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Abstract—Imbalanced datasets pose significant challenges in
healthcare for developing accurate predictive models in medi-
cal diagnostics. In this work, we explore the effectiveness of
combining resampling methods with machine learning algo-
rithms to enhance prediction accuracy for imbalanced heart and
lung disease datasets. Specifically, we integrate undersampling
techniques such as Edited Nearest Neighbours (ENN) and In-
stance Hardness Threshold (IHT) with oversampling methods
like Random Oversampling (RO), Synthetic Minority Oversam-
pling Technique (SMOTE), and Adaptive Synthetic Sampling
(ADASYN). These resampling strategies are paired with classifiers
including Decision Trees (DT), Random Forests (RF), K-Nearest
Neighbours (KNN), and Support Vector Machines (SVM). Model
performance is evaluated using accuracy, precision, recall, F1
score, and the Area Under the Curve (AUC). Our results show
that tailored resampling significantly boosts machine learning
model performance in healthcare settings. Notably, SVM with
ENN undersampling markedly improves accuracy for lung can-
cer predictions, while SVM and RF with IHT achieve higher
validation accuracies for both diseases. Random oversampling
shows variable effectiveness across datasets, whereas SMOTE and
ADASYN consistently enhance accuracy. This study underscores
the value of integrating strategic resampling with machine learn-
ing to improve predictive reliability for imbalanced healthcare
data.
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I. INTRODUCTION

The accurate prediction of medical conditions can play
a key role in improving patient outcomes and healthcare
systems. Early detection of disease is essential for anticipating
its clinical progression and developing effective treatments.
However, accurate predictions remain a significant challenge
[1].

Such predictions enable for well-informed decisions on
diagnosis, intervention, and treatment by both patients and
healthcare practitioners. Early detection of potential health is-
sues enables timely, potentially life-saving interventions. These
interventions significantly improve patient survival and quality
of life. Furthermore, more accurate disease forecasts can help
reduce healthcare costs by minimising unnecessary diagnostic
tests and treatments. Hence, robust predictive models are
clearly needed to enhance forecasting accuracy in clinical
settings [2], [3].

Imbalanced datasets, however, present a significant chal-
lenge to achieving high predictive performance. This issue
arises when one class, often a crucial medical condition, is
significantly under-represented compared to the majority class.

As a result, models trained on such datasets may become bi-
ased towards the majority class. This bias reduces the accuracy
of minority-class predictions [4].

Precise identification of the minority class is often crucial
in medical diagnostics, especially in screening programs where
identifying disease-positive patients is paramount. The conse-
quences of misclassification in these cases can be severe. The
dominance of the majority class in imbalanced datasets can
compromise a model’s ability to detect rare but critical cases.
This can lead to delayed or missed diagnoses, suboptimal
treatment, and potential healthcare disparities [5].

In this paper, we propose a novel approach to predictive
modelling for imbalanced healthcare data, specifically target-
ing heart and lung disease datasets. Our primary contribution is
the integration of advanced resampling techniques with estab-
lished machine learning algorithms to address data imbalance
effectively. This study is driven by the following research
question:

How can resampling strategies and machine learning
algorithms be combined to improve predictive accuracy on
imbalanced healthcare datasets?

To answer this question, we pursue the following research
objectives:

• Evaluate the effectiveness of various resampling tech-
niques (ENN, IHT, RO, SMOTE, ADASYN) in mit-
igating class imbalance in heart and lung disease
datasets.

• Compare the performance of multiple machine learn-
ing algorithms (DT, RF, KNN, SVM) when paired
with different resampling strategies.

• Determine the optimal combination of resampling
methods and classifiers for improving disease predic-
tion accuracy while maintaining computational effi-
ciency.

• Assess the generalisability of resampling strategies
across distinct medical conditions (heart disease and
lung cancer) and provide insights into their applica-
bility in real-world healthcare settings.

Various resampling strategies have been developed to
ameliorate these challenges. Oversampling approaches, such
as Random Oversampling, SMOTE, and ADASYN, increase
the representation of the minority class by either replicat-
ing existing minority instances or generating new synthetic
samples. Conversely, undersampling methods reduce the size
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of the majority class by removing selected instances, which
allows algorithms greater opportunity to learn minority-class
patterns [6], [7]. Despite their promise, each technique has
limitations. For instance, oversampling methods risk overfitting
by replicating minority instances or generating low-variance
synthetic points. Undersampling, on the other hand, may
discard potentially valuable information.

Recent studies confirm that such resampling methods can
significantly enhance the analysis and interpretation of medical
data, which enables more accurate and reliable predictions [8]–
[10]. However, questions remain about how best to integrate
these techniques within different disease contexts. This is
particularly true for conditions like heart and lung diseases,
which have distinct patterns of risk factors, symptomatology,
and prevalence rates.

Our experiments demonstrate that strategic combinations of
sampling methods and machine learning models significantly
improve both accuracy and reliability, providing a robust
framework for addressing the challenges posed by imbalanced
datasets in healthcare. Specifically, we find that Support Vector
Machines (SVM) coupled with ENN significantly enhance
lung cancer prediction accuracy. Moreover, SVM and Random
Forest models utilising IHT achieve high validation accura-
cies for heart and lung disease data. These findings surpass
traditional approaches in performance and illustrate a robust
framework for effectively addressing the challenges posed by
imbalanced medical datasets.

By systematically evaluating the impact of multiple resam-
pling techniques on predictive performance, this study provides
a comprehensive understanding of how to improve medical
data analysis in the presence of imbalance. Our findings
offer healthcare researchers and practitioners enhanced tools
for early disease detection and intervention, contributing to
improved patient care and outcomes.

II. RELATED WORK

A growing body of research has sought to refine predictive
modelling in healthcare by addressing the persistent challenge
of data imbalance. Although these works collectively demon-
strate the efficacy of outlier detection, resampling methods,
and advanced machine learning strategies, key uncertainties
persist regarding the transferability and consistency of these
approaches across different disease domains. This section
examines the existing literature, highlighting both substantial
progress and the outstanding questions that motivate our study.

A. Foundational Approaches to Imbalanced Data

Fitriyani et al. [11] developed a heart disease prediction
model integrating Density-based Spatial Clustering of Appli-
cations with Noise (DBSCAN) for outlier detection, hybrid
SMOTE-ENN for balancing training data, and XGBoost for
classification. Their results on the Statlog and Cleveland
datasets emphasise the gains possible when combining so-
phisticated outlier removal with carefully chosen resampling
techniques. However, their investigation focuses on a single
disease domain and two datasets, leaving open the question of
whether such hybrid pipelines would maintain similar levels
of performance when confronting data from different medical
conditions or with varying degrees of imbalance.

Khushi et al. [12] shifted attention to lung cancer pre-
diction, systematically comparing traditional classifiers and
imbalance strategies (including oversampling) on the PLCO
and NLST datasets. Their findings reinforce the significance
of well-chosen resampling techniques for boosting model
performance in highly skewed datasets. Yet, the study’s scope
largely confines itself to lung cancer, with minimal discussion
of how these strategies might generalise to other diseases -
particularly those with distinct clinical signatures, feature sets,
and imbalance ratios.

B. Feature Selection and Ensemble Classifiers

Ishaq et al. [13] proposed a feature-selection-based strat-
egy for predicting heart-failure survival, demonstrating how
SMOTE, combined with a Random Forest approach for feature
importance, can markedly improve predictive accuracy. This
underscores that well-targeted feature engineering, used in
tandem with resampling, can mitigate data imbalance. How-
ever, while they demonstrate promising gains, their approach
again centres on a single disease (heart failure) and does not
address whether similar techniques would be equally beneficial
for other conditions particularly where key feature sets differ
significantly (e.g. in lung disease).

Ghorbani et al. [14] examined multiple SMOTE variants
for educational data, illustrating how subtle algorithmic differ-
ences in resampling methods can translate into pronounced
differences in classifier performance. Although their work
concerns non-medical data, it offers a compelling reminder
that each dataset may respond uniquely to different sampling
methods. The question remains how to identify which under-
sampling or oversampling strategies e.g. ENN, IHT, SMOTE,
ADASYN are most compatible with specific disease datasets
that frequently exhibit high dimensionality, noisy features, or
overlapping classes.

C. Advanced Architectures and Cross-Domain Insights

Li et al. [15] demonstrated how complex, dual-stage
attention-based models with CBAM modules can handle data
imbalance in engineering fault diagnosis. While fault-diagnosis
data differ from clinical datasets, their positive results point
toward the adaptability of advanced architectures for skewed
classification problems. Nonetheless, applying such intricate
methods to medical data raises additional concerns of inter-
pretability and domain relevance, as well as the significant
computational overhead often associated with deep learning in
real-world clinical settings.

D. Summary of Gaps and Motivation

Despite these advancements, three primary gaps emerge:

1. Current studies typically focus on a single disease (e.g.
heart disease or lung cancer), limiting our understanding of
whether and how resampling methods generalise across con-
ditions with distinct pathophysiology, class ratios, and feature
distributions.

2. While various works explore SMOTE, ENN, or other
techniques, they frequently implement a single approach or
compare only a narrow set of sampling techniques. Similarly,
they often limit themselves to a small subset of classification
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algorithms, resulting in an incomplete picture of how different
combinations of sampling algorithms and machine learning
models might perform under different clinical constraints.

3. Many studies highlight accuracy gains, but relatively few
provide detailed insights into the computational trade-offs such
as training and inference times, resource consumption, or real-
time feasibility that are crucial for deployment in actual health-
care settings, for instance, Fitriyani et al. [11] and Khushi
et al. [12] focus on performance without efficiency analysis.
Moreover, interpretability and domain-specific constraints have
not always been sufficiently addressed when employing more
advanced modelling frameworks.

In light of these gaps, our study aims to:

1) Evaluate multiple resampling methods (ENN, IHT,
RO, SMOTE, and ADASYN) across two distinct dis-
eases: heart disease and lung cancer. By spanning
two clinically significant but different pathologies,
we shed light on how imbalanced data strategies
may generalise or require adaptation across disease
contexts.

2) Compare four diverse machine learning algorithms
(Decision Trees, Random Forests, K-Nearest Neigh-
bours, and Support Vector Machines) under each
resampling technique, thus providing a broader evi-
dence base on which model–sampling pairs work best
for specific disease datasets.

3) Examine computational efficiency and practicality,
reporting on training/validation/testing times and po-
tential interpretability issues, thereby informing real-
world clinical adoption.

By addressing these specific gaps, our research contributes
a deeper and more generalisable understanding of how to tailor
resampling approaches and classifier choices in the face of
disease-specific imbalances. This work ultimately aspires to
promote more robust, reliable, and domain-aware predictive
models in healthcare.

III. METHODOLOGY

We employ a straightforward yet comprehensive method-
ology (see Fig. 1) to address the challenges posed by data
imbalance in medical predictive modelling. Our process en-
compasses data preprocessing, various resampling strategies,
machine learning algorithm selection, and performance eval-
uation. The choice of each algorithm and sampling method
is guided by the characteristics of the classification tasks (i.e.
heart disease vs. lung disease) and by the need to mitigate
imbalance effectively.

A. Sampling Techniques

1) Undersampling Techniques: Edited Nearest Neighbours
(ENN) and Instance Hardness Threshold (IHT) are employed
to mitigate the effect of imbalanced datasets. ENN removes
misclassified or noisy observations by comparing each sample
to its k nearest neighbours, thereby cleansing borderline cases
in the dataset. In contrast, IHT identifies and removes “hard-
to-classify” instances based on their proximity to the decision
boundary, helping models concentrate on more informative
examples [16], [17]. By discarding problematic samples, both

methods aim to create a dataset that better represents minority-
class patterns without overwhelming the model.

2) Oversampling Techniques: Random Oversampling du-
plicates minority-class instances to balance the dataset, albeit
with a heightened risk of overfitting. To address this limitation,
we also use the Synthetic Minority Oversampling Technique
(SMOTE) and Adaptive Synthetic (ADASYN) sampling, both
of which generate synthetic examples of the minority class
[18], [19]. These strategies introduce diversity into training
data and reduce the bias towards the majority class, enabling
models to learn more nuanced decision boundaries.

B. Datasets Utilisation

Two publicly available datasets are utilised in this study.
The Kaggle Lung Cancer dataset [20] comprises 163,763
records with detailed patient information (including binary
labels denoting the presence of lung cancer). The heart dis-
ease dataset [21] from the UCI repository combines multiple
sources and focuses on 14 key attributes (out of an original
76) to predict the presence of cardiovascular disease. These
datasets were chosen for their relevance to clinical practice
and their relatively high degree of imbalance, offering an
appropriate testbed for evaluating sampling methods.

C. Machine Learning Algorithms

Four machine learning algorithms are employed to assess
the impact of each sampling strategy:

• Decision Trees (DT): An interpretable, rule-based
approach that partitions data into increasingly homo-
geneous subsets.

• Random Forests (RF): An ensemble of multiple deci-
sion trees, aggregating predictions to reduce overfitting
and enhance generalisability.

• K-Nearest Neighbours (KNN): A distance-based clas-
sifier capable of handling non-linear decision bound-
aries, sensitive to local data structure.

• Support Vector Machines (SVM): A robust method
for binary classification, especially effective in high-
dimensional spaces, using kernel functions to separate
classes with maximal margins.

Each algorithm is trained and evaluated on both datasets
with the aforementioned sampling techniques applied. This
setup allows for a direct comparison of how undersampling
and oversampling methods impact model accuracy, precision,
recall, and F1-score.

D. Methodological Flow and Evaluation

As summarised in Fig. 1, data preprocessing and re-
sampling are carried out first to correct for imbalance. The
selected models (DT, RF, KNN, and SVM) are then trained
on these preprocessed datasets. Finally, we measure predictive
performance using accuracy, precision, recall, and F1-score to
gauge the effectiveness of each sampling approach.
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Fig. 1. A three-phase approach to heart and lung disease classification, including data preprocessing, resampling techniques, machine learning model selection,
and performance evaluation.

IV. EXPERIMENTAL SETUP

This study investigates the effect of various resampling
strategies on the predictive accuracy of machine learning
models when dealing with imbalanced healthcare data from
Kaggle (lung cancer) and UCI Machine Learning Repository
(heart disease).

A. Dataset Description

1) Kaggle Lung Cancer Dataset: This dataset comprises
patient-level data intended for predicting the occurrence of
lung cancer. It includes features such as age, gender, smoking
history, and various diagnostic measurements. The primary
challenge stems from its imbalanced distribution, with a sig-
nificantly lower proportion of positive lung cancer instances
compared to negative ones.

2) UCI Heart Disease Dataset: This collection of patient
records is aimed at predicting the presence of heart disease.
It includes demographic information, symptomatology, and
diagnostic test results. Similar to the lung cancer dataset, it
is highly imbalance, with heart disease instances occurring
less frequently than negative cases, which makes it an ex-
cellent testbed for evaluating the effectiveness of resampling
techniques.

B. Data Collection and Preprocessing

Data were collected and rigorously preprocessed to ensure
quality and consistency. The preprocessing phase addressed
missing values, outliers, and normalisation:

• Mean Imputation for Missing Values: For each feature
containing missing entries, we replaced missing values

with the mean value of that feature across all available
data points:

µmissing =

∑n
i=1 xi

n
.

• Normalisation (Min–Max Scaling): We rescaled each
feature to a common range of [0, 1] using Min–Max
scaling:

x′ =
x−min(x)

max(x)−min(x)
,

ensuring that differences in the original data ranges
are preserved without distortion.

C. Sampling Techniques

Given the imbalanced nature of these datasets, we ap-
plied five resampling methods: two undersampling techniques
- Edited Nearest Neighbour (ENN) and Instance Hardness
Threshold (IHT) - and three oversampling techniques - Ran-
dom Oversampling (RO), Synthetic Minority Oversampling
Technique (SMOTE), and Adaptive Synthetic (ADASYN).

• Edited Nearest Neighbour (ENN): ENN refines the
dataset by removing samples that are misclassified
by their k-nearest neighbours, thereby enhancing the
purity of the minority class:

ENN(S) = {x ∈ S | class(x) = class(kNN(x))}.

• Instance Hardness Threshold (IHT): IHT iteratively
applies oversampling approaches and evaluates clas-
sifier performance on the modified dataset, aiming to
attain a balance that optimises the model’s sensitivity
to the minority class.
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• Random Oversampling (RO): RO duplicates instances
of the minority class to rebalance the dataset, albeit at
an increased risk of overfitting.

• SMOTE and ADASYN: Both SMOTE and ADASYN
generate synthetic minority examples, helping to bal-
ance class distribution and introduce diversity to the
training data. This prepares the model to generalise
more effectively from underrepresented classes.

D. Model Selection and Training

We selected four machine learning algorithms for evalua-
tion: Decision Trees, Random Forests, K-Nearest Neighbours,
and Support Vector Machines. These models represent a spec-
trum of complexity: from the relatively interpretable structure
of Decision Trees to the more sophisticated nature of SVMs.
The training process involved optimising hyperparameters for
each model using techniques such as grid search and cross-
validation to maximise overall performance.

E. Evaluation Metrics

We employed accuracy, precision, recall, and the F1-score
to evaluate model performance comprehensively. These metrics
were chosen not only to gauge overall accuracy but also to
assess the models’ ability to identify positive instances (recall)
and the reliability of those predictions (precision).

a) Precision:

Precision =
TP

TP + FP
,

where TP (true positives) are correctly predicted positive
instances, and FP (false positives) are incorrectly predicted
as positive. High precision in this work indicates that when
the model predicts a disease, it is likely correct.

b) Recall (Sensitivity):

Recall =
TP

TP + FN
,

where FN (false negatives) are positive instances incorrectly
predicted as negative. Recall here reflects the model’s capacity
to detect all relevant cases.

c) F1-Score:

F1 = 2 · Precision · Recall
Precision + Recall

.

This harmonic mean of precision and recall is especially
relevant when misclassifications either false positives or false
negatives carry significant risks, as is common in healthcare.

Finally, multiple runs were conducted for each model and
sampling combination to ensure the reliability of findings
and to capture performance variance across different trials.
This robust experimental structure enables a comprehensive
assessment of how well different resampling strategies address
data imbalance in healthcare predictive modelling.

V. RESULTS

A. Experiment with the Heart Dataset

Table I presents the results for the heart dataset. Overall,
Support Vector Machines (SVM) excelled in precision, partic-
ularly when paired with Edited Nearest Neighbours (ENN),
underlining its effectiveness in handling imbalanced data.
SVM thus appears well-suited to heart disease prediction,
consistently achieving high scores in precision, F1, and AUC.
These results are especially significant in medical diagnostics,
where balancing sensitivity and specificity can be challenging.
Notably, the AUC values were strong for Random Forest
(RF) with Instance Hardness Threshold (IHT) and SVM with
Adaptive Synthetic Sampling (ADASYN), further highlighting
SVM’s capacity to reduce false positives while maintaining a
high detection rate.

TABLE I. PERFORMANCE METRICS FOR VARIOUS CLASSIFIERS ON THE
HEART DATASET ACROSS DIFFERENT RESAMPLING TECHNIQUES,

DEMONSTRATING SUPERIOR PRECISION AND RECALL BY SVM AND RF

ENN IHT RANDOM SMOTE ADASYN

DT Precision 0.90 0.82 0.88 0.82 0.81
Recall 0.90 0.79 0.83 0.82 0.76
F1 Score 0.90 0.81 0.85 0.82 0.79
AUC 0.781 0.803 0.747 0.7361 0.7712

RF Precision 0.90 0.89 0.90 0.87 0.88
Recall 0.93 0.89 0.77 0.77 0.75
F1 Score 0.91 0.89 0.83 0.82 0.81
AUC 0.781 0.843 0.78 0.7806 0.804

KNN Precision 0.92 0.68 0.71 0.73 0.73
Recall 0.83 0.59 0.71 0.63 0.88
F1 Score 0.87 0.63 0.71 0.68 0.80
AUC 0.802 0.6449 0.705 0.719 0.7374

SVM Precision 0.96 0.95 0.93 0.74 0.91
Recall 0.93 0.75 0.74 0.94 0.90
F1 Score 0.95 0.84 0.83 0.83 0.90
AUC 0.618 0.8224 0.8305 0.8306 0.8779

Fig. 2 illustrates ROC curves for various classifiers on
the Heart Dataset across different resampling techniques,
further confirming that SVM and RF generally outperform
the other classifiers. Particularly noteworthy is ENN’s signif-
icant enhancement of SVM’s performance, as reflected in the
high AUC scores. Likewise, ADASYN combined with SVM
reached the highest AUC among the tested setups, indicating
its efficacy in tackling data imbalance. By comparison, the
RANDOM and SMOTE approaches yielded moderately lower
AUCs, underscoring the importance of carefully aligning sam-
pling methods with the dataset’s characteristics.

Table II indicates that computational efficiency varies with
the choice of resampling method. Decision Tree (DT) and
KNN demonstrate notably faster training times, especially
under the RANDOM and ADASYN schemes, suggesting
relatively low computational overhead. By contrast, SVM
exhibits longer training times particularly with RANDOM
highlighting a potential trade-off between speed and predictive
performance.
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(a) ADASYN. (b) ENN.

(c) IHT (d) RO

(e) SMOTE

Fig. 2. ROC curves for various classifiers on the Heart Dataset across
different resampling techniques. The curves demonstrate the superior

performance of SVM and RF, particularly with ENN and ADASYN. These
methods enhance the classifiers’ ability to handle imbalanced data, as

evidenced by high AUC values.

TABLE II. COMPARISON OF TRAINING, VALIDATION, AND TESTING
TIMES FOR DIFFERENT CLASSIFIERS ON THE HEART DATASET USING

VARIOUS RESAMPLING METHODS. NOTABLE DIFFERENCES IN
COMPUTATIONAL EFFICIENCY ARE OBSERVED, PARTICULARLY FOR SVM

AND RF

ENN IHT RANDOM SMOTE ADASYN

DT Training 0.0031 0.002 0.0001 0.0038 0.0001
Validation 0.013 0.010 0.0084 0.0084 0.0093
Testing 0.0151 0.0136 0.0050 0.0090 0.0006

RF Training 0.2885 0.0172 0.0802 0.0745 0.0438
Validation 0.0280 0.0080 0.0082 0.0170 0.0083
Testing 0.0280 0.0063 0.0104 0.0161 0.0133

KNN Training 0.0051 0.0001 0.0001 0.0035 0.0001
Validation 0.0160 0.0033 0.0111 0.0102 0.0111
Testing 0.0125 0.0099 0.0063 0.0128 0.0040

SVM Training 0.2191 0.0780 0.0577 0.0919 0.0825
Validation 0.0143 0.0114 0.0071 0.0088 0.0103
Testing 0.0121 0.0020 0.0077 0.0101 0.0056

B. Experiment with the Lung Dataset

Table III details the results for the lung dataset. Both
Decision Tree (DT) and Random Forest (RF) achieved bet-
ter precision when paired with ENN, IHT, and RANDOM
sampling, underlining their capacity for highly accurate lung
disease classification. However, DT’s slightly lower AUC
under RANDOM sampling and SMOTE suggests minor com-

promises in balancing sensitivity and specificity. While DT
occasionally overlooks some true cases, as evidenced by its
recall, RF’s flawless recall with ENN and IHT demonstrates
that it seldom misses positive instances. As a result, both DT
and RF prove highly dependable, with RF offering a small
edge in comprehensive patient identification.

TABLE III. PERFORMANCE METRICS FOR VARIOUS CLASSIFIERS ON THE
LUNG DATASET ACROSS DIFFERENT RESAMPLING TECHNIQUES.

PHENOMENAL PRECISION AND RECALL ARE ACHIEVED BY DT AND RF
WITH ENN AND IHT, WHILE SVM SHOWS CONSISTENTLY HIGH

PERFORMANCE

ENN IHT RANDOM SMOTE ADASYN

DT Precision 1 1 1 0.96 0.94
Recall 0.95 1 0.88 0.88 0.91
F1 Score 0.98 1 0.93 0.92 0.93
AUC 0.977 0.825 0.931 0.918 0.9041

RF Precision 1 1 1 0.92 0.95
Recall 1 1 0.88 0.98 0.93
F1 Score 1 1 0.94 0.95 0.94
AUC 1 0.93 0.931 0.94 0.934

KNN Precision 0.98 0.75 1 0.93 0.92
Recall 0.98 0.90 0.73 0.93 0.91
F1 Score 0.98 0.82 0.84 0.93 0.91
AUC 0.738 0.7375 0.8921 0.92 0.911

SVM Precision 1 1 1 0.95 0.96
Recall 1 1 0.90 0.95 0.96
F1 Score 1 1 0.95 0.95 0.96
AUC 0.9659 0.95 0.911 0.949 0.955

While KNN shows some variability particularly in preci-
sion with IHT it still maintains solid results in precision and
recall, indicating its ability to identify lung disease patients
accurately. By contrast, SVM consistently delivers near-perfect
performance across all evaluated metrics and resampling con-
figurations, highlighting its powerful capacity to discriminate
between diseased and healthy individuals. Its balanced high
precision and recall minimise both misdiagnoses and missed
diagnoses.

TABLE IV. TRAINING, VALIDATION, AND TESTING TIMES FOR
DIFFERENT CLASSIFIERS ON THE LUNG DATASET USING VARIOUS

RESAMPLING METHODS. DT AND KNN OFTEN REQUIRE MINIMAL
COMPUTATION WITH RANDOM AND ADASYN

ENN IHT RANDOM SMOTE ADASYN

DT Training 0.0001 0.0077 0.0001 0.0001 0.0081
Validation 0.0046 0.0098 0.0083 0.0102 0.0131
Testing 0.0085 0.0030 0.0085 0.0098 0.0202

RF Training 0.0193 0.0250 0.0999 0.0833 0.0329
Validation 0.0122 0.0107 0.0134 0.0169 0.0203
Testing 0.0110 0.0081 0.0110 0.0087 0.0123

KNN Training 0.0065 0.0017 0.0001 0.0015 0.0020
Validation 0.0081 0.0082 0.0100 0.0081 0.0142
Testing 0.0100 0.0067 0.0076 0.0146 0.0166

SVM Training 0.0080 0.0001 0.8198 0.0121 0.0166
Validation 0.0062 0.0085 0.0084 0.0082 0.0145
Testing 0.0084 0.0086 0.0101 0.0112 0.0101

The F1 and AUC values reaching 100% for RF with
ENN and IHT underscore the potency of these resampling
methods in boosting accuracy for markedly skewed datasets.
Interestingly, the lung dataset seems to respond more strongly
to these techniques than the heart dataset, potentially reflecting
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(a) ADASYN. (b) ENN.

(c) IHT. (d) RO.

(e) SMOTE.

Fig. 3. ROC curves for various classifiers on the Lung Dataset across
different resampling techniques. The curves highlight the exceptional

precision and recall achieved by RF and SVM, especially with ENN and
IHT, confirming their robustness in identifying lung disease despite data

imbalance.

inherent differences in class distribution or unique dataset
attributes.

Fig. 3 shows ROC curves for various classifiers on the Lung
Dataset across different resampling techniques. The curves
highlight the exceptional precision and recall achieved by RF
and SVM, especially with ENN and IHT, confirming their
robustness in identifying lung disease despite data imbalance.

Finally, Table IV summarises the training, validation, and
testing times for different classifiers on the Lung Dataset. De-
cision Trees (DT) and KNN demonstrate relatively low com-
putational demands, most notably under the RANDOM and
ADASYN resampling methods, making them viable options
where computational resources are limited. Random Forest
(RF) and SVM, in contrast, show varying training times, with
RF proving efficient under ENN and IHT, while SVM attains
rapid validation times with ENN. These results suggest that DT
and KNN may suffice where speed is paramount, whereas RF
and SVM, coupled with certain resampling strategies, strike a
more favourable balance between computational overhead and
predictive performance.

VI. DISCUSSION

The experimental results confirm that pairing tailored
resampling methods with appropriate classifiers can greatly

improve predictive performance in imbalanced healthcare
datasets. The results show that combining advanced resampling
techniques with machine learning models improves predictive
accuracy for imbalanced healthcare data. However, perfor-
mance differences across datasets highlight the need to select
resampling strategies and classifiers based on dataset charac-
teristics.

A. Effectiveness of Resampling Methods

Resampling techniques play a crucial role in addressing
class imbalance in heart disease and lung cancer predic-
tions. Instance Hardness Threshold (IHT) and Edited Nearest
Neighbours (ENN) performed best for undersampling, while
ADASYN and SMOTE increased minority-class representation
through synthetic data generation. Their effectiveness varied
based on the dataset and classifier.

IHT improved precision and recall in heart disease predic-
tions because it removed ambiguous majority-class instances.
This effect was most pronounced when combined with Ran-
dom Forest and Support Vector Machines. ENN produced the
best results for lung cancer predictions because it refined the
decision boundary and enhanced SVM’s ability to distinguish
between classes. ADASYN and SMOTE produced general
improvements, but they worked best for heart disease predic-
tions where a moderate imbalance allowed for better synthetic
sample generation. These findings confirm that resampling
techniques must be chosen based on the dataset rather than
applied universally.

B. Classifier Performance Across Datasets

Classifier performance depended on disease type and re-
sampling strategy. Support Vector Machines performed best for
lung cancer prediction, especially when combined with ENN.
This combination removed noisy samples and allowed SVM
to establish a clearer decision boundary. Random Forest and
Decision Trees outperformed other models for heart disease
predictions because they captured feature interactions effec-
tively.

SVM provided the highest accuracy and recall for lung
cancer predictions, making it the best choice for highly imbal-
anced, binary-structured datasets. Random Forest and Decision
Trees worked better for heart disease because they handled
mixed categorical and numerical data more effectively. K-
Nearest Neighbours showed inconsistent results across both
datasets because it was highly sensitive to imbalance and
feature distribution.

C. Dataset-Specific Performance

Model performance varied between the heart disease and
lung cancer datasets due to differences in class imbalance
severity, feature types, and data distribution. The heart dis-
ease dataset, with moderate imbalance and mixed categorical-
numerical features, favored Random Forest with IHT and
ADASYN, which excel at capturing complex feature inter-
actions. Conversely, the lung cancer dataset, with extreme
imbalance and mostly binary features, suited SVM with ENN,
as this combination effectively refines sparse decision bound-
aries. These results suggest our algorithms are better suited
to specific data types: RF thrives with heterogeneous features,
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while SVM excels with binary, highly skewed data. This adapt-
ability underscores the importance of matching resampling and
classifiers to dataset properties.

D. Computational Considerations

The study also highlights key computational trade-offs.
SVM and Random Forest provided the highest accuracy, but
they required longer training times. These models are suitable
for offline model development rather than real-time applica-
tions. Decision Trees and K-Nearest Neighbours trained and
tested faster but produced less consistent results for imbalanced
data. Selecting a model for deployment depends on balancing
efficiency, interpretability, and predictive performance.

E. Real-World Implications

These findings have direct applications in predictive health-
care. SVM with ENN delivers the most accurate classification
for lung cancer screening, reducing false negatives. Random
Forest with IHT works better for heart disease prediction
because it maintains interpretability while achieving strong
performance. These findings guide healthcare practitioners in
selecting predictive models that improve early diagnosis and
patient outcomes.

F. Advantages Over Existing Methods

Our approach outperforms traditional methods by integrat-
ing resampling with classifier optimisation tailored to dataset
characteristics. Unlike studies like Fitriyani et al. [11], which
focus on single-disease hybrid pipelines (e.g. SMOTE-ENN
with XGBoost), our framework evaluates multiple resampling
techniques (ENN, IHT, RO, SMOTE, ADASYN) across two
diseases, offering broader applicability. Compared to Khushi
et al. [12], which limits comparisons to lung cancer with ba-
sic oversampling, our SVM+ENN and RF+IHT combinations
achieve higher precision and recall (e.g. 100% F1 for lung
cancer with RF+ENN) while addressing computational trade-
offs. This adaptability and performance edge make our method
a versatile tool for imbalanced healthcare data beyond single-
context solutions.

G. Validation and Comparative Significance

Our use of comprehensive validation measures such as
accuracy, precision, recall, F1 score, and AUC ensures robust
evaluation of model performance, prioritising both correct-
ness and sensitivity critical in healthcare. Unlike prior works
like Ishaq et al. [13], which focus on accuracy alone, our
multi-metric approach highlights trade-offs (e.g. SVM+ENN’s
perfect recall for lung cancer). Thorough comparisons with
related studies, for instance, outperforming Khushi et al.’s [12]
lung cancer precision with RF+IHT, validate our method’s
superiority. This rigorous validation confirms its reliability and
generalisability across imbalanced medical datasets.

VII. CONCLUSION

This study demonstrates that advanced resampling tech-
niques, when integrated with optimised machine learning
models, can significantly enhance classification performance
for imbalanced healthcare data. Specifically, SVM with ENN

excelled in lung cancer prediction, while RF with IHT or
ADASYN consistently performed well for heart disease predic-
tion. These findings provide a roadmap for choosing optimal
resampling - classifier pairs based on dataset characteristics,
which is crucial for early diagnosis and resource allocation
in clinical practice. Our results emphasise the importance of
robust methods to handle skewed medical datasets, leading to
more reliable healthcare predictions.

VIII. FUTURE DIRECTION

Despite these advances, much remains to be done to fully
realise the potential of predictive models in healthcare. The
following key challenges merit attention:

1) Adaptation to novel diseases: Models trained on current
datasets may underperform when confronted with emerging
diseases, such as those appearing during pandemics. Dif-
ferences in symptoms, transmission mechanisms, or patient
demographics can impede model adaptability. Future studies
should explore adaptive learning frameworks - particularly
online learning techniques that enable continuous learning
from new data streams. Incorporating concept-drift detection
can help identify performance degradation due to shifts in
data distribution, while transfer learning offers a means of
rapidly adapting pre-trained models to smaller, disease-specific
datasets.

2) Scalability: The exponential growth of healthcare data
in both volume and complexity necessitates scalable predictive
models. Managing large datasets requires substantial computa-
tional resources and careful maintenance of model efficiency.
Distributed computing platforms (e.g., Apache Spark or Dask)
can facilitate the processing of extensive datasets across clus-
ters. Additionally, algorithmic efficiency may be improved
through dimensionality reduction and the deployment of more
efficient neural architectures, such as EfficientNets, to achieve
real-time processing capabilities.

3) Multimodal integration: Healthcare data are inherently
multimodal, encompassing structured electronic health records,
unstructured clinical notes, medical imaging, and genomic in-
formation. Current predictive models often fail to fully exploit
these diverse data sources. Developing multimodal learning
methods that accommodate varying data formats can provide a
more comprehensive view of patient health. Techniques such as
Canonical Correlation Analysis (CCA) and cross-modal neural
networks can learn joint representations, while strategic fusion
strategies help integrate disparate data modalities effectively.

4) Handling rare diseases: Rare diseases pose particular
challenges due to significant class imbalance and very limited
positive cases. Insufficient data hampers the training of robust
predictive models, thereby limiting opportunities for early
intervention. Future work should focus on few-shot learning
approaches, for example, prototypical networks and Model-
Agnostic Meta-Learning (MAML) that enable models to learn
from minimal examples. Transfer learning can also leverage
existing biomedical knowledge by fine-tuning models trained
on more common diseases for rare disease datasets.

5) Bias and fairness: Predictive models can inherit biases
from training data, potentially reinforcing inequities in health-
care access and outcomes. Without appropriate safeguards,
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such models may over-predict or under-predict disease risk in
certain demographic groups. Fairness-aware machine learning
strategies such as re-weighting datasets for balanced represen-
tation, introducing fairness constraints during training, and per-
forming post-hoc adjustments are therefore essential. Rigorous
bias audits, which scrutinise performance across diverse patient
populations, are vital for identifying and mitigating disparities.

6) Interpretability and trust: The “black box” nature of
many advanced machine learning models is a major obstacle
to clinical adoption, as healthcare professionals are often
reluctant to rely on systems whose inner workings they cannot
examine. Enhancing interpretability is crucial for clinician
trust and seamless adoption within medical practice. Explain-
able AI (XAI) methods such as Local Interpretable Model-
Agnostic Explanations (LIME) and SHapley Additive exPla-
nations (SHAP) can clarify model reasoning. User-friendly
interfaces that integrate with existing healthcare IT systems
can further bolster clinician acceptance and support practical
workflows.

Beyond these methodological and computational considera-
tions, practical issues such as data-sharing restrictions, privacy
laws, and regulatory compliance (e.g. with the MHRA or NICE
guidelines) will also shape the real-world deployment of AI-
driven healthcare models. Although our results are encourag-
ing, implementing these solutions at scale poses substantial
challenges. Overcoming these hurdles will be essential for fully
leveraging the potential of predictive modelling to improve
patient outcomes and transform healthcare delivery.
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