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Abstract—With the increasing attention of society to 

sustainable development, green building as an important 

sustainable building form has attracted much attention. 

However, the comprehensive assessment of eco-efficiency of 

green buildings faces many challenges, including the insufficient 

comprehensive analysis of all stages of the building life cycle and 

the oversimplification of multidimensional input-output 

relationships. In addition, the existing methods have subjectivity 

and uncertainty in data processing and weight allocation, which 

reduces the reliability of evaluation. To overcome these 

difficulties, a measurement method based on the three-stage 

super-efficient data Enveloping analysis (SBM-DEA) model is 

introduced in this study. By constructing a three-stage 

super-efficiency SBM-DEA model, the eco-efficiency 

measurement model of green buildings is established, taking 

building resources and energy as input and economic and 

environmental value as output. The results show that after 

removing the interference of external environment variables and 

random errors, the measurement results of stage 3 are more 

reasonable. From 2011 to 2018, the eco-efficiency of green 

buildings in China showed obvious regional differences, showing 

a decreasing trend of "the highest in the east (0.884), followed by 

the central (0.704) and the lowest in the west (0.578)". The 

innovation of this study lies in the full consideration of timing 

and dynamics, which provides new theoretical and practical 

ideas for promoting sustainable development in the field of green 

building, and is expected to improve the assessment accuracy and 

reliability in the field of green building. 
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I. INTRODUCTION 

With the continuous warming of global environmental 
issues and the urgent need for Sustainable Development (SD), 
Green Buildings (GBS), as a sustainable building model, have 
gradually become the focus of attention. SD refers to a model 
of development that meets the needs of the present without 
compromising the ability of future generations to meet their 
own needs. At present, the measurement of Green Building 
Eco-efficiency (GBEE) is particularly important in evaluating 
its environmental friendliness and resource utilization, 
especially in the insufficient comprehensive analysis of 
various stages of the building lifecycle and the simple 
handling of 3D input-output relationships [1]. GBEE refers to 
minimizing environmental impact and improving resource 

efficiency throughout a building's life cycle through 
sustainable design, efficient use of resources and 
environmentally friendly technologies. However, the 
comprehensive evaluation of the comprehensive benefits of 
green buildings faces many difficulties and challenges. On the 
one hand, the existing measurement methods are insufficient 
in the comprehensive analysis of various stages of the building 
life cycle, and it is difficult to fully reflect the ecological 
benefits of green buildings at different stages. On the other 
hand, the existing methods are too simple when dealing with 
the multi-dimensional input-output relationship, and it is 
difficult to accurately evaluate the comprehensive ecological 
efficiency of green buildings. In addition, the existing methods 
have subjectivity and uncertainty in data processing and 
weight allocation, which reduces the reliability and credibility 
of the evaluation results. The Slacks-Based Measure in Data 
Envelopment Analysis (SBM-DEA) model based on 
three-stage super-efficiency combines Data Envelopment 
Analysis (DEA) and Super Efficiency Model (SEM) [2-3], i.e. 
3SE-SBM-DEA model, which can more comprehensively and 
accurately measure the GBEE. The introduction of the 
3SE-SBM-DEA model can better grasp the dynamic 
characteristics of the building lifecycle and more accurately 
evaluate the ecological benefits of GBS at different stages [4]. 
Based on this, this study proposes a GBEE measurement and 
optimization method based on the 3SE-SBM-DEA model. 
Firstly, by constructing a 3SE-SBM-DEA model with building 
resources and energy as inputs and economic and 
environmental values as outputs, a GBEE measurement model 
is established. Next, based on theoretical logic, the temporal 
differences in the GBEE from a temporal dimension are 
analyzed, and the dynamic evolution characteristics through 
kernel density estimation (KDE) are revealed. The aim of this 
study is to achieve comprehensive measurement of GBEE and 
propose corresponding optimization strategies through the 
method of this 3SE-SBM-DEA model. The innovation of this 
method lies in fully considering the temporal and dynamic 
aspects, providing new theoretical and practical ideas for 
promoting SD in GB. This paper aims to give more scientific 
and comprehensive basis for GB design and evaluation, and 
promote the GB field towards a more sustainable direction. 

Section I introduces the research background, problems, 
and solutions of GBEE measurement. Section II provides a 
review of previous research on GBEE measurement, exploring 
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difficulties and shortcomings in methods. Section III is the 
method of using the 3SE-SBM-DEA model in GBEE 
measurement. Section IV designs simulation experiments to 
verify the effectiveness of the proposed method. Section V 
summarizes the research methods and analyzes the 
experimental results, pointing out the shortcomings of the 
methods and future research directions. 

II. RELATED WORKS 

The urgent need for global SD has gradually made GBS a 
mainstream form of construction that emphasizes resource 
conservation and environmental friendliness. However, to 
comprehensively evaluate the comprehensive performance of 
GBS, a single economic indicator is no longer sufficient. 
Therefore, researchers are gradually paying attention to GBEE 
measurement, aiming to comprehensively evaluate its 
sustainability from two aspects: Resource Utilization 
Efficiency (RUE) and environmental impact. Ishmael et al. 
addressed the contribution of buildings to climate change by 
using an intelligent energy building model based on the 
Internet of Things (IoT) to connect sensors of building 
equipment using M2M, IoT, and AEP technologies, achieving 
intelligent monitoring and improving energy efficiency. IoT 
intelligent building technology has been proven to be crucial 
in improving energy efficiency [5]. Tavana M et al. adopted a 
comprehensive DEA and lifecycle assessment approach to 
address the negative impact of the Construction Industry (CI) 
on the environment, particularly in material procurement and 
emissions, to measure the performance of environmentally 
friendly building materials in GB management. This method 
provided a scientific evaluation tool for the selection of GB 
materials [6]. Zhou Y et al. conducted long-term 
measurements and surveys of resident satisfaction, combined 
with environmental energy efficiency analysis, to assess the 
actual performance of the GB. The measured indoor thermal 
condition did not fully meet the design goals, especially with 
differences in relative humidity. However, residents had a 
higher level of satisfaction with IEQ [7]. Petre and other 
scholars have proposed a method to accurately determine the 
actual energy consumption of buildings by in-situ measuring 
the thermal resistance of building components in response to 
the high energy consumption problem of the CI in global 
warming. This study provided practical guidance for 
improving building energy performance and global warming 
prevention and control [8]. In response to the challenges 
encountered in implementing green practices in the chemical 
industry, Sinaga L et al. proposed an evaluation method that 
combines blockchain building information modeling (BIM) 
with structural equation model-Partial least squares 
(SEM-PLS). The research results show that green practices are 
becoming more and more common in the manufacturing 
industry and can reduce the adverse impact on the 
environment, but the adoption of green principles in industry 
is affected by a variety of factors [9]. Traditional building 
materials used in the construction industry significantly 
contribute to air pollution and greenhouse gas emissions, 
causing considerable environmental damage across Pakistan. 
Bashir et al., using closed questionnaires, interviews and 
observations to collect data using planning and random 
sampling techniques, focused on exploring the feasibility of 

adopting green building materials in Pakistan's building sector 
with the aim of mitigating environmental impacts. The results 
of the study show that factors such as high cost, low market 
demand and logistical challenges limit people's interest in 
environmentally friendly materials, with 73% of construction 
companies in Pakistan not using green building materials [10]. 
In view of the negative impact of the construction industry on 
the environment and the problems of resource depletion, 
emission and biodiversity loss, Kristinayanti W S et al. 
proposed a method combining local wisdom and green 
building practices, adopted the PRISMA framework method, 
and conducted a comprehensive systematic evaluation and 
qualitative analysis through NVivo software. The research 
results show that the construction industry needs a sustainable 
transformation, and combining local wisdom can provide 
innovative and adaptable solutions to help promote the 
transformation of construction practices to SD [11]. 

In addition, the 3SE-SBM-DEA combines the advantages 
of DEA and SEM to assess the relative efficiency of various 
units. In this model, the projection pursuit method is used to 
determine the unit's super efficiency boundary, so that an 
optimal super efficiency frontier can be found under certain 
constraints. Jiahui et al. utilized the 3SE-SBM-DEA to address 
the CO2 efficiency issues in the four Chinese major beef-cattle 
production areas in, and incorporated CO2 into the efficiency 
calculation framework. External random disturbances had 
greatly affected the efficiency measurement, and using the 
3SE model made the results more in line with reality [12]. 
Junlong et al. constructed an indicator system to promote the 
high-quality development of China's shared manufacturing 
industry and used a 3-phase DEA-Malmquist model to 
dynamically measure 39 shared manufacturing enterprises 
from 2018 to 2020. The mean fluctuation of 
comprehensive/pure/scale efficiency had a significant impact 
on development efficiency [13]. Radimov N et al. proposed a 
novel control and optimization strategy for a bidirectional 
3-level in vehicle battery charger (OBC) that achieves 80 
PLUS titanium efficiency. OBC could change the direction of 
power flow within a few msec, providing reactive power 
support for the power grid, with 96.65% peak efficiency and 
1% min-total harmonic distortion [14]. Qad et al. measured 
the relationship between technology industry agglomeration, 
green innovation, and development quality in the Yangtze 
River Delta urban agglomeration using superefficient 
SBM-DEA and improved TOPSIS method. There was a 
significant spatial connection between these factors, especially 
in the transformation stage where they mutually promote each 
other [15]. 

To sum up, the existing research has made remarkable 
progress in the field of eco-efficiency measurement of green 
buildings, but there are still some limitations. For example, 
although some studies have proposed comprehensive 
evaluation methods, they are still insufficient in dealing with 
the dynamic characteristics of the whole life cycle of buildings 
and the multi-dimensional input-output relationship. In 
addition, there are subjectivity and uncertainty in data 
processing and weight allocation in existing studies, which 
reduces the reliability and applicability of evaluation results. 
Although some studies try to solve these problems by 
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introducing advanced technical means or improving 
evaluation models, most studies fail to fully consider regional 
differences and dynamic evolution characteristics, resulting in 
the overall assessment of green building eco-efficiency is still 
insufficient. The DEA method is also adopted as the basic 
framework in this study. However, the innovation of this study 
lies in the introduction of the three-stage super-efficiency 
SBM-DEA model, which can not only evaluate the 
eco-efficiency of green buildings more comprehensively, but 
also better deal with data uncertainty and subjectivity by 
introducing the concepts of super-efficiency and stages. 
Improve the objectivity and robustness of the evaluation. In 
addition, this study also combined temporal dimension 
analysis and kernel density estimation to reveal the dynamic 
evolution characteristics of green building eco-efficiency, 
which was rarely involved in previous studies. 

The contributions of this research are mainly reflected in 
the following aspects: First, by constructing a three-stage 
super-efficiency SBM-DEA model, this research provides a 
more scientific and comprehensive method for measuring the 
eco-efficiency of green buildings, which can effectively 
overcome the limitations of existing methods in data 
processing and weight allocation. Secondly, this study 
systematically analyzed the regional differences of 
eco-efficiency of green buildings in China for the first time, 
revealing the decreasing trend of "the highest in the east, the 
second in the central, and the lowest in the west" during 
2011-2018, providing a scientific basis for formulating 
targeted optimization strategies. Finally, based on the 
measurement results, this study proposed specific optimization 
strategies to narrow the regional gap and improve the overall 
ecological efficiency of green buildings across the country. 

III. CONSTRUCTION OF 3SE-SBM-DEA MEASUREMENT 

MODEL 

This study first constructs a 3SE-SBM-DEA model, using 
building resources and energy as inputs and economic and 
environmental values as outputs, to establish a GBEE 
measurement model. Next, based on theoretical logic, to 
analyze the temporal differences of GBEE from the temporal 
dimension, and to reveal the dynamic evolution characteristics 
through KDE. 

A. Building the GBEE Measurement Model 

Eco-efficiency is the efficiency of ecological resources to 
meet human needs, usually measured by the ratio of output to 
input [16]. Among them, "output" covers the value of the 
products and services produced by the enterprise, while 
"input" includes the resources and energy consumed by the 
enterprise, as well as the impact on the environment [17]. The 
mathematical formula related to ecological efficiency is Eq. 
(1). 

Value of p or s
Eco-e

Ei
     (1) 

In Eq. (1), Eco-e  represents ecological efficiency, and 

Value of p or s
 represents the value of the product or service. 

Ei  represents environmental impact. GBEE refers to the use 
of sustainable design, efficient resource utilization, and 
environmental protection technologies to minimize the impact 
on the environment during the building lifecycle, increase 
RUE, and reduce the burden on natural ecosystems [18]. Fig. 
1 shows the ecological efficiency evaluation model. 

Resource Ri

Economic Di EnVironment Ei

Ecological 

efficiency

Economic 

D0

Environme

nt E0

Resource 

R0

Constraints

Coercion

Constraints

Output Output

Input

 

Fig. 1. Ecological efficiency evaluation model. 
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In Fig. 1, the model mainly revolves around economy, 
resources, and environment [19]. To evaluate ecological 
efficiency, it is necessary to first determine key indicators such 
as energy consumption, material utilization, and water 
resource utilization. Subsequently, by collecting relevant data 
from the system, including information on building energy 
usage, material sources and utilization, water resource 
management, etc., a comprehensive data foundation is 
established. Next, a mathematical model is used to quantify 
the system efficiency. Finally, based on the evaluation results, 
optimization suggestions are established to lift the 
Eco-efficiency. To derive the Eco-efficiency calculation 
formula for buildings based on Eq. (1), as shown in Eq. (2). 

Be
B eco-e

El
       (2) 

In Eq. (2), B eco-e  represents the ecological benefits of 

the building. B eco-e  represents the value of the building. 

El  represents environmental load. The GBEE measurement 
indicator system aims to comprehensively understand the 
comprehensive ecological benefits of buildings throughout 
their lifecycle by evaluating their performance in energy 
utilization, material selection, water resource utilization, 

environmental impact of design, and indoor environmental 
quality. Fig. 2 shows the GBEE measurement indicator 
system. 

In Fig. 2, the measurement indicator system of GBEE is 
mainly divided into two parts: input indicators and output 
indicators. The investment indicators include capital 
investment, labor investment, energy investment, land 
investment, and technology investment. Output indicators 
include environmental output and economic output. This set of 
specific parameters is selected to ensure that the 
eco-efficiency measurement of green buildings based on the 
three-stage super-efficiency SBM-DEA model can fully and 
accurately reflect the actual ecological benefits of green 
buildings, while eliminating the interference of external 
environment and random errors, and improving the reliability 
and applicability of the model results. SBM is a distance 
function based method used to evaluate performance relative 
to other units, suitable for considering multiple input and 
output factors, and able to handle different weights and 
measurement standards. DEA is a non-parametric approach 
taken to evaluate relative efficiency. DEA does not require 
prior assumptions about weights or function forms, making it 
suitable for complex multi input multi output scenarios [20]. 
Fig. 3 shows the specific process of the 3-stage DEA. 
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Fig. 2. Index system of GBEE measurement. 
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Fig. 3. Specific process of the three-stage DEA. 

In Fig. 3, the first phase of constructing the three-stage 
DEA is the construction of the SBM model. The 2nd phase is 
to construct a stochastic frontier model. The third stage is 
based on the foundation of stages one and two, to obtain more 
accurate measurement values that reflect the GBEE levels of 
all DEAs [21]. Specifically, the first step is to construct an 
ultra efficient SBM model. This study adopted an 
input-oriented model to test the initial efficiency of GBEE. 
The improved super-efficient SBM model is obtained by 
optimizing the objective function based on relaxation 
variables. The process is shown in Eq. (3). 
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 (3) 

In Eq. (3), m  represents the number of input indicators. 
n  represents Decision-making Unit (DMU). x  represents 

the input item.   and 


 represent weight vectors and 

objective function values, respectively. ay
 and by

 represent 

expected and unexpected output items, respectively, with 1S
 

and 2S
 as the number of indicators. S 

 is the input, 
aS  is , 

expected output, and 
bS  is the unexpected output. After 

constructing the SBM, a random frontier model is then 
constructed [22]. By measuring GBEE, the original efficiency 
data and relaxation variable of each DMU can be obtained. 
The process function model is Eq. (4). 

 ; ; 1,2, , ; 1,2, ,n

ni i ni niS f Z v i I n N         (4) 

In Eq. (4), i  and n  represent the number of DMUs and 

the input items, respectively. niS
 represents the input 

relaxation value (IRV) of n  of the i -th DMU. iZ
 

represents P  Environmental Variables (EVs). 
n
 

represents the estimated parameter of i . 
 ; n

if Z 
 

represents the impact of external EV on the IRV. ni niv 
 is 

the mixed-error, where niv
 is the Random Error (RE). To 

eliminate the influence of external EVs and REs, 
homogeneous adjustments are made to each input quantity. 
The specific adjustment method can refer to Eq. (5). 

     ˆ ˆmax ; ; maxA n n

ni ni i i ni niX X f Z f Z v v          (5) 

In Eq. (5), this study homogenized the input of each DMU 

and obtained the adjusted input value 
A

niX
. By maximizing 

   ˆ ˆmax ; ;n n

i if Z f Z 
, this study adjusts the external 

environment to the same state. Among them, 
 ˆmax ; n

if Z 
 

is the benchmark adjusted by other DMUs, indicating the 
worst environmental conditions. This adjustment takes into 
account both good and bad conditions, and increases or 
decreases investment. To adjust the RE to the same state 

through 
 max ni niv v

, ensuring that all DMUs are in the 
similar external EV and RE status. 

B. GBEE Based on Temporal Dimension 

After establishing a scientific measurement index system, 
this study further analyzes the temporal changes of GBEE 
through the temporal dimension based on national, regional, 
and inter provincial differences, and uses KDE to reveal its 
dynamic evolution characteristics [23]. On the spatial 
dimension, the spatial distribution pattern of GBEE is 
visualized, and the spatial agglomeration and transition 
characteristics of GBEE in various provinces and cities 
through spatial auto-correlation (SAC) analysis are revealed. 
The specific technical road-map is Fig. 4. 
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Fig. 4. Technology road-map. 

In Fig. 4, the spatiotemporal differences of GBEE are 
divided into temporal differences and spatial differences. 
Kernel density estimation is a non-parametric statistical 
method utilized to estimate the shape of the probability 
density function. This method involves placing kernel 
functions (KerF) around each data-point and then overlaying 
these functions to form an estimate of the overall probability 
density. The specific expression is Eq. (6). 

1

1
( )

N
i

i

X x
f x K

Nh h

 
  

 


    (6) 

In Eq. (6), bandwidth h  is an important parameter. The 

set of observation samples is represented by N , and the 
values of independent and identically distributed observation 

samples are represented by iX
. x  represents the input item. 

The K  is a weighted or smooth transformation function. The 
mathematical formula that needs to meet the conditions is Eq. 
(7). 

2

lim ( ) 0

( ) 0 ( ) 1

sup ( ) ( )

x
K x x

K x K x dx

K x K x dx











  



 

    





  (7) 

KerFs generally include trigonometric KerFs, quadrilateral 
KerFs, and Gaussian KerFs. This study chose to use Gaussian 
density KerF, as shown in Eq. (8). 

2

2
1

( )
2

x

K x e






     (8) 

Building a spatial weight matrix is a commonly used task 
in spatial analysis, which is used to describe the degree of 
correlation between adjacent regions in geographic space. 

Construct a binary symmetric spatial matrix n*nW
 of n*n  

to represent the spatial adjacency relationship between n  
positions. The matrix is specifically expressed as Eq. (9). 

11 12 1

21 22 2

1 2

n

n

n n

n n nn

w w w

w w w
W

w w w



 
 


 
    
 

      (9) 

In Eq. (9), i jW  represents the proximity relationship 

between region i  and 
j
. This study uses the spatial weight 

matrix under the geographical distance standard, as expressed 
in Eq. (10). 

The distance between region i and j is<d

others

1,  

0,   
ijw


 


(10) 

Global SAC is a method taken to analyze the spatial 
correlation between geographic units in an entire region or 
system. It mainly focuses on the global distribution pattern of 
variables within the entire region to reveal spatial clustering or 
dispersion trends. This study uses a geographic distance 
spatial weight matrix and uses the global Moran's I index (MII) 
for measurement, as shown in Eq. (11). 

  
1 1

2

1 1

n n

ij i j

i j

n n

ij

i j

W x x x x

I

S W

 

 

 






    (11) 

In Eq. (11), n  is the amount of provinces and cities. ix
 

and jx
 represent the GBEE values of province and city i  

and 
j

. x  and 
2S  represent the mean and variance of 

GBEE in each province and city. Further to adopt the Z-score 
normal distribution hypothesis to verify the accuracy of MII. 
Its expression is Eq. (12). 

( )
( )

VAR( )

I E I
Z I

I


       (12) 

In Eq. (12), 
( )E I

 is the expected value. 
VAR( )I
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represents the expected variance. The specific expression of 

( )E I
 is Eq. (13). 

1
( )

1
E I

n
 

      (13) 

Local SAC is usually measured by Local Moran's I. This 
paper uses local MII and Moran scatter plot to evaluate the 
local distribution characteristics of GBEE, as shown in Eq. 
(14). 

 
 2

1

n
i

i ij j

j

x x
I W x x

S 


 

   (14) 

The spatial lag model is adopted to spatial data analysis. It 
considers spatial correlation, which is commonly used to 
describe the interactions and dependencies between spatial 
data, as shown in Eq. (15). 

Y WY X    
     (15) 

The relationship between GBEE Y  and the influencing 

factor matrix X  was studied in Eq. (15). Considering spatial 

interaction, spatial auto-regressive coefficient 


 and spatial 

weight matrix are introduced. The RE is represented by 


, 

while the spatial lag term WY  reflects the influence of 
adjacent regions. 

As a comprehensive efficiency evaluation method, the core 
assumptions of 3SE-SBM-DEA model mainly include the 
following points: First, the model assumes that there is a clear 
linear relationship between input and output, that is, under 
given technical conditions, the increase of input will lead to 
the increase of output in a certain proportional relationship. 
Secondly, the 3SE-SBM-DEA model assumes that the effects 
of external environment variables and random errors on 
efficiency are independent and can be separated and adjusted 
by appropriate statistical methods. In addition, the model also 
assumes that the data is accurate and complete, that is, the 
input and output data can truly reflect the actual operation of 
green buildings. Finally, the model assumes that each DMU is 
homogeneous in terms of technical conditions and production 
functions, that is, all evaluated green building projects are 

comparable at the technical level. 

IV.  PERFORMANCE ANALYSIS AND VALIDATION OF THE 

GBEE MEASUREMENT MODEL 

This study first analyzes the statistical characteristics of 
the sample data and the assumption of homogeneity of 
measurement indicators, confirming the applicability of the 
measurement model. Subsequently, using indicator data, the 
GBEE in China is measured, and the efficiency levels and 
variation differences of Stage One and Stage Three at the 
national, regional, and inter provincial levels are compared 
and analyzed. 

A. GBEE Analysis 

This study uses panel data on input-output and EVs from 
2011 to 2018, selecting 30 provinces in China as research 
subjects, with the aim of calculating the GBEE of each 
province and city. To better analyze its regional differences, 
the research area is segmented into eastern, central, and 
western regions. Table I presents the statistical results. 

According to Table I, through statistical analysis of the 
collected data, it is found that the SD and range among 
individual indicators are huge, showing a significant 
difference, and the input-output situation also shows a 
significant difference. Before conducting the GBEE 
measurement, the measurement model requires that the input 
and output items meet the assumption of homogeneity, that is, 
the principle that "as the input increases, the output does not 
decrease.". To verify this hypothesis, this study conducts 
Pearson correlation tests between input indicators and output 
indicators using SPSS 20.0 software. Table II shows the test 
results. 

In Table II, && is significantly correlated at the 1% level 
(bilateral). In Table II, the correlation coefficients are all 
positive and have all passed the bilateral test at the 1%, 
indicating that the input and output variables satisfy the 
principle of homogeneity assumption. This study further 
adopts the super efficiency SBM model and uses MAXDEA 
software to run GBEE input-output data, obtaining the GBEE 
levels of each province and city without considering the 
influence of external EVs and REs. The specific results are 
shown in Fig. 5. 

TABLE I. DESCRIPTIVE STATISTICAL RESULTS OF SAMPLE DATA 

Variable Minimum Mean Maximum SD Sample 

Housing construction land area 738 39362 249176 47499 240 

Employees in construction company 54847 1604115 8110275 1785021 240 

Total energy consumption 14 126 354 1785021 240 

Rate of technical equipment 728 14354 91231 9978 240 

Carbon emission 562 
13178 

 
52901 

11055 

 
240 

Gross output of CI 52 1211 6717 1302 240 

Investment in fixed assets in the CI 0.09 131 1136 201 240 

Total profits of construction enterprises 64449 
2093927 

 
11617738 

2070219 

 
240 
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TABLE II. PEARSON CORRELATION TEST BETWEEN INPUT AND OUTPUT VARIABLES 

Type Index 

Construction 

Enterprise 

Number of 

Employees 

House 

Construction 

Land Area 

Investment in 

Fixed Assets in CI 

Energy 

Consumption 

Gross Amount 

Technology 

Equipment Rate 

Gross output value 

of CI 

Significance 

(bilateral) 
0.000 0.000 0.003 0.001 0.001 

Pearson correlation 0.948&& 0.974&& 0.626&& 0.566&& 0.603&& 

Gross profit 

Significance 

(bilateral) 
0.000 0.000 0.003 0.001 0.002 

Pearson correlation 0.924&& 0.922&& 0.601&& 0.555&& 0.525&& 

Carbon emission 

Significance 

(bilateral) 
0.000 0.000 0.002 0.004 0.001 

Pearson correlation 0.887&& 0.816&& 0.667&& 0.511&& 0.755&& 
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Fig. 5. Eco-efficiency level of green buildings. 

Fig. 5 (a) shows the GBEE levels in provinces and cities B, 
T, and H. Annual Growth Rate (AGR) is used to describe the 
average annual growth of an indicator in a specific period of 
time. Fig. 5 (b) shows the GBEE levels in S, L, and J 
provinces. Fig. 5 (c) shows the GBEE levels of provinces and 
cities A, C, and D. Fig. 5 shows that from 2011 to 2018, 
China's GBEE showed a good development trend, with an 
overall average efficiency increasing trend, with an average 
AGR of 4.71%. After 2015, ecological efficiency achieved 
sustained and steady growth, reaching a peak of 0.916 in 2018, 
with an average AGR of 14.5%. The average and AGR of 
GBEE in some provinces and cities in China are shown in Fig. 
6. 

Fig. 6 (a) shows the AGR, and Fig. 6 (b) shows the Mean 
Ecological Efficiency (MEE). There are obvious discrepancies 
in GBEE among provinces. The MEE of province and city A 
is below 0.7, with an average AGR of 13.07%. Provinces and 
cities such as E show fluctuating fluctuations, with no 
significant increase or decrease trend. Fig. 7 shows the 

comparison of the MEE and average AGR of GBEE among 
different regions in China. 

Fig. 7 (a) is the MEE, and Fig. 7 (b) shows the AGR. 
Between 2011 and 2018, China's GBEE showed significant 
regional differences, with the highest in the East (0.884), 
followed by the central (0.704), and the lowest in the West 
(0.578). Fig. 8 shows the trend of changes in the mean GBEE 
across different regions. 

Fig. 8 (a) shows the eastern and central regions, while Fig. 
8 (b) shows the national and western regions. Fig. 8 shows 
that the GBEE in the East showed fluctuating patterns from 
2011 to 2018, consistently higher than the national average, 
with no significant increase or decrease trend. In contrast, the 
efficiency curve in the central region shows a similar 
development trend to the national average curve, with an 
overall low growth rate. Although the three major regions 
reached their peak efficiency in 2018, the average AGR in the 
West reached 6.99%, which is 48.84% and 41.33% higher than 
that in the East and Center, respectively. 
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Fig. 6. MEE and average AGR of GBEE in China. 

1.0

0.8

0.6

0.4

0.2

1.0
0.8

0.6

0.4

0.2
0.2 0.4 0.6 0.8 1.00.20.40.60.81.0

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2
0.2 0.4 0.6 0.80.20.40.60.8

(b) Average annual growth rate(a) Mean ecological efficiency

The eastv

The whole 

country
Middle part

The west The west

The whole 

country
Middle part

The eastv

 

Fig. 7. Comparison of MEE and average AGR of GBEE in different Chinese regions. 
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Fig. 8. Variation trend of mean value of GBEE in each region. 

B. Performance Verification Based on the 3SE-SBM-DEA 

Model 

After the SFA regression analysis in stage two, it is found 
that there are significant differences in the impact of external 
environmental differences and GB investment factors among 
provinces and cities, which in turn have a significant impact 
on GBEE. To eliminate these impacts, adjustments are made 
to the input variables to ensure that each province and city are 
compared under the equal external EV and RE. The final 
GBEE is obtained by using the SBM model and MAXDEA 
software for efficiency analysis. The GBEE mean 

measurement results for Stage 1 and Stage 3 are shown in Fig. 
9. 

Fig. 9 (a) and Fig. 9 (b) show the results of the first and 
third stages. By comparing Fig. 9 (a) and 9 (b), the MEE of 
the three stages is lower than that of the first stage, except for 
2015 and 2016. Fig. 10 further illustrates the comparison of 
GBEE mean values. 

Fig. 10 (a) shows the results of the first stage, and Fig. 10 
(b) shows the results of the third stage. After excluding the 
external EVs and REs influences, GBEE still maintains a 
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pattern of "greater in the east than in the central and greater in 
the west", but the regional gap has widened. The efficiency in 
the East outperforms than the national average, while that in 
the Center and West has decreased. From 2011 to 2018, there 
is a slight decrease in the national average GBEE, indicating 
that there is still significant room for improvement in GBEE. 

In order to verify the robustness of the eco-efficiency 
measurement results of green buildings based on the 
three-stage super-efficiency SBM-DEA model under different 
conditions, sensitivity analysis was conducted. By adjusting 
the key parameters of the model, the influence of these 
changes on the eco-efficiency of green buildings was analyzed, 
so as to evaluate the robustness of the model results. The 
details are shown in Table III. 

In Table III, the eco-efficiency measurement results of 
green buildings show good robustness under different 
conditions. When the weight adjustment of input-output index 
is ±10%, the mean eco-efficiency of eastern, central and 
western regions decreases by 0.008, 0.006 and 0.008 

respectively, and the mean eco-efficiency of the whole country 
decreases by 0.005. This indicates that weight adjustment has 
a certain impact on the measurement results of eco-efficiency, 
but the overall change range is small, indicating that the model 
is less sensitive to weight. When the adjustment amplitude of 
the influence of external environmental variables is ±15%, the 
mean eco-efficiency of eastern, central and western regions 
increases by 0.008, 0.008 and 0.008 respectively, and the 
national mean eco-efficiency increases by 0.008. This 
indicates that external environmental variables have a 
significant impact on the eco-efficiency measurement results, 
but the adjusted results still maintain the original regional 
difference pattern, that is, "East > central > west". When the 
random error adjustment amplitude is ±20%, the mean 
eco-efficiency in eastern, central and western regions 
decreases by 0.004, 0.004 and 0.004 respectively, and the 
national mean eco-efficiency decreases by 0.003. The 
adjustment of random error has relatively little effect on the 
eco-efficiency measurement results, which further verifies the 
robustness of the model results. 

TABLE III. SENSITIVITY ANALYSIS RESULT 

Parameter 

adjustment type 
Adjustment range 

Average ecological 

efficiency in eastern 

China 

Average ecological 

efficiency in central 

region 

Average ecological 

efficiency in western 

China 

Average national 

ecological efficiency 

Reference model / 0.884 0.704 0.578 0.723 

Input-output index 

weight adjustment 
±10% 0.876 0.698 0.570 0.718 

External environment 

variables affect 

adjustment 

±15% 0.892 0.712 0.586 0.731 

Random error 

adjustment 
±20% 0.880 0.700 0.574 0.720 
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Fig. 9. Average measurement results of GBEE in stage 1 and stage 3. 
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Fig. 10. Comparison of mean GBEE. 

V. OPTIMIZATION STRATEGY DISCUSSION 

The results showed that the eco-efficiency of green 
buildings in China showed obvious regional differences during 
2011-2018, with the highest efficiency in the eastern region, 
followed by the central region and the lowest in the western 
region. The formation of regional differences is closely related 
to various factors such as economic development level, 
technological input, policy support and resource endowment. 
Therefore, according to the characteristics of different regions, 
the following optimization strategies are proposed in order to 
narrow the regional gap and improve the overall ecological 
efficiency of green buildings in the country. For the eastern 
region, although its green building ecological efficiency is at a 
high level, there is still room for further improvement. The 
eastern region has a relatively high level of economic 
development and relatively abundant technology and capital, 
so it should focus on strengthening the innovation and 
application of green building technology. The eco-efficiency 
of green buildings in the central region is at a medium level, 
and its optimization strategy should focus on the combination 
of technology introduction and talent training. The central 
region has certain advantages in terms of resources and market, 
but it is relatively short of technology and talents. Therefore, 
we should actively introduce advanced green building 
technology and management experience in the eastern region, 
and promote the popularization and application of green 
building technology in the central region through technical 
cooperation and project demonstration. The eco-efficiency of 
green buildings in western China is relatively low, and its 
optimization strategy should focus on solving the problems of 
weak infrastructure and shortage of funds. The economic 
development of the western region is relatively backward, and 
the infrastructure construction is insufficient. We should 
increase the investment in the construction of green building 
infrastructure and improve the basic conditions for the 
development of green building. The government should 
increase financial support for green building projects in the 
western region through financial transfer payments and special 
funds. At the same time, the western region should give full 
play to its own resource advantages, develop green buildings 
according to local conditions, increase the application 

proportion of renewable energy in buildings, and reduce the 
dependence on traditional energy. 

VI.  CONCLUSION 

The continuous attention of society to SD has attracted 
attention to GBS as a key form of sustainable building. To 
comprehensively evaluate the comprehensive benefits of GBS, 
the focus is gradually shifting towards their ecological 
efficiency. In this context, this study constructed a 
measurement method based on the 3SE-SBM-DEA model, 
with building resources and energy as inputs and economic 
and environmental values as outputs, and established the 
GBEE measurement model. The results showed that from 
2011 to 2018, China's GBEE saw overall growth with an 
average AGR of 4.71%. From 2011 to 2015, there was an 
M-shaped oscillation, reaching the lowest value of 0.611. 
After excluding the influence of external EVs and REs, the 
measuring data of stage three were more reasonable. From 
2011 to 2018, China's GBEE showed a decreasing trend, with 
the highest in the East (0.884), the sequential Center (0.704), 
and the lowest in the West (0.578). The efficiency in the 
eastern area was higher than the national average, while the 
efficiency in the central and western areas has decreased. This 
study has made progress in GBEE measurement and 
optimization methods, but there are limitations to the data, 
uncertainty in model parameter selection, and important 
factors that have not been considered. Future research should 
focus on expanding the sample range, improving model 
parameter selection methods, improving data quality and 
reliability, and comprehensively considering more factors to 
promote the development of this field. 
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