-term 

recommendations but also adeptly addresses scenarios involving 

cold starts. Thus, this model presents a new avenue for enhancing 

the performance of intelligent tutoring systems. 
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I. INTRODUCTION 

In the current educational landscape, personalized learning 
is increasingly gaining prominence. Nevertheless, traditional 
educational approaches often employ static teaching 
paradigms, overlooking the dynamic and sequential nature of 
students' learning progress and personalized needs. This 
oversight may lead to uneven allocation of educational 
resources, as certain students, regardless of their learning 
trajectories, might receive similar instructional resources and 
methods. Additionally, these methods are susceptible to the 
impact of students' aptitude issues, wherein newly enrolled 
students may struggle to receive precise personalized 
recommendations due to a lack of historical learning records 
[1]. 

Indeed, education should be construed as a sequential 
decision-making process, and adaptability is crucial for 
intelligent tutoring systems, given that students' learning 
progress and needs invariably evolve over time. To integrate 
the capability for sequential processing into intelligent tutoring 
systems, recurrent neural networks (RNNs) have recently been 

introduced into educational systems. However, the majority of 
existing sequential learning methods are applicable only to 
short-term predictions, disregarding predictions for long-term 
learning. Furthermore, these RNN-based sequence models 
entirely overlook the interaction between intelligent tutoring 
systems and students, a pivotal component of interactive 
reinforcement learning [2]. 

To address the aforementioned issues, this paper proposes a 
novel model based on deep reinforcement learning (DRL) for 
long-term learning prediction. Specifically, the model employs 
RNN to adaptively evolve the student's learning state to 
simulate the sequential interaction between the student and the 
intelligent tutoring system. The model is applicable to cold 
start scenarios and utilizes an additional gated neural network 
to balance the influence between the state of the RNN and the 
historical state derived from the student's learning records [3]. 

To maximize the expected long-term learning outcomes 
and optimize model parameters, we present an effective 
learning approach based on the popular policy gradient 
algorithm REINFORCE. Extensive experiments conducted on 
two real-world datasets demonstrate the commendable 
performance of our proposed model in cold start scenarios, 
surpassing the current state-of-the-art methods in various 
learning performance metrics [4]. 

The remaining part of the paper is organized as follows. 
Section II provides a literature review on recommender 
systems in intelligent tutoring systems and deep reinforcement 
learning, Section III presents the overall framework and 
detailed mechanisms of the proposed long-term 
recommendation model based on deep reinforcement learning, 
Section IV describes the environment and interaction processes 
within the model, Section V discusses the recommendation 
agent and its training methodologies, Model training is given in 
Section VI. Section VII reports on experiments that validate 
the performance of the proposed model in long-term 
recommendations, and Section VIII concludes the paper by 
summarizing the findings and discussing the implications of 
the deep reinforcement learning approach for intelligent 
tutoring systems. 

II. RELATED WORK 

A. Recommender Systems 

In Intelligent Tutoring Systems (ITS), the role of 
recommender systems is to furnish learners with personalized 
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recommendations, aiding them in selecting suitable learning 
resources based on their learning progress and comprehension. 

Traditional recommender systems, such as those based on 
Collaborative Filtering (CF) methods [6], Matrix Factorization 
(MF) methods [5], and neural network-based approaches [7], 
prove highly effective when recommending static content (e.g., 
textbooks, videos, exercises). However, these methods often 
rely on a substantial volume of historical interaction data and 
frequently grapple with the cold start problem when confronted 
with new students or content. Moreover, these approaches tend 
to overlook the dynamism and sequential nature of the learning 
process, wherein the learner's knowledge state gradually 
evolves over the course of learning. 

In handling sequential data, recommender systems based on 
Recurrent Neural Networks (RNNs) have made strides. Hidasi 
et al. [8] employed RNNs for predicting students' learning 
paths, and other researchers have proposed several RNN-based 
enhancements [9]. Nevertheless, these methods primarily focus 
on short-term predictions, neglecting the long-term learning 
trajectories of students. 

In Interactive Recommender Systems (IRS), student 
feedback is incorporated into the model. Such models can 
iteratively construct and optimize representations of students 
and content, thereby holding an advantage in addressing the 
cold start problem. Some researchers have utilized Multi-Arm 
Bandit (MAB) methods to build IRS, yet these methods 
primarily address the exploration-exploitation dilemma and do 
not explicitly optimize for long-term returns. 

B. Deep Reinforcement Learning 

Deep Reinforcement Learning (DRL) has made significant 
breakthroughs in many interactive systems, such as Atari 
games [10] and Go [11], but its application in recommender 
systems remains relatively limited. Wang et al. [12] proposed a 
DRL approach based on the Actor-Critic (AC) framework for 
page recommendations, a hybrid RL method that integrates 
value-based and policy-based modules. Li et al. [13] 
introduced a method based on Deep Q Network (DQN) for 
keyword prompt recommendations. Through this approach, 
they achieved effective recommendations in the absence of 
explicit student feedback. Sewak et al [14] presented a DRL-
based interactive recommender system for news 
recommendations. This method, incorporating a memory 
network, better handles historical interaction data. Hernandez-
Leal et al. [15] proposed a DRL method for personalized 
recommendations. Their approach learns the latent 
representation of students through deep neural networks and 
employs reinforcement learning for recommendation decisions. 
Ausin et al. [16] introduced a hybrid recommender system 
combining deep learning and reinforcement learning. Their 
method dynamically updates after each interaction and can 
make recommendations without student historical information. 
Abdelshiheed et al. [17] proposed a DRL-based recommender 
system to address multi-objective recommendation problems. 
Their method considers personalized student needs while 
taking into account business objectives. Koroveshi et al. [18] 
presented a DRL-based sequential recommendation method 
that predicts students' future behavior while considering both 
long-term and short-term interests. Jung et al. [19] introduced a 

DRL-based interactive recommender system to address cold 
start problems. Their method effectively recommends in 
situations where students lack historical interaction data. 

The aforementioned research endeavors underscore the 
potential of deep reinforcement learning [22] in recommender 
systems, addressing a spectrum of challenges from history-
based recommendations to tackling cold start problems and 
resolving multi-objective recommendation issues. 

C. Research Gaps and Motivation 

In summary, the primary challenges faced by recommender 
system research in intelligent tutoring systems include an 
overreliance on historical interaction data, neglecting the issue 
of students' long-term learning paths, and the difficulty in 
handling large action spaces. In the next section, we will 
introduce how we address these issues by proposing a new 
DRL-based recommender system framework to provide more 
effective personalized learning recommendations. 

III. OVERALL FRAMEWORK 

Typically, reinforcement learning-based systems involve 
interaction between the environment and an intelligent agent 
[20]. During the training process, the parameters within the 
intelligent agent are optimized based on rewards generated 
from the continuous interaction between the environment and 
the agent [21]. More specifically, this interaction comprises 
two consecutive steps: 1) the agent selects and executes an 
action based on the environment's state; 2) the environment 
responds to the action performed by the agent and returns 
feedback and a reward. 

In the recommender system scenario considered in this 
study, the environment consists of various students, and the 
intelligent agent is a recommendation model based on RNN. 
Actions correspond to generating Top-N recommendation lists 
for specific students, and feedback indicates whether the 
student accepts this recommendation list. The entire 
recommendation process is illustrated in Fig. 1. It can be 
observed that for each individual student, there is a 
corresponding recommendation agent. Notably, all 
recommendation agents share the same network parameters. 
This allocation strategy for recommendation agents has its 
advantages as it can prevent mutual interference from different 
students. 

 

Fig. 1. The entire recommendation process. 

IV. ENVIRONMENT AND INTERACTION 

The overall environment in this paper is constructed 
through offline datasets, such as the 
Secondary_school_curriculum, as online environments are not 
always feasible. Typically, offline datasets consist of a student-
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course rating matrix 𝑅̃ ∈ ℝ𝑈∗𝑀 , where 𝑈  represents the 

students and 𝑀  denotes the courses.  The elements 𝑅̃𝑢,𝑖  in 𝑅̃ 

signify the rating given by student 𝑢 to course  𝑖. Specifically, 

the explicit rating matrix 𝑅̃ can be transformed into an implicit 

feedback matrix 𝐹 , where the element 𝐹𝑢,𝑖  indicates whether 

student 𝑢 is associated with course 𝑖. 

𝐹𝑢,𝑖 = {
1 𝑅̃𝑢,𝑖 > 0

0  otherwise 
 (1) 

Based on the implicit feedback matrix 𝐹 , it is 
straightforward to derive the set of courses 𝐼𝑢  that interest 
student 𝑢. The courses in the set are sorted by timestamp, and 

for each course 𝑖 ∈ 𝐼𝑢, the value of 𝐹𝑢,𝑖 must be 1. 

To obtain feedback 𝑓𝑢,𝑡 , the student response function 

𝕍(𝑃𝑢,𝑡
𝑁 , 𝐼𝑢) used in Eq. (1) can be defined as Eq. (2). 

𝑓𝑢,𝑡 = 𝔽(𝑃𝑢,𝑡
𝑁 , 𝐼𝑢) = {

1 𝑃𝑢,𝑡
𝑁 ∩ 𝐼𝑢 ≠ ∅

0  otherwise 
 (2) 

Here, 𝑓𝑢,𝑡  being 1 indicates positive feedback, and 0 

denotes negative feedback. 𝑃𝑢,𝑡
𝑁 ∩ 𝐻𝑢 ≠ ∅  signifies that 𝑃𝑢,𝑡

𝑁  

successfully includes at least one course liked by the student. 
In practice, positive feedback can refer to student actions such 
as clicks or purchases. Similarly, negative feedback refers to 
students ignoring the recommended list or clicking on courses 
outside the recommended list. The system automatically 
provides feedback when the student performs any of these 
actions, without requiring the student to provide real-time 
feedback. 

During the testing phase, the long-term recommendation 
performance of a student is the average result obtained over all 
steps in the corresponding interaction sequence. More 
intuitively, the overall performance of the recommender 
system can be evaluated using recall-based metrics, such as hit 
rate, and precision-based metrics, such as NDCG. These can be 
calculated using Eq. (3) and Eq. (7), respectively. 

ℎ𝑖𝑡@𝑁 =
Σ𝑢

1
|𝐼𝑢|

Σ𝑡=1
|𝐼𝑢|𝑓𝑢,𝑡

#𝑢𝑠𝑒𝑟
 

(3) 

.

𝑁𝐷𝐶𝐺@𝑁 =
Σ𝑢

1
|𝐼𝑢|

Σ𝑡=1
|𝐼𝑢| 𝐷𝐶𝐺@𝑁(𝑃𝑢,𝑡

𝑁 )
𝑖𝐷𝐶𝐺@𝑁

#𝑢𝑠𝑒𝑟
.
 

(4) 

𝐷𝐶𝐺@𝑁(𝑃𝑢,𝑡
𝑁 ) =∑  

|𝐾|

𝑖=1

ℎ𝑖
log2⁡1 + 𝑖

. 

(5) 

ℎ𝑖 = {
1 𝑃𝑢,𝑡,𝑖

𝑁  inI 

0  otherwise. 
. 

(6) 

𝑖𝐷𝐶𝐺@𝑁 = 𝐷𝐶𝐺@𝑁 (
𝑁
𝑢, 𝑡

) 
(7) 

where ⁡𝑢,𝑡
𝑁  represents the recommended sequence, which 

includes courses of interest to the student that have not been 
recommended previously. 

V. RECOMMENDATION AGENT 

Within the recommendation agent, the recommendation 
process is viewed as a Markov Decision Process (MDP), 
providing a more suitable framework for recommender systems 
due to its consideration of the long-term impact of each 
recommendation and the corresponding expected values. Fig. 2 
shows the diagram of the model. 

Assuming 𝜋(𝑖 ∣ 𝑠𝑢,𝑡)  represents the probability of 

recommending course 𝑖  given the student's state 𝑠𝑢,𝑡 , the 

generation function 𝔾 can be defined as follows: 

𝑃𝑢,𝑡
𝑁 = 𝔾(𝑠𝑢,𝑡 , 𝐼) = Top𝑖∈𝐼⁡𝑁(𝜋(𝑖 ∣ 𝑠𝑢,𝑡) × 𝑚𝑢,𝑖

𝑡 ) (8) 

where, 𝜋(𝑖 ∣ 𝑠𝑢,𝑡)  is the recommendation probability of 

course 𝑖 at time 𝑡, and 𝑚𝑢,𝑖
𝑡  is the element of course 𝑖  in the 

masking vector 𝑚𝑢
𝑡 . The value of 𝑚𝑢,𝑖

𝑡  is 0 or 1, indicating 

whether the student has previously selected that course. 

At time 𝑡 , the recommendation probability 𝜋(𝑖 ∣ 𝑠𝑢,𝑡) for 

course 𝑖 can be obtained as: 

𝜋(𝑖 ∣ 𝑠𝑢,𝑡) = Softmax⁡(𝑜𝑢,𝑡
𝑖 ) (9) 

where, 𝑠𝑢,𝑡  is a obtained l-dimensional vector (which will 

be discussed later), and 𝑜𝑢,𝑡
𝑖  is the i-th element in the vector 

𝑜𝑢,𝑡 defined as: 

𝑜𝑢,𝑡 = 𝜎̂(𝑊𝑠𝑠𝑢,𝑡 + 𝑏𝑠). (10) 

where 𝜎̂  is the ReLU activation function, 𝑊𝑠 ∈ ℝ𝑀×𝑙  and 
𝑏𝑠 ∈ ℝ𝑀 are the parameter matrix and bias, respectively. The 
softmax function is defined as: 

Softmax⁡(𝑜𝑢,𝑡
𝑖 ) =

exp𝑜𝑢,𝑡
𝑖

∑  𝑘∈𝐼  exp
𝑜𝑢,𝑡
𝑘  (11) 

 
Fig. 2. Model. 
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In the formula, 𝑠𝑢,𝑡  is the state of student u at time t, 

obtained through the following state transition process: 

𝑠𝑢,𝑡 = 𝕋(𝑠𝑢,𝑡−1, 𝑓𝑢,𝑡−1, 𝑃𝑢,𝑡−1
𝑁 ) = 𝑆(𝑠𝑢,𝑡−1, 𝑎̂𝑢,𝑡−1) (12) 

where, 𝑃𝑢,𝑡−1
𝑁  is the recommended list, 𝑓𝑢,𝑡−1  is the 

student's feedback, S is the internal state transition process, and 

𝑎̂𝑢,𝑡−1 is the action used to represent 𝑃𝑢,𝑡−1
𝑁  and 𝑓𝑢,𝑡−1 defined 

as: 

𝑎̂𝑢,𝑡−1 = argmax
𝑎∈𝐴𝑢,𝑡−1

(𝜋(𝑎 ∣ 𝑠𝑢,𝑡−1) × 𝑚𝑢,𝑖
𝑡−1). (13) 

where, 𝐴𝑢,𝑡−1 is the auxiliary set for feedback in different 

situations, defined as: 

𝐴𝑢,𝑡−1 = {
𝑃𝑢,𝑡−1
𝑁 ∩ 𝐼𝑢 , 𝑓𝑢,𝑡−1 > 0

𝑃𝑢,𝑡−1
𝑁 ,  otherwise. 

 (14) 

The internal state transition process 𝑠𝑢,𝑡 = 𝑆(𝑠𝑢,𝑡−1, 𝑎̂𝑢,𝑡−1) 

is obtained through an RNN with Gated Recurrent Unit (GRU). 

Firstly, 𝑎̂𝑢,𝑡−1  should be transformed into the input of 

RNN𝑥𝑢,𝑡  at time t. To more effectively incorporate feedback 

into RNN, the input 𝑥𝑢,𝑡  is obtained through the following 

formula: 

𝑥𝑢,𝑡 = 𝐸(𝑎̂𝑢,𝑡−1) = {
𝑒̂(𝑎̂𝑢,𝑡), 𝑓𝑢,𝑡 > 0

−𝑒̂(𝑎̂𝑢,𝑡),  otherwise. 
 (15) 

where, 𝑒̂(𝑎̂𝑢,𝑡) ∈ ℝ𝑙  is the l-dimensional embedding of 

course 𝑎̂𝑢,𝑡 also a part that needs to be learned in the proposed 

model. Using E, positive and negative feedback can be clearly 
distinguished for a given 𝑎̂𝑢,𝑡. 

According to the state transition of GRU, 𝑠𝑢,𝑡 =

𝑆(𝑠𝑢,𝑡−1, 𝑎̂𝑢,𝑡−1) can be obtained as follows: 

𝑠𝑢,𝑡 ⁡= 𝑆(𝑠𝑢,𝑡−1, 𝑎̂𝑢,𝑡−1) = (1 − 𝑍(𝑥𝑢,𝑡, 𝑠𝑢,𝑡−1)) ⊙ 𝑠𝑢,𝑡−1

⁡+𝑍(𝑥𝑢,𝑡, 𝑠𝑢,𝑡−1) ⊙ 𝑆̃(𝑥𝑢,𝑡, 𝑠𝑢,𝑡−1).
 (16) 

where, ⊙  represents the element-wise product, Z is the 

function of the update gate, 𝑆̃  is the function generating 
candidate states, obtained through the following formulas: 

𝑍(𝑥𝑢,𝑡 , 𝑠𝑢,𝑡−1) = 𝜎(𝑊𝑧𝑥𝑢,𝑡 + 𝑈𝑧𝑠𝑢,𝑡−1) (17) 

𝑆̃(𝑥𝑢,𝑡 , 𝑠𝑢,𝑡−1) = tanh⁡(𝑊𝑥𝑢,𝑡 + 𝑈(𝑗𝑢,𝑡 ⊙ 𝑠𝑢,𝑡−1))
 

(18) 

where, 𝜎  is the sigmoid activation function, 𝑊𝑧 ∈

ℝ𝑙×𝑙 , 𝑈𝑧 ∈ ℝ𝑙×𝑙 ,𝑊 ∈ ℝ𝑙×𝑙  and 𝑈 ∈ ℝ𝑙×𝑙  are parameter 
matrices, and 𝑗𝑢,𝑡  is the reset gate, obtained through the 

following formula: 

𝑗𝑢,𝑡 = 𝜎(𝑊𝑗𝑥𝑢,𝑡 + 𝑈𝑗𝑠𝑢,𝑡−1) (19) 

where, 𝑊𝑗 ∈ ℝ𝑙×𝑙 and 𝑈𝑗 ∈ ℝ𝑙×𝑙  are parameter matrices. 

In the warm-start model, there is an additional component 
used to merge student historical information. 

Assuming 𝐼𝑢  is the set containing all historical courses 

related to student u (it should be noted that, 𝐼𝑢 ∩ 𝐼𝑢 = ∅, and if 

𝑖 ∈ 𝐼𝑢, then 𝑚𝑢,𝑖
0 = 0 ), i.e., courses from the student's history 

cannot be selected during the interaction. 

In particular, the latent vector ℎ𝑢  representing student u's 
historical items is obtained through the following formula: 

ℎ𝑢 = tanh⁡(∑  

𝑖∈𝐼𝑢

 𝑒(𝑖)) (20) 

where, 𝑒(𝑖) ∈ ℝ𝑙   is another l-dimensional embedding 
defining course i, which also needs to be learned and is 
different from 𝑒̂𝑖. 

Additionally, to adaptively balance the effects of  ℎ𝑢  and 

𝑠𝑢,∗ an External Memory Gated Recurrent Unit (EMGRU) is 

proposed, with detailed descriptions as follows. 

Firstly, the state 𝑠𝑢,𝑡, is obtained according to the formula, 

then, a new integrated state 𝑠̂𝑢,𝑡  used to generate course 

selection probabilities is obtained through the formula: 

𝑠̂𝑢,𝑡 = 𝑑𝑢,𝑡 ⊙ 𝑠𝑢,𝑡 + (1 − 𝑑𝑢,𝑡) ⊙ ℎ𝑢 (21) 

where, 𝑑𝑢,𝑡  is the balance gate, which can control the 

impact of static  ℎ𝑢 and dynamic 𝑠𝑢,𝑡. 

The balance gate 𝑑𝑢,𝑡  can be obtained through the 

following formula: 

𝑑𝑢,𝑡 = 𝜎(𝑊𝑑ℎ𝑢 + 𝑈𝑑𝑠𝑢,𝑡) (22) 

where, 𝑊𝑑 ∈ ℝ𝑙×𝑙 and 𝑈𝑑 ∈ ℝ𝑙×𝑙 are parameter matrices. 

It is noteworthy that ℎ𝑢 or 𝑠̂𝑢,𝑡 does not affect the transition 

process 𝕋  of state 𝑠𝑢,𝑡  and ℎ𝑢  only affects the generation of 

course selection probabilities. In other words, the static and 
dynamic branches are independent of each other. In summary, 
the specific structure of the EMGRU unit is shown in Fig. 3. 

 
Fig. 3. EMGRU unit. 

Finally, the selection probability 𝜋(𝑖 ∣ 𝑠̂𝑢,𝑡)  is obtained 

through 𝑠̂𝑢,𝑡  rather than the state, 𝑠𝑢,𝑡  and thus the course 

selection probability is defined as follows: 

𝜋(𝑖 ∣ 𝑠̂𝑢,𝑡) = Softmax⁡(𝑜̂𝑢,𝑡
𝑖 ) (23) 

where, 𝑜̂𝑢,𝑡 = 𝜎̂(𝑊𝑠𝑠̂𝑢,𝑡 + 𝑏𝑠). 
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The parameter set of the warm-start model is 𝜃̂ =
𝜃̃⋃{𝑒(∗),𝑊𝑑 , 𝑈𝑑} . The overall architecture of the warm-start 
model is shown in Fig. 4. 

 

Fig. 4. The overall architecture of the warm-start model. 

VI. MODEL TRAINING 

In this section, we will describe how to train the proposed 
model in the sequential interaction between the 
recommendation agent and the environment. 

A. Reinforcement Learning 

The goal of the learning algorithm in this section is to 
maximize the expected long-term recommendation reward, 
where 𝜃  is learned through the interaction process 𝐸𝑢 for each 
student 𝑢. Specifically, 𝐸𝑢  represents the complete interaction 
process obtained by the recommendation agent for student 𝑢 
under the current parameters. 

Generally, an 𝐸𝑢  interaction process includes the 

immediate reward 𝑉𝑢,𝑡  at time t, state 𝑠𝑢,𝑡 , and action 𝑎̂𝑢,𝑡 , 

defined as: 

𝐸𝑢 = [𝑠𝑢,1, 𝑎̂𝑢,1, 𝑓𝑢,1, 𝑉𝑢,1, … , 𝑠𝑢,𝑀 , 𝑎̂𝑢,𝑀 , 𝑓𝑢,𝑀, 𝑉𝑢,𝑀] (24) 

where, 𝑠𝑢,𝑡  is generated by Equation (19) 𝑎̂𝑢,𝑡  is obtained 

by Equation (16) and 𝑓𝑢,𝑡. Thus, 𝑉𝑢,𝑡 can be computed as: 

𝑉𝑢,𝑡 = {
1.0, 𝑓𝑢,𝑡 > 0

−0.2, otherwise.
 (25) 

where 1.0 and -0.2 are values determined based on 
experience. 

To maximize the expected cost 𝐽 , each action 𝑎̂𝑢,𝑡 
corresponds not only to an immediate reward  𝑉𝑢,𝑡,  but also to 

a long-term reward 𝑅𝑢,𝑡, computed as follows: 

𝑅𝑢,𝑡 = Σ𝑘=0
𝑀−𝑘𝛾𝑘𝑉𝑢,𝑡+𝑘 (26) 

where 𝛾 ∈ [0,1]   is the discount factor. The objective 
function J is defined as: 

𝐽 = 𝔼𝑠𝑢,1,𝑎𝑢,1,…[𝑅𝑢,𝑡] (27) 

The parameter 𝜃  of the recommendation agent can be 
optimized using the gradient ascent method: 

𝜃 = 𝜃 + 𝜂∇𝜃𝐽 (28) 

where 𝜂  is the learning rate, and the gradient ∇𝜃𝐽(𝜃)  is 
given by: 

∇𝜃𝐽 = ∑  

𝑀

𝑡=1

𝛾𝑡−1𝑅𝑢,𝑡∇𝜃log⁡𝜋(𝑎̂𝑡 ∣ 𝑠𝑢,𝑡) (29) 

In the standard practice of applying REINFORCE, the 
interaction process should be a complete 𝐸𝑢, which means the 
parameters should be updated after completing the interaction 
process for student 𝑢 . However, the lengths of student 
interactions 𝐼 ∗ can vary significantly. For example, |𝐼𝐴| = 20, 
but |𝐼𝐵| = 200 . This causes large variances infor different 
students at the same time t. Moreover, due to the accumulation 
of excessive negative rewards, long-term interaction processes 
can hide positive results, making it challenging for the 
recommendation agent to obtain positive training samples. 
Therefore, a recommendation agent trained using traditional 
REINFORCE learning cannot achieve satisfactory 
recommendation performance. 

To address this issue, this paper proposes to divide the 
original 𝐸  into 𝐼𝑢/𝐵  sub-interaction processes and restart the 
reward accumulation at the beginning of each sub-interaction 

process. The learning process for both 𝜃̂  and 𝜃  remains the 
same. The detailed processes of the learning process and the 
sub-interaction process generation are shown in Algorithm (1) 
and Algorithm (2), respectively. It should be noted that in the 
warm-start scenario, to ensure sufficient training data, the total 
length of the interaction process for each student u in the 

training phase is equal to |𝐼𝑢 ∪ 𝐼𝑢| . At the same time, the 

recommendation agent can choose courses from 𝐼𝑢. However, 
the length of the interaction process is still equal to |𝐼𝑢|, and 
during the testing phase, the recommendation agent cannot 

select courses from 𝐼𝑢 for each student u. 

B. Supervised Learning 

Another approach to training the recommendation agent is 
to optimize it using supervised learning in a short-term 
prediction scenario and then apply it to a long-term testing 
environment. 

To facilitate the transition of the recommendation agent 
from short-term to long-term prediction scenarios, the neural 
network architecture for the recommendation agent under 
supervised learning and reinforcement learning should be 
consistent. The only difference is that explicit labels need to be 
provided for supervised learning, and these labels are the actual 
course selections made by students at each time step. 

Let 𝐼𝑢  denote the actual sequence of courses chosen by 
student u over time. To maximize the accuracy of short-term 

predictions, this paper uses cross-entropy 𝐽, defined as the cost 
function for supervised learning: 

𝐽 = −Σ𝑖=1
𝐵 log⁡(𝜋(𝐼𝑢,𝑖 ∣ 𝑠𝑢,𝑖)) (30) 

where 𝜃 can be updated as follows: 

𝜃 = 𝜃 − 𝜂∇𝜃𝐽 (31) 

Compared to the reinforcement learning approach, the 
supervised learning method is closer to traditional session-
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based RNNs, where each recommended step has a specific 
corresponding label for the training signal. 

Furthermore, before applying reinforcement learning, fine-
tuning the recommendation agent through supervised learning 
can be performed. This can help the reinforcement learning-
based recommendation agent start from a relatively good 
policy rather than a random one, thus accelerating the 
convergence speed of reinforcement learning. 

VII. EXPERIMENTS 

In this section, a substantial number of experiments were 
conducted to demonstrate the advantages of the proposed 
method in long-term recommendations and showcase the 
effectiveness of the core components of the proposed model. 

A. Evaluation Datasets and Experimental Settings 

Two offline real-world benchmarks, 
Secondary_school_curriculum 100K and 
Secondary_school_curriculum 1M, were used to evaluate the 
proposed model. Secondary_school_curriculum 100K contains 
100,000 rating records about 943 students and 1682 courses. 
Secondary_school_curriculum 1M includes one million rating 
records about 6040 students and 3900 courses. 

The proposed model was evaluated using the previously 
mentioned interaction environment to assess the performance 
of the proposed method and other methods. In the experiments, 
a 1-layer RNN and GRU with a hidden layer size of 100, 
matching the embedding size, are used. The size of B is set to 
20, and γ is set to 0.9. For experiments on the 100K and 1M 
datasets, the proposed model is optimized using Adam with a 
learning rate of 0.005. 

B. Benchmark 

Pop: This algorithm always recommends the most popular 
items in the training set. While simple, it often serves as a 
powerful baseline. 

Linear-UCB (L-UCB): A linear bandit algorithm, a widely 
used and mature multi-armed bandit algorithm. In this study, a 
context-independent bandit algorithm was used since content 
information was not considered. Course embeddings were 
obtained through matrix factorization (MF) methods. 

ε-greedy: Similar to Linear UCB, but the balance between 
exploration and exploitation is adjusted by tuning the ε 
parameter. Course embeddings were also obtained through MF. 

DQN (Deep Q-Network): A deep reinforcement learning 
algorithm based on value functions. 

SARSA (State-Action-Reward-State-Action): A classic 
policy-based reinforcement learning algorithm commonly used 
as a benchmark. 

Actor-Critic: A deep reinforcement learning algorithm that 
combines value function and policy methods. The architecture 
proposed in was used for comparison. 

PPO (Proximal Policy Optimization): An advanced 
reinforcement learning algorithm that improves training 
stability by adding an "agent" constraint during policy updates. 

Among these algorithms, Pop, Linear-UCB, and ε-greedy 
are traditional recommender systems or multi-armed bandit 
algorithms, while DQN, SARSA, Actor-Critic, and PPO are 
classical or advanced algorithms in the field of reinforcement 
learning. 

C. Warm-start Model Comparative Experiment 

In the experiment, a comparative study of warm-start 
models was conducted on the 100K, and the results are shown 
in Table Ⅰ. In this table, 𝑝 = 10% means that 10% of courses 
for each student u are retained as the warm-start historical set 

𝐼𝑢, and five different p values are considered in the experiment. 

Specifically, the historical data 𝐼𝑢 for each student u in the test 
set was also used to train static models like BPR and NeuCF 
because these static models need to obtain corresponding 

student representations and are evaluated without using 𝐼𝑢 
during testing. However, the historical data of test students was 
not used to train other models. 

TABLE I.  NDCG@10 COMPARISON OF THE WARM-START MODELS ON 

100K DATASET 

 p=10% p=30% p=50% p=70% p=90% 

Pop 2.90% 2.16% 1.65% 1.31% 1.48% 

BPR 3.41% 3.25% 2.89% 2.74% 3.23% 

NeuCF 3.51% 3.33% 3.02% 2.86% 3.35% 

sRNN 8.54% 6.92% 5.45% 4.05% 3.66% 

sl-cold 8.97% 6.76% 5.47% 3.96% 3.40% 

rl-cold 14.93% 12.11% 8.88% 1.24% 3.69% 

sl+rl-cold 15.54% 12.53% 9.38% 6.32% 3.71% 

sl-warm 8.65% 6.79% 5.37% 4.73% 4.42% 

rl-warm 13.81% 11.53% 8.37% 6.76% 4.44% 

sl+rl-warm 14.34% 12.07% 9.64% 7.90% 6.18% 

The proposed method's large-scale warm-start model 
significantly outperforms baseline models. With an increase in 
p, the warm-start model demonstrates significant 
improvements in HR and NDCG. These results suggest that 
incorporating historical data can enhance the model's 
performance if the historical data is sufficiently rich. It is noted 
that experiments with larger p values are more challenging than 

those with smaller p values because the total number of 𝐼𝑢 ∪ 𝐼𝑢 
is fixed. Specifically, larger p values result in a smaller correct 
candidate set 𝐼𝑢 and a shorter reasoning process. Therefore, the 
proposed model's performance is relatively better at smaller p 
values. Additionally, training the recommendation agent 
through supervised learning generally improves HR and 
NDCG performance. Furthermore, this is particularly effective 
for the larger 1M dataset. Without supervised pre-training, the 
rl-warm model cannot even outperform sRNN at p=90%. 
Conversely, the gap between sRNN and sl+rl-warm is 
significant. 

D. Long-Term Prediction Performance Comparison 

To validate the performance of the proposed model in long-
term recommendations, Fig. 5 presents the recommendation 
results of various comparative methods at different stages. The 
experimental results are obtained from selected students in the 
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respective test sets. Specifically, the size of the selected student 
set 𝐼𝑢 is above average because students with longer histories 
can more clearly reveal the performance of long-term 
recommendations. Additionally, the results for student u are 
divided into five different stages: [0%,20%), [20%,40%), 
[40%,60%), [60%,80%), and [80%,100%], where [𝑠%, 𝑒%) 
denotes the steps between (𝑠% × 𝐼𝑢) and (𝑒% × 𝐼𝑢) during the 
entire interaction period. Furthermore, e is used to represent the 
range [s%,e%) and provides the average results within that 
range. 

 

 
Fig. 5. The Recommendation performance at different stages. (a) HR@10 on 

100 K; (b) NDCG@10 on 100 K; (c) HR@10 on 1M; (d)NDCG@10 on 1M. 

As shown in Fig. 5, static models like NeuCF and BPR still 
achieve good hit rates in the first range [0%,20%). However, 
due to the almost unchanged recommendation results obtained 
by static methods, their performance sharply drops to 0% in the 
subsequent stages. Consequently, their overall HR and NDCG 
results are poor, as shown in Table Ⅱ. On the other hand, 
sequential methods like sl+rl-warm and sRNN can achieve hits 
in all ranges, adapting their respective recommendation results. 
Compared to sRNN, the proposed sl+rl-warm model 
significantly surpasses sRNN in the ranges [0%, 20%) to [60%, 
80%) because the proposed model already obtains a sufficient 
hit rate in the early stages. Since 𝐼𝑢  has a fixed size, fewer 
courses can be hit in the last range [80%, 100%]. Therefore, the 
performance of sl+rl-warm is almost equivalent to that of RNN 
in the last range [80%, 100%]. All these results indicate that 
the proposed method can effectively adopt recommendation 
transfer in long-term recommendations. 

TABLE II.  TAB.6 HR@10 COMPARISON OF THE WARM-START MODELS 

ON 1M DATASET 

 p=10% p=30% p=50% p=70% p=90% 

Pop 6.83% 5.73% 5.04% 4.52% 4.10% 

BPR 4.73% 4.73% 4.95% 4.99% 5.15% 

NeuCF 6.27% 6.56% 6.65% 6.99% 7.78% 

sRNN 16.55% 17.16% 17.27% 17.67% 18.52% 

sl-cold 31.31% 26.99% 22.92% 17.82% 9.63% 

rl-cold 41.65% 36.93% 32.07% 26.07% 14.73% 

sl+rl-cold 45.15% 40.98% 33.24% 27.28% 15.15% 

sl-warm 23.39% 23.23% 22.07% 16.89% 8.59% 

rl-warm 42.23% 35.32% 29.53% 26.51% 16.09% 

sl+rl-warm 45.06% 43.88% 37.14% 31.58% 21.20% 

E. Impact of EMGRU 

EMGRU is crucial in the warm-start model as it can 
adaptively adjust the dynamic RNN state and static historical 
representation to generate 𝑠̂𝑢,𝑡 . To study the impact of this 

adaptive balance, the experiment considered four different 
settings combining RNN states and historical states: 1) using 
only RNN states (s); 2) using only historical representations 
(ℎ); 3) the combination of historical representations and RNN 
states (𝑠 + ℎ); 4) the combination of historical representations 
and RNN states with a balanced gate (𝑠 + ℎw/). 

As shown in the Table Ⅲ, the method with only ℎ performs 
poorly because ℎ𝑢  is unchangeable throughout all interaction 
processes, and the fixed ℎ𝑢  cannot generate different 
recommendation results at different times. On the other hand, 
when the minimum setting is 𝑝 = 10%, the method with only s 
surpasses the combination methods 𝑠 + ℎ and 𝑠 + ℎw/ gate in 
terms of HR because the data volume of ℎ𝑢 is not sufficient. 
However, as p increases, the combination methods can 
outperform the method with only s. Moreover, adapting the 
combination of h and s with a gate generally has a better effect 
than mixing h and s with an equal constant. These results 
indicate that the effects between  𝑠𝑢,𝑡 and ℎ𝑢 are non-fixed and 

should be adjusted according to the current situation. 

TABLE III.  NDCG@10 COMPARISON OF THE WARM-START MODELS ON 

1M DATASET 

 p=10% p=30% p=50% p=70% p=90% 

Pop 2.03% 1.50% 1.18% 0.92% 0.81% 

BPR 1.14% 1.05% 0.96% 0.84% 0.92% 

NeuCF 1.74% 1.62% 1.37% 1.26% 1.53% 

sRNN 3.26% 3.55% 3.37% 3.30% 3.79% 

sl-cold 5.63% 4.37% 3.37% 2.53% 1.31% 

rl-cold 8.74% 7.09% 5.41% 3.92% 2.28% 

sl+rl-cold 11.30% 9.31% 6.78% 4.96% 2.50% 

sl-warm 3.97% 3.51% 2.98% 2.08% 1.11% 

rl-warm 9.02% 7.47% 5.44% 4.19% 2.71% 

sl+rl-warm 11.62% 9.91% 7.02% 5.09% 3.61% 
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F. Convergence Analysis 

To demonstrate the effectiveness of the settings in the 
REINFORCE algorithm, Fig. 6 illustrates the performance 
curves of different optimization algorithms in the warm-start 
(p=50%) scenario on the Secondary_school_curriculum 100K 
dataset. 

 
Fig. 6. The Learning curves of different algorithms in the warm-start.  

Clearly, the performance of supervised learning methods 
with complete interaction processes (blue line) or the 
corresponding separated sub-interaction processes (red line) is 
similar, indicating that dividing the entire interaction process 
into several sub-interaction processes does not improve the 
accuracy of recommendations. Similarly, the performance of 
the basic REINFORCE algorithm (yellow line) is inferior and 
even significantly different from methods based on supervised 
learning. However, the performance of the special 
REINFORCE method (purple line) shows a significant 
improvement, as separating and restarting the reward 
accumulation for overly long interaction processes can obtain 
more useful self-generated training labels for reinforcement 
learning. Although this approach is simple, it is highly 
effective. 

G. Recommendation Behavior Analysis 

To analyze the recommendation behavior of the 
recommendation agent, the experiment provides the average 
results of the relevant popularity and Hit@10 for all test 
students on the Secondary_school_curriculum 100K dataset at 
each step t in the warm-start scenario, as shown in Fig. 7. 

Thus, the recommendation agent in this study gradually 
evolves from widespread recommendations to personalized 
recommendations and can accurately hit courses within the 
specified range. 

H. Dynamic Recommendation Analysis 

To evaluate the effectiveness of the dynamic 
recommendation process, the experiment randomly selected 
several cases and provided the recommendation results of the 
proposed model on the dataset. For each case, a sequence of 
sequentially recommended courses is displayed for a specific 
student. It is important to note that, for ease of presentation, 
only one course is displayed in the Top-10 ranking list, i.e. 
𝑎̂𝑢, 𝑡. Specifically, for each case from (a) to (c), the results 
from step 0 to step 14 are always shown. On the other hand, for 
each case from (d) to (e), the results of a randomly selected 
consecutive 15 steps within the specified range are displayed. 

 
Fig. 7. Characteristics at different time steps in the warm-start scenario. (a) 

Hit@10; (b) The average results of the relevant popularity. 

It can be observed that the proposed method can adaptively 
adjust recommendations based on past unsuccessful 
experiences. For example, in case (a), the first two 
recommendations are incorrect, but the subsequent four 
recommendations are correct. These results indicate that the 
proposed method can effectively change recommended courses 
based on previous feedback from students. Generally, the 
proposed model can dynamically update student states and 
modify recommendation results based on corresponding 
feedback. 

In contrast, static methods cannot automatically adjust 
recommendation results and only make positive predictions at 
the beginning by correctly predicting recommendations, but 
they always make negative predictions. Therefore, compared to 
static methods, the recommendation approach in the proposed 
model is more effective. 

VIII. CONCLUSION 

In this paper, a new Top-N deep reinforcement learning 
recommender system is proposed to address the problem of 
long-term recommendations. In the proposed model, the 
recommendation process is considered as a Markov decision 
process. Thus, an RNN is used to simulate the sequential 
interaction between the agent (recommender system) and the 
environment (students). Moreover, the proposed model can be 
applied to warm-start scenarios. Additionally, the proposed 
model does not depend on any content information but only 
relies on the interaction between the environment and the 
agent, meaning it can effectively be applied in environments 
without sufficient content information. Experimental results 
show that, compared to traditional Top-N recommendation 
methods, the proposed method has better recommendation 
performance. 
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