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Abstract—Particle interaction simulation is a fundamental
method of scientific computing that require high-performance
solutions. In this context, computing on graphics processing units
(GPUs) has become standard due to the significant performance
gains over conventional CPUs. However, since GPUs were origi-
nally designed for 3D rendering, they still retain several features
that are not fully exploited in scientific computing. One such
feature is ray tracing, a powerful technique for rendering 3D
scenes. In this paper, we propose exploiting ray tracing technology
via OptiX and CUDA to compute particle interactions with a
cutoff distance in a 3D environment on GPUs. To this end,
we describe algorithmic techniques and geometric patterns for
efficiently determining the interaction lists for each particle. Our
approach enables the computation of interactions with quasi-
linear complexity in the number of particles, eliminating the need
to construct a grid of cells or an explicit kd-tree. We compare the
performance of our method to a classical grid-based approach
and demonstrate that our approach is faster in most cases with
non-uniform particle distributions.
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I. INTRODUCTION

High-performance computing (HPC) is a key technology in
scientific computing. Since the early 2000s, the use of graphics
processing units (GPUs) has become standard in HPC, and
they now equip many of the fastest supercomputers.1 GPUs
are massively parallel processors that allow computations to be
performed on thousands of cores, making them perfectly suited
for inherently parallel problems. The use of GPUs in scientific
computing has led to incredible performance gains in many
fields, such as molecular dynamics [1], fluid dynamics [2],
astrophysics [3], and machine learning [4].

Most scientific computing applications that use GPUs are
based on the CUDA2 programming model, and to a lesser
extent, the OpenCL programming model. They do not exploit
all the features of GPUs, particularly those dedicated to 3D
rendering. Among these features, ray tracing is a powerful
technology used to render 3D scenes. In this method, rays
are cast from the camera to the scene, and the intersections

1https://top500.org/
2https://developer.nvidia.com/cuda-toolkit

of the rays with the objects in the scene are computed to
generate the colors of the pixels in the image [5]. For example,
the NVIDIA GeForce RTX 4090, as a single consumer-grade
GPU, demonstrates the raw power of this technology by
rendering complex 3D scenes at 87 frames per second in 4K
resolution (3840 x 2160 pixels), handling millions of triangles
per frame [6].

In this paper, we are interested in evaluating how ray trac-
ing technology could be used to compute particle interactions
in a 3D environment. Our motivation is twofold: We want to
evaluate if it is possible to use ray tracing technology, and we
want to create the algorithmic patterns needed for that purpose.

With these aims, we focus on the computation of particle
interactions in a 3D environment, which is a common problem
in scientific computing. When the potential of the interaction
kernel decreases exponentially with distance, the interactions
can be computed with a cutoff distance, i.e. the interactions are
only computed between particles that are closer than a given
distance, achieving less but still satisfactory accuracy. This
allows the complexity of the interactions to drop from O(N2)
to O(N), where N is the number of particles if the cutoff
distance is small enough. Classical methods to compute such
interactions are based on the use of a grid of cells or an explicit
kd-tree to quickly find the interaction lists for each particle.
In this paper, we aim to avoid using such data structures and
instead exploit ray tracing technology.

The contributions of this paper are as follows:

• We propose a method to compute particle interactions
with a cutoff distance in a 3D environment based on
ray tracing technology.

• We describe two algorithmic techniques based on
geometric patterns to find the interaction lists for each
particle using real intersections.

• We compare the performance of our approach with a
classical approach based on a grid of cells and with
an existing method that relies on ray tracing.

The rest of the paper is organized as follows: In Section II,
we present the prerequisites. In Section III, we review the
related work. In Section IV-A, we present our proposed
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approach. In Section V, we present the performance study.
Finally, we conclude in Section VI.

II. PREREQUISITES

A. Particle Interactions

Computing the interactions between N particles in a 3D
environment is a common problem in scientific computing. For
example, this is essential in fluid simulations using smoothed
particle hydrodynamics [7] and in molecular dynamics for
simulating forces between atoms [8]. These interactions are
usually modeled by a potential function that depends on
the distance between the particles. A straightforward way to
compute the interactions is to evaluate the potential function
for all pairs of particles. However, the potential function can be
short-range or long-range. When the potential function is short-
range, the interactions can be computed with a cutoff distance,
i.e. the interactions are only computed between particles that
are closer than a given distance. This reduces the complexity of
the interactions from O(N2) to O(N), where N is the number
of particles, but this is only possible if we have an efficient
way to find the particles’ neighbors. Moreover, the positions
of the particles are usually updated after each computation
step. Consequently, the system used to find the interactions
between the particles should be updated at each iteration of
the simulation.

A possible solution to get the interaction list is to build a
grid of cells mapped over the simulation space, where each
cell contains the particles that are inside. The cells have a
width equal to the cutoff distance C. Then, for each particle,
the interactions are computed with the particles that are in
the same cell and in the neighboring cells. Building the grid
of cells and finding the interaction lists for each particle can
be done in O(N): we start by computing the cell index for
each particle, then we order the particles in a new array by
assigning a unique index per particle using atomic operations,
and finally, we move the particles to a new array [9]. Each of
these three operations can be implemented with a parallel loop
over the N particles.

B. Graphics Processing Units

Graphics processing units (GPUs) are massively paral-
lel processors that allow computations to be performed on
thousands of cores. The hardware design of GPUs has been
optimized for graphics rendering, particularly for the rendering
of 3D scenes. To this end, GPUs have features dedicated
to 3D rendering, such as texture mapping, rasterization, and
ray tracing. Internally, GPUs are organized in a hierarchy of
processing units, including streaming multiprocessors (SMs),
warp schedulers, and execution units.

NVIDIA has proposed the CUDA programming model to
develop parallel applications for GPUs. CUDA is designed
to express algorithms in a way that can be mapped to the
GPUs’ hardware organization. For instance, thread blocks are
distributed across SMs, and threads are executed in warps.
There are also keywords and functions to use shared mem-
ory, constant memory, and texture memory. Thus, creating
optimized applications for GPUs requires an understanding of
the hardware architecture of GPUs and potentially adapting
algorithms to their specificities.

C. Ray Tracing

Among the many features of GPUs dedicated to 3D ren-
dering, ray tracing stands out as a powerful technology widely
used in video games for rendering realistic 3D scenes [10]. It
is a hardware-accelerated technique that computes the interac-
tions of rays with objects in a scene. Ray tracing generates
pixel colors in an image by casting rays from the camera
into the scene. For each intersection of a ray with an object,
the pixel’s color is determined based on the object’s material
properties and lighting conditions. Rays can also be reflected or
refracted by objects, or continue through non-opaque surfaces,
enabling recursive computation of interactions for enhanced
realism.

Typically, ray tracing kernels are implemented within the
shaders of the graphics pipeline. Shaders are small programs
executed on the GPU for each pixel in an image, often written
in specialized languages such as GLSL (for OpenGL) or HLSL
(for DirectX). These shaders run in parallel on the GPU,
allowing for concurrent computation of ray-object interactions.
NVIDIA introduced a method to utilize ray tracing within the
CUDA programming model through its OptiX library [11].
With OptiX, developers retain the flexibility of CUDA pro-
gramming while leveraging ray tracing technology, albeit with
some constraints on kernel implementation.

Create 3D built-
in primitives

Generate AABB

Build tree 
(BVH)

Create AABB

User code

Optix library

Fig. 1. Schematic view of BVH tree creation. The OptiX library requires a
list of encompassing axis-aligned bounding boxes (AABBs), which can
either be directly provided or generated from a list of basic primitives.

In ray tracing, scenes are represented using geometric
primitives such as triangles or spheres, which are encapsu-
lated within bounding volumes to enhance computational effi-
ciency [12]. A common bounding volume is the Axis-Aligned
Bounding Box (AABB), a rectangular box aligned with the
coordinate axes and defined by its minimum and maximum
bounds (xmin, ymin, zmin) and (xmax, ymax, zmax). AABB-
ray intersection tests are conducted by calculating tmin and
tmax for each axis and ensuring that overlaps exist across all
axes, efficiently determining whether the ray intersects the box.

To further optimize performance, AABBs are organized
into a Bounding Volume Hierarchy (BVH), a tree-like data
structure where each node represents an AABB. Internal nodes
group child AABBs, while leaf nodes encapsulate the actual
primitives. In OptiX, users can either provide a list of basic
primitives or directly supply a list of AABBs, as illustrated in
Fig. 1.

During ray traversal, the algorithm performs intersection
tests at each BVH node. If a ray misses an AABB, the entire
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subtree beneath that node is skipped, reducing unnecessary
computations. When a ray reaches a leaf node, precise intersec-
tion tests are conducted with the enclosed primitives, and the
closest intersection is recorded. This process reduces the com-
plexity of ray-scene intersections from linear to logarithmic
by pruning large portions of the scene, ensuring only relevant
branches of the BVH are explored.

The final output of the ray tracing algorithm, typically the
closest hit point, is used for shading or further processing to
determine the visual appearance of the scene. This hierarchical
approach, combined with the use of AABBs and BVH, ensures
that ray tracing remains computationally feasible even for
complex scenes containing millions of primitives.

Fig. 2 provides a summary of the different operations
in ray tracing using OptiX. In the first step, the user casts
rays in the desired direction, and OptiX manages the BVH
tree traversal and potential interactions. When a ray enters
an enclosing bounding box (AABB), a callback function is
invoked to determine whether the ray actually intersects the
corresponding primitive, based on a built-in or user-defined
Intersection Shader (IS), referred to as the intersection strategy.
For custom primitives, the user must implement the IS. If the
ray does not intersect or is marked to continue, the process is
repeated for other primitives. The traversal stops when a final
intersection is found or no more primitives can be intersected,
triggering a call to the miss callback.

Cast rays
(direction, origin, tmin, tmax)

Iterate on the BVH tree

User code Optix library

Ray traverses an AABB

Custom 
primitive ?

Custom intersection strategy
Built-in intersection strategy

Hit ?
Hit ?

Take it into account to manage 
the traversal

Hit callback

Continue?

Miss callback

Take it into account to manage 
the traversal

Traversal is 
over ?

No

No

No

No

Yes

Yes
Yes

Yes

Yes

No

Fig. 2. Schematic view of the OptiX ray tracing workflow.

III. RELATED WORK

A. Neighbor Search on GPU

The main work on physical simulation of particle inter-
actions on GPU has been proposed by [13], to compute
the gravitational potential. They described an efficient im-
plementation using shared memory that became a standard
implementation on GPU. As mentioned in Section II-A, grid-
based and kd-tree structures are widely utilized for neighbor

search operations on GPUs. For grid-based approaches, a
detailed description can be found in our previous study [9],
which focuses on scenarios with few particles per cell and
demonstrates that utilizing shared memory often does not
yield significant benefits. Regarding kd-tree implementations,
[14] present a method for fast k-nearest neighbor searches
using GPUs, highlighting the efficiency of kd-trees in high-
dimensional spaces.

B. Ray Tracing in Computer Graphics

Ray tracing has been widely applied in particle-based rep-
resentations, primarily in the domain of computer graphics and
rendering. The author in [15] propose a method for efficiently
ray tracing Gaussian particles to enable advanced rendering
effects such as shadows, reflections, and depth of field in dense
particle scenes, with applications in novel-view synthesis and
visual realism. Similarly, [16] explores hardware-accelerated
ray tracing for rendering particles that cast shadows, focusing
on evaluating the performance of a prototype system. While
these works demonstrate the utility of ray tracing in particle-
based scenes, their focus lies in rendering and visualization,
contrasting with our application of ray tracing for neighbor
search in physical simulations.

C. OptiX in Scientific Computing

The NVIDIA OptiX framework has shown potential for
diverse applications in scientific computing. Blyth et al. uti-
lized OptiX to enable high-performance optical photon simu-
lations in particle physics. This approach reduced memory and
computation overheads by using GPU-based culling of photon
hits, handling millions of photons in complex geometries [17],
[18]. OptiX has been utilized as a flexible and high-performing
tool for optical 3D modeling, enabling virtual measurements of
sample surfaces by tracing over 1 billion light rays per image
and comparing simulated results with those from physical
measuring devices [19].

While these applications highlight OptiX’s potential in
handling computationally intensive tasks, they primarily focus
on modeling physical processes rather than using ray tracing
for spatial queries or particle interactions. Our work bridges
this gap by leveraging OptiX for neighbor detection and
particle interaction calculations, building on its demonstrated
strengths in scientific modeling to expand its applicability into
the domain of particle-based simulations.

D. OptiX for Neighbor Search

Using OptiX to find neighbors between elements has
already been explored in several works. I. Evangelou et al. [20]
introduced a novel approach to spatial queries, particularly ra-
dius search, by leveraging GPU-accelerated ray-tracing frame-
works with OptiX. Instead of traditional spatial data structures
like kd-trees, the authors proposed mapping the radius-search
task to the ray-tracing paradigm by treating query points as
primitives within a bounding volume hierarchy (BVH). In the
proposed method, a ray used in the radius-search operation
is essentially infinitesimal in extent, and its purpose is not to
compute a traditional intersection but to test whether the origin
of the ray (the query point) is within the bounding volume of a
“sphere” surrounding each sample point. For that purpose, the
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authors reimplemented the function that tests if a ray intersects
a sphere to control how the tests are performed. This approach
enabled significant performance gains in dynamically updated
datasets.

Yuhao Zhu [21] further advanced the application of ray
tracing for neighbor search by introducing optimizations for
mapping the neighbor search problem onto the ray-tracing
hardware available in modern GPUs. The author identified
two key performance bottlenecks: unmanaged query-to-ray
mapping, which led to control-flow divergences, and excessive
tree traversals stemming from monolithic BVH construction.
To address these issues, they proposed query scheduling and
partitioning strategies that exploit spatial coherence and reduce
BVH traversal time. Their experiments demonstrated substan-
tial speedups ranging from 2.2 to 65.0 over existing GPU
neighbor search libraries. Their work highlights the potential
of using ray-tracing hardware not only for rendering but also
for efficient spatial queries. The source code for their work
is available on GitHub; however, the implementation is not
directly applicable to our purpose as it primarily focuses on
radius search and constructing interaction lists. In contrast, our
interest lies in directly computing the interactions. Further-
more, for large test cases involving particles distributed on a
sphere, the performance of their method appears to be of the
same order of magnitude as ours.

Shiwei Zhao et al. [22] extended the use of ray tracing
for particle-based simulations by converting neighbor search
into a ray tracing problem. Each particle was represented as a
bounding box, similar to previous works, with tiny rays emitted
to detect intersections and identify neighboring particles. By
leveraging NVIDIA’s RT cores alongside CUDA cores, they
demonstrated 10% to 60% performance improvements over
traditional cell-based methods in various particle-based simula-
tions, including discrete element methods and smooth particle
hydrodynamics. Their approach underscores the versatility of
ray-tracing cores for accelerating computationally intensive
neighbor search tasks across different domains.

These works collectively demonstrate the potential of
using OptiX and ray-tracing hardware for efficient spatial
queries, providing a foundation for further exploration in
GPU-accelerated computational methods. However, these ap-
proaches lack a direct integration of physical interaction
computations within the ray-tracing framework. Our approach
addresses this gap by embedding cutoff distances directly into
the intersection tests. Additionally, we introduce two novel
methods for neighbor detection that utilize actual intersection
computations, accommodating scenarios where custom IS are
unsupported.

IV. PROPOSED SOLUTIONS

A. Overview

The core idea of our approach is to represent particles
using geometric primitives and to use ray tracing to find the
neighbors of each particle by detecting intersections with these
primitives.

With this aim, we investigate three possibilities:

1) Custom AABB: in this case, we directly provide the
list of englobing bounding boxes. Therefore, we also have
to provide our own IS in which we do not compute real
intersections but only check if a ray is inside an AABB. This
strategy is the closest one to the state of the art.

2) Spheres: in this case, we use built-in sphere primitives,
which allows us to use the built-in IS that check if a ray really
intersect with the surface of a sphere. However, we had to
create our own geometric algorithm to make it work.

3) Triangles: in this case, we use built-in triangle primi-
tives to create squares, which allows to use the built-in IS that
check if a ray really intersect with the surface of a triangles. As
for the spheres, we had to create our own geomatric algorithm
to make it work.

The spherical approach is simpler and more intuitive than
using squares, but we are interested in evaluating if the squares
made of triangles is more efficient as it is the most used
primitive in 3D rendering. We also want to evaluate if the
built-in IS is more efficient than our custom IS.

In the cases that rely on built-in IS, we use the following
algorithmic pattern:

1) We build a geometric representation for each particle.
2) We cast rays from each particle in specific directions

to find the neighbors, depending on the representa-
tion.

3) We filter the intersections to avoid computing the
same interaction multiple times.

4) We compute the interactions between the particles
that are closer than C.

To reduce overhead, we aim to use as few rays as possible
and ensure they do not intersect with too many particles that
are not within the distance C.

In terms of implementation, we use the OptiX library
to develop the ray tracing kernels, which can be used in
conjunction with the CUDA programming model. Specifically,
in the OptiX API, we create a scene by providing a list of
geometric primitives. We then provide a CUDA kernel that
launches the rays, where each ray has an origin, a direction, a
starting point, and an endpoint. Usually, one CUDA thread is
used to launch one ray. Finally, a callback is invoked by OptiX
when a ray intersects with a primitive or if no intersection is
found between the starting and ending points (in 3D rendering,
this usually means that the background color should be used).

The data accessible from the callback is limited. OptiX
built-in IS can provide information about the intersection, such
as the intersection point, the normal on the surface, the distance
from the ray’s origin, and the index of the primitive that was
hit. Additionally, the user can pass information from the CUDA
kernel that launches the rays to the callback using a payload.
A payload is a user-defined data structure that is passed along
with a ray as it traverses the scene. It allows the ray to carry
information that can be read or modified. The number of
payload variables is limited (usually 16 32-bit integers in recent
versions).

When the hit callback is invoked, and we want the ray to
continue, there are two possibilities. The first is to launch a
new ray from the intersection point in a new direction. This is
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done by storing the intersection distance in a payload variable,
returning from the callback, and then launching a new ray
from the intersection point using a loop in the CUDA kernel
to reach the desired distance. The second possibility is to
inform OptiX that we want to continue the traversal by calling
a corresponding function in the intersection callback. This
second approach is generally more efficient, as it avoids the
overhead associated with launching new rays and and should
be favored in practice.

Additionally, we cannot allocate memory in the callbacks,
so we cannot build complex data structures, such as lists, to
store intersection lists. Consequently, if we want to filter the
intersections, we cannot fill an array with indices and check if
an index exists in the array to ensure uniqueness; instead, we
must use geometric properties to filter the intersections.

In the remainder of the section, we consider that the target
particle is the particle for which we want to find the neighbors.

B. Spherical Representation

In this section, we consider the case where the particles are
represented by spheres and we use the built-in IS. In OptiX, a
sphere is a geometric primitive defined by its center and radius,
and multiple spheres of the same radius can be instantiated in
the scene, which is the approach we use.

We have the following objectives:

1) Expressing the radius of the spheres depending on
the cutoff distance;

2) Defining the origins and directions of the rays;
3) Providing a mechanism to filter the intesection when

the rays intersect multiple times with the same sphere.

In our model, we will use three rays for each particle, one
in each direction of the coordinate system. Consider a sphere
of radius C centered at the origin in a three-dimensional space.
The points on this sphere that are at the farthest distance from
the three coordinate axes are located in the corners of a cube
inscribed within the sphere. For instance, one such point at
distance C from the origin lies in the direction (1, 1, 1). These
8 points, corresponding to the vertices of the cube, are all at a
distance C from the origin, and we want to know how far they
are from the coordinate axes. This can be calculated as follows:
Since the points have coordinates where |x| = |y| = |z|, we
use the equation of the sphere x2 + y2 + z2 = C2. If we take
the point for which x = y = z, it gives 3x2 = C2, resulting
in x = C√

3
. Therefore, each of these points is at a distance of

C×
√
2√

3
from any of the three coordinate axes.

We use this information to define the radius of the spheres
and the length of our rays. The radius is set to r = C×

√
2√

3
. In

this scenario, it is sufficient that the rays go up to l = C√
3

in
each direction relatively to the particle’s position (so a single
ray goes from −l to l). We provide a simplified 3D rendering
of the spheres in Fig. 3 that illustrate our model.

However, if l < r, there are positions where the sphere
could simply englobe the rays, and we would miss some
intersections (when the source and target are closer than r− l
in the three dimensions). Therefore, we set l = r and add an ϵ
to the radius of the sphere to ensure that the rays intersect with

the sphere in all cases, obtaining r = C×
√
2√

3
+ϵ and l = C×

√
2√

3
.

The ϵ is a small value such that it must be impossible that two
particles are closer than ϵ, or some intersections will be missed
(see Appendix A for more details).
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Fig. 3. 3D Spherical representation of a source and target particles distance
from C = 1. The source sphere has a radius of

√
2√
3

and the rays,
represented by segments, are of length 1√

3
in each direction. In this case,

the sphere could englobe the rays.

When the source and target particles are perfectly aligned
on one axis, the ray will intersect for particles distant from
the extremity by r + ϵ. Therefore, two particle distant from
l+ r+ ϵ can interact. This case and any intermediate situation
where the source/target are actually too far can easily be
filtered by checking the distance. In Fig. 4, we provide a 2D
representation of the particles using spheres on intricate cases.

However, each ray can potentially intersect with a sphere
several times, and the same sphere can be intersected by several
rays of the same target particle, so we need to filter them. It
is impossible to maintain a global list that all the rays can
access to check if an intersection has already been found, or
even a single list per ray to ensure that it does not intersect
with the same sphere. Therefore, we must do this based on
geometric rules as described in Algorithm 1. When we detect
an intersection, we get the position of the source and target
particles and first check they are within the cutoff distance.
Then, we check if the closest ray to the source particle is the
current one, and if yes, we can proceed with the computation
(see Appendix A for more details).

C. Double Squares Representation

Most 3D rendering applications use triangles to represent
the objects in the scene, which motivated us to create a second
model that relies on triangles instead of spheres. Of course,
building the AABB representations and the HBV tree is not
expected to be faster than the sphere, but the hardware modules
and built-in could be more optimize for the triangles, as it is
more common primitives. In our model, we use four triangles
to draw two squares, which are positioned opposite each other.
Each square has a width of C+ϵ and is positioned at a distance
of C/2 along the X-axis relative to the particle, one in each
direction. We provide Code 1 in Appendix B, which shows
how we generate the triangles from the particles’ positions.

We then launch four rays, all with the same length and
direction, but positioned at the corners of the squares. Each
ray is positioned at −C/2 from the center of the square and
has a length of C + ϵ. The ϵ is used to ensure that when the
source and target particles have the same x coordinate and
their squares overlap, the rays cross the triangles. We provide
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2D representation when the source and target 
are aligned, the source will be detected at r + l 
+ epsilon.

2D representation with the four positions the 
farest from the rays. The source sphere 
intersect with both rays.

2D representation with multiple sources that 
have their spheres intersected with the rays.

Fig. 4. 2D Spherical representation of the particles in three different cases. In the first one (left), what will be the position of the farthest source particle and
how it will be detected by the ray. In the second one (center), we show the case where the source particle is the farthest from the rays (it also shows that in

2D the sphere radius could be smaller). In the last one (right), we show different source particles with their spheres and the rays that will intersect with them.

Algorithm 1: Sphere intersection callback
Data: Optix variables
Result: Callback when a ray intersect with a sphere

1 Function callback()
2 begin

/* Get the center of the sphere (source

position) */

3 q ← optixGetSphereData ()
/* Current particle position (target

position) */

4 point← getPayloadPartPos()
/* Compute differences and distances */

5 diff pos← {abs(point.x−
q.x),abs(point.y − q.y),abs(point.z − q.z)}

6 diff pos squared←
{diff pos.x2, diff pos.y2, diff pos.z2}

7 dist squared← diff pos squared.x+
diff pos squared.y + diff pos squared.z

/* Get the cutoff distance from payload */

8 c← getPayloadC()
/* Ensure it is in the cutoff distance */

9 if dist squared < c2 then
10 dist axis squared←

{diff pos squared.y +
diff pos squared.z, diff pos squared.x+
diff pos squared.z, diff pos squared.x+
diff pos squared.y}

11 ray dir ←
optixGetWorldRayDirection()

12 closest axis←
getClosestAxis(dist axis squared)

13 closest axis is ray dir ← (ray dir ==
closest axis)

/* Ensure this ray and this intersection

are the good one */

14 if closest axis is ray dir then
/* Call computation kernel */

in Fig. 5 the 2D representation of the particles using squares
(which are lines in 2D).

From this description, one particle can be seen as a box of
sides (C + ϵ, C + ϵ, C) (see Fig. 6). The rays can be seen as
the four edges of the box in the x direction, and the triangles
composed the front and back faces. If any two boxes have an

intersection, we will detect it as shown in Fig. 5.

Potentially, the ray will intersect with the squares of the
target particle, but this can easily be filtered by checking
either the coordinates or the index of the geometric elements.
Additionally, if the target and source particles are aligned on
the y or z axis, two rays will intersect with the source’s
squares. To filter these intersections, we proceed as shown
in Algorithm 2. We compare the coordinates between the
source and the target and proceed as follows: If y and z are
different, we perform the computation (only the current ray
will intersect). If y is equal, we use the ray of index 0 if z is
smaller, and the ray of index 2 if z is greater. If z is equal, we
use the ray of index 0 if y is smaller, and the ray of index 1
if y is greater. Otherwise, only the ray of index 0 will be used
for computation (all four rays will intersect).

D. Custom AABB

In this strategy, a bounding box with a width equal to 2×C
is created around each particle. OptiX treats these boxes as
custom primitives, requiring us to implement a custom IS that
is invoked when a ray enters an AABB. We do not perform any
intersection tests within the IS, as our goal is not to compute
ray-AABB or ray-surface intersections but to identify pairs
of particles that are within a distance C of each other. To
achieve this, rays are cast from the particles’ positions with an
infinitesimally short length, as illustrated in Fig. 7.

The interaction between the source and target particles
is computed directly within the IS callback. Consequently,
the hit and miss callbacks are left empty, as there is no
need to filter intersections. In the IS callback, OptiX provides
information about the ray (specifically, the starting point,
which corresponds to the position of the source particle) and
the index of the AABB being tested. To obtain geometric
information about the AABB, one could register a Primitive
Geometry Acceleration Structure (PGAS) for each AABB
during the OptiX scene build stage and retrieve this data in
the IS callback. However, we observed that this approach
significantly increased the scene build cost. Instead, we opted
to access the global memory directly to retrieve the position of
the target particle, which proved to be a more efficient solution.

V. PERFORMANCE STUDY

This section presents a performance evaluation of the
different methods under various configurations. The analysis
begins with a description of the experimental setup, including
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2D representation when the source and 
target are distant from C in X direction, 
their squares overlap.

2D representation when the source and 
target have the same X position, both of 
their squares overlap.

2D representation with multiple sources 
that have their squares intersected with 
the rays.

Fig. 5. Double squares (line) representation of the particles. On the left, we show how the squares can overlap for particles that are too far, but which can be
easily filtered with the distance. In the middle, we show how particles that have the same x coordinate can have their squares that overlap. On the right, we

show different source particles with their squares and the rays that will intersect with them.
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Fig. 6. 3D Rectangular representation of a source and target particles. Some
rays (thick lines) intersect with the squares.

AABB Box

Cutoff radius

Particle

Ray

Fig. 7. Custom AABB representation of the particles. The rays cast from the
particles’ positions with a infinitesimal length. In the IS callback invoked if
a ray enters an AABB, the distance is checked and the interaction between
the source and target particles is computed. Self interactions are filtered by

ensuring that the source and target are different.

the hardware and software used for implementation. Perfor-
mance is then examined for two types of particle distributions:
uniform and non-uniform. Differentiating these distributions
allows for assessing the efficiency of grid-based methods like
CUDA, which are optimized for uniform distributions but can
encounter inefficiencies with sparse or highly localized data in
non-uniform scenarios.

A. Experimental Setup

1) Hardware: We have used two NVidia GPUs:

• A1003 with 40GB hBM2, 48KB of shared-memory,
108 multi-processors, zero RT Cores, 8192
CUDA Cores max single-precision performance
19.5TFLOPS, and max tensor performance
311.84TFLOPS.

3https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/
pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf

• RTX80004 with 48GB GDDR6, 48KB of shared-
memory, 72 multi-processors, 72 RT Cores, 4608
CUDA Cores, maximum Ray casting of 10Giga
Rays/sec, max single-precision performance
16.3TFLOPS, and max tensor performance
130.5TFLOPS.

Despite the lack of RT cores, the A100 is capable of
executing ray tracing kernels, the GPU then use its other units
to behave similarly.

2) Software: We have implemented the proposed approach
in OptiX 8.5 We use the GNU compiler 11.2.0 and the NVidia
CUDA compiler 12.3. The source code is available online.6

The code was compiled with the following flags:
-arch=sm_75 for the RTX8000, -arch=sm_80 for the
A100 (and -O3 -DNDEBUG on both). We execute each kernel
five times and take the average as reference.

We provide in Fig. 8 the 3D rendering of the primitives
using ray tracing: in Fig. 8a for the spheres and in Fig. 8b for
the squares. These figures were drawn using the OptiX API
and ray tracing from camera to the scene.

(a) 3D Rendering of sphere primitives. (b) 3D Rendering of square primitives.

Fig. 8. 3D Rendering of the primitives using conventional ray tracing.

B. Uniform distribution

In this test case, the particles are distributed uniformly
within a unit box. Consequently, there are no (or very few)

4https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/
quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web.pdf

5https://developer.nvidia.com/rtx/ray-tracing/optix
6https://gitlab.inria.fr/bramas/particle-interaction-with-optix
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Algorithm 2: Triangle intersection callback
Data: Optix variables
Result: Callback when a ray intersect with a triangle

1 Function callback()
2 begin

/* Get information on the intersected

triangle */

3 vertices← optixGetTriangleVertexData
(gas, prim idx, sbtGASIndex, 0.f, vertices)

/* Retreive the source position from the

triangle vertices */

4 Declare q as float3
5 q.y ←

(max(vertices[0].y, vertices[1].y, vertices[2].y)+
min(vertices[0].y, vertices[1].y, vertices[2].y))/2

6 q.z ←
(max(vertices[0].z, vertices[1].z, vertices[2].z)+
min(vertices[0].z, vertices[1].z, vertices[2].z))/2

7 c← getPayloadC()
8 if (prim idx mod 4) < 2 then
9 q.x← vertices[0].x+ c/2

10 else
11 q.x← vertices[0].x− c/2

/* Get target particle position */

12 point← getPayloadPartPos()
/* Compute distance */

13 dist p1 p2← distance(point, q)
/* Ensure it is not a self intersection and

it is in the cutoff distance */

14 if dist p1 p2 < cANDdist p1 p2 > ϵ then
15 ray idx← getPayloadRayidx()
16 is ray for compute← (point.y ̸= q.y AND

point.z ̸= q.z)
17 OR ((point.z < q.z AND ray idx == 0) OR

(point.z > q.z AND ray idx == 2))
18 OR ((point.y < q.y AND ray idx == 0) OR

(point.y > q.y AND ray idx == 1))
19 OR ray idx == 0
20 if is ray for compute then

/* Perform the computation */

empty cells in the grid of the CUDA version. The cutoff
distance is defined as 1/β, where β can be 2, 4, 8, 16, or
32. For a given β, the simulation grid consists of 3β cells.
The number of particles N is then calculated as N = p× 3β ,
where p represents the average number of particles per cell,
taking values of 1, 2, 4, 8, 16, or 32. All computations are
performed in single-precision floating point.

We present the results in Fig. 9. For all configurations, we
measured the initialization step (light color) and the computa-
tion step (dark color).

For the OptiX-based implementation, the initialization step
involves building the scene by invoking the OptiX API to
create the primitives. For the CUDA version, the initialization
step involves constructing the grid of cells. Consequently, in

the OptiX-based version, the computation step includes the
time spent launching the rays, executing the callback functions,
and performing the interactions. In the CUDA version, the
computation step corresponds to the kernel time required to
compute the interactions.

1) Comparison between triangles and spheres: First, we
analyze the performance difference between triangles (blue)
and spheres (green). On the A100 GPU, both models deliver
similar performance, but the ratio of initialization time (light
color) to computation time (dark color) is higher for spheres.
This indicates that the computation step is more efficient for
spheres than for triangles. This suggests that in scenarios
where the initialization step is performed only once (e.g.
static elements), spheres might be a better choice. However,
on the RTX8000, triangles are faster than spheres across all
configurations. Although the initialization step for spheres is
quicker than for triangles in cases with fewer particles, this
trend does not hold for larger configurations.

2) Comparison between custom AABB and built-in prim-
itives: Next, we compare the Custom AABB method (or-
ange/red) with the built-in primitives (triangles in blue and
spheres in green). On the A100, the Custom AABB consis-
tently outperforms the built-in primitives, and its advantage
grows as the number of particles or cells increases. For
β = 32 (Fig. 9i), the Custom AABB is up to four times faster
than the triangle- or sphere-based methods. On the RTX8000,
the Custom AABB performs similarly to triangles for small
particle counts but becomes faster as the number of particles
increases. Overall, the Custom AABB is the fastest method.
This demonstrates that creating a custom Intersection Shader
(IS) that is significantly simpler and lighter than the built-
in ones, which compute actual intersections, can accelerate
execution.

3) Benefit of sorting the particles in the custom AABB
methods: Sorting the particles to position them closer in
memory based on their spatial proximity in the simulation is
expected to optimize memory accesses. However, sorting the
particles also incurs a computational cost. We observe that the
strategy without sorting (orange) is faster than the strategy
with sorting (red) when there are few particles. However,
as the number of particles increases, the benefits of sorting
become significant. In our test case, for a given β, increasing
the number of particles leads to an increase in neighboring
particles and, consequently, the number of interactions. In such
cases, optimizing memory access becomes critical.
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Optix Triangles (compute)
Optix Triangles (init)

Optix Spheres (compute)
Optix Spheres (init)

Optix Custom Spheres (compute)
Optix Custom Spheres (init)

Optix Sorted Custom Spheres (compute)
Optix Sorted Custom Spheres (init)

Pure CUDA (compute)
Pure CUDA (init)
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(b) RTX8000 β = 2.
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(d) RTX8000 β = 4.
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Fig. 9. Performance results for the two GPUs for our approaches (OptiX spheres, OptiX triangles, and Custom AABB without and with sort) and the pure
CUDA implementation that use a grid of cells (CUDA). β is the divisor coefficient of the simulation box. The cutoff distance is 1/β and there are β3 cells in

the grid in the Cuda version. The speedup against the CUDA version is shown above the bars for both the build and compute steps.
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Fig. 10. Performance results for the two GPUs for our approaches (OptiX spheres, OptiX triangles, and Custom AABB without and with sort) and the pure
CUDA implementation that use a grid of cells (CUDA). α is the divisor coefficient of the simulation box. The cutoff distance is lower than 1/β and there are
around α3 non-empty cells in the grid in the Cuda version. The speedup against the CUDA version is shown above the bars for both the build and compute

steps, or for the complete run.
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4) GPU Performance comparison: We then compare the
performance of the two GPUs. Results for the A100 are
presented in Fig. 9a, 10c, 9e, 9g, and 9i, while results for the
RTX8000 are shown in Fig. 9b, 9d, 9f, 9h, and 9j. Both GPUs
exhibit comparable performance and a similar initialization-
to-computation time ratio. Although the A100 is expected to
offer higher raw performance, the OptiX implementation is
not fully optimized for this GPU, while the RTX8000 benefits
from having more RT cores to accelerate computation.

Additionally, we do not utilize the tensor cores of the A100,
which represent a key differentiator between the two GPUs and
could help approach theoretical performance.

5) Comparison between OptiX and CUDA implementa-
tions: Finally, we compare the OptiX triangles (blue), Op-
tiX spheres (green), Custom AABB (orange), Custom sorted
AABB (red), and CUDA implementation (green). The OptiX-
based implementation is generally slower than the CUDA
implementation for β values from 2 to 8, except in a few cases
(e.g. β = 2 and N = 8). In these scenarios, the initialization
step in the CUDA implementation is negligible, and the
computation step dominates. Consequently, avoiding the grid
of cells does not yield a significant advantage. For β = 8
(Fig. 9e and 9f), the CUDA computation step is shorter because
the OptiX implementations include not only the interaction
computation but also the intersection list computation using
rays. Additionally, the memory access pattern in OptiX-based
implementations differs, as spatially close particles in memory
may not be close in space and may have varying neighbors.

For β = 16 and β = 32, the Custom AABB performs
better for configurations with few particles per cell (e.g. one
or two particles per cell on average in the CUDA version). In
these cases, the computation cost is low, and the CUDA version
spends most of its time in the initialization step. Furthermore,
the CUDA version incurs overhead for empty cells because it
constructs a dense grid. For such configurations, the OptiX-
based implementations allocate more time to the computation
step, making the Custom AABB a suitable choice when the
number of particles per cell is low, particularly in scenarios
where moving particles require frequent grid rebuilding.

C. Non Uniform Distribution

In this test case, we distribute the particles on the surface
of a unit sphere. Consequently, most of the cells on the grid
in the CUDA version are empty. With this aim, we use a
coefficient α, which can be 8, 16, 32, 64 or 128. For a
given α, the simulation grid consists of approximately 3α non-
empty cells. The number of particles N is then calculated
as N = p × 3α, where p represents the average number
of particles per cell, taking values of 1, 2, 4, 8, 16, or 32.
The cutoff radius is set such that each particle should have
approximately 9 × p neighbor particles (it will be in general
smaller than 2/α). In order to facilitate the reproducibility
of our test case, we provide in Appendix, the Code 2 that
generates the different configurations. All computations are
performed in single-precision floating point.

We present the results in Fig. 10. For all configurations,
we measured both the initialization step (light color) and
the computation step (dark color) for the first configuration.
However, for the others, we directly present the total execution

time using a logarithmic scale on the y-axis due to extreme
differences.

For the OptiX-based implementation, the initialization step
involves building the scene by invoking the OptiX API to
create the primitives. For the CUDA version, the initialization
step involves constructing the grid of cells. Consequently, in
the OptiX-based version, the computation step includes the
time spent launching the rays, executing the callback functions,
and performing the interactions. In the CUDA version, the
computation step corresponds to the kernel time required to
compute the interactions.

1) OptiX spheres: The OptiX spheres method is consis-
tently the slowest (except for α = 2 and a small number of
particles). It has a more expensive initialization step compared
to the Custom AABB methods and a significantly larger
computation step. This is because the built-in IS kernel for
spheres is computationally intensive, as it calculates several
values, such as the norm of the intersection, that we do not
use since we are not rendering an image.

2) Custom AABB without and with sorting: For low α,
sorting does not provide an advantage; it increases the cost
of the initialization step too much relative to the gains in the
computation step. However, for high α and a large number
of particles, sorting the particles results in a performance
improvement. This demonstrates that random access to global
memory is so costly that the overhead of sorting the particles is
worthwhile. The Custom AABB method with sorting performs
comparably to the CUDA version. However, the Custom
AABB methods are generally slower than both the CUDA
version and the OptiX triangles method.

3) OptiX triangles: This strategy is the most efficient.
For α = 8, its initialization step is comparable in cost to
the OptiX spheres and Custom AABB methods. However, its
computation step is significantly faster. We attribute this to
two primary reasons. First, the built-in IS kernel for triangles
is likely much simpler than that for spheres and is probably
heavily optimized by NVIDIA, as triangles are the most
commonly used primitive in 3D rendering. Second, the AABB
bounding boxes around triangles are much smaller than those
around spheres or the custom AABB primitives. This enables
faster tree traversal and fewer false positives (i.e. cases where
a ray intersects a bounding box but not the primitive inside it).

Finally, the CUDA version includes several components
in its implementation that rely on algorithms with complexity
linear in the number of cells. Since the vast majority of these
cells are empty, these steps become highly inefficient. This is
particularly evident for α = 8, where the initialization step is
notably prominent. Moreover, if we were to create a test case
with α = 256 (not included in the current study), the GPU
would run out of memory for the the CUDA version allocating
an excessively large grid. This limitation makes alternative
approaches based on a tree structure — such as our OptiX-
based methods — the only viable options.

VI. CONCLUSION

In this paper, we proposed leveraging ray tracing technol-
ogy to compute particle interactions within a cutoff distance
in a 3D environment. We introduced one method that uses
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custom primitives and a custom Intersection Shader (IS),
similar to the state-of-the-art, and two methods that use built-in
primitives and actual intersection computations. For the latter,
we described geometric algorithms to build the interaction list
based on ray intersections with spheres or triangles.

Our results indicate that our approach provides a modest
advantage in the preprocessing stage by avoiding the con-
struction of a grid of cells. In addition, it is slower than
the classical approach during the computation step when
dealing with large numbers of uniformly distributed particles.
However, when most cells are empty, our approach can provide
a significant speedup. Therefore, we believe these methods
have the potential to deliver better performance in the future
or for specific applications, and we hope our work inspires the
community to explore this direction further.

As GPU architectures continue to evolve, with advance-
ments such as NVIDIA’s Ada Lovelace architecture featuring
third-generation RT cores and AMD’s RDNA 3 architecture
incorporating second-generation ray-tracing accelerators, we
anticipate that algorithms leveraging these capabilities will
become increasingly effective and relevant. Consequently, our
approach is prepared to benefit from these hardware improve-
ments, enhancing its performance and applicability in future
computational scenarios and we hope our work inspires the
community to explore this direction further.

We plan to evaluate our approach on other GPUs, such
as AMD Radeon, and aim to port our method even in cases
where the IS cannot be customized, thanks to our geometric
algorithms. In a second step, we will take our best strategy
and compare it with state-of-the-art particle interaction solvers
that support GPUs.
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APPENDICES

A. DISCUSSION ON THE SPHERE MODEL

The filtering algorithm presented in Section IV-B is based
on the assumption that there is always at least one ray that is
intersected once by the sphere and that it is the closest one to
the center of the sphere. The following section is dedicated to
demonstrating this hypothesis.

In Fig. 11, we show the different possibilities depending
on the radius r and ray’s length l. As it can be seen, even if
the sources located at a distance of C from the target could
have their spheres that intersect with the rays when r > l, we
must set l = r to ensure that the rays will intersect with the
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sphere in all cases, especially when the source and target are
close.

For the clarity of the proof, a demonstration is first provided
in the plane, followed by a generalization to R3.

1) 2D Case: Let us consider a cercle of radius r centered
at (xc, yc), and a cross7 centered at the origin with a length
of r. We consider the cases where the cercle is located in
the first quarter, i.e., 0 ≤ xs ≤ r and 0 ≤ ys ≤ r, but the
demonstration remains valid for other quarters.

The equation of a cercle is given by:

(x− xc)
2 + (y − yc)

2 = r2. (1)

The coordinates of the intersection points of the cercle with
the axis are given by:

x0 = xc −
√
r2 − y2c and x1 = xc +

√
r2 − y2c

y0 = yc −
√
r2 − x2

c . and y1 = yc +
√
r2 − x2

c .
(2)

We provide the Fig. 12 that shows where these points are
located on the sphere and the cross.

x0 and y0 are the coordinates of the intersection points of
the cercle that remain on the cross as the cercle get away from
the origin. On the other hand, x1 and y1 are the coordinates of
the intersection points of the cercle that are the farthest from
the origin of the cross and that can potentially be too far to
remain on the cross (they will be on the corresponding axis
but behind l).

Lemma 1. Given a circle C and let ex and ey be the two
segments of the cross of length less than r, then the number
of intersections of C with ex or with ey is strictly less than 2.

Proof: As we consider that it is impossible that both x1 and
y1 exist at the same time, we consider that these two equations
cannot be true at the same time

xc +
√
r2 − y2c ≤ r and yc +

√
r2 − x2

c ≤ r. (3)

Which can be simplified as

xc < r −
√
r2 − y2c and

√
r2 − x2

c ≤ r − yc

r2 − x2
c ≤ r2 − 2ryc + y2c

x2
c > 2ryc − y2c

xc >
√
2ryc − y2c ,

(4)

ending up with

√
2ryc − y2c < r −

√
r2 − y2c . (5)

For our definition range of yc ∈ [0, r], this equation has
no solution (see Fig. 13), which confirms that C will always
intersect with the cross at most once for ex or ey .

7That is, two orthogonal axis-aligned segments of the same size intersecting
at their respective centers.

The second statement is to show that the ray that is
intersected once is the closest to the center of the sphere.

Lemma 2. Given a circle C and e one of the two segments
of the cross of length less than r, such as the number of
intersection of C with e is equal to 1, then the distance of
e with C is smaller than the distance of the other bar to C.

Proof: Consider that C intersects with ey twice and ex
once, it means that y1 < r and x1 > r, i.e. yc+

√
r2 − x2

c < r
and xc +

√
r2 − y2c > r.

We aim to demonstrate that the inequality

yc +
√
r2 − y2c < xc +

√
r2 − x2

c (6)

holds if and only if xc > yc.

We start with the inequality:

yc +
√
r2 − y2c < xc +

√
r2 − x2

c . (7)

Subtracting yc from both sides, we obtain:

√
r2 − y2c < xc − yc +

√
r2 − x2

c . (8)

We can further simplify this to:

√
r2 − y2c −

√
r2 − x2

c < xc − yc. (9)

The inequality now compares two quantities:
√

r2 − y2c −√
r2 − x2

c and xc − yc.

• The term
√
r2 − y2c represents the horizontal distance

from the point (xc, yc) to the vertical axis.

• The term
√
r2 − x2

c represents the vertical distance
from the point (xc, yc) to the horizontal axis.

Let’s consider the case where xc > yc:

• If xc > yc, then xc − yc > 0.

• Additionally,
√

r2 − y2c >
√

r2 − x2
c because yc <

xc.

This implies that the term
√
r2 − y2c −

√
r2 − x2

c is pos-
itive, and it is less than xc − yc, proving that the inequality
holds under this condition.

Thus, for the inequality yc +
√

r2 − y2c < xc +
√
r2 − x2

c
to hold, it is necessary that xc > yc. So, the x axis is the
closest axis to the center of the sphere and is intersected once.
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If r > l, the sphere might not intersect with the 
rays, even if the source and target a closer 
than the cutoff distance

If l > r, the sphere might intersect twice with all 
rays, leading to difficulty to filter

If r == l, the sphere cannot englobe the rays 
and there is always a ray that is intersected 
only once.

Fig. 11. 2D Spherical representation of the particles in three different cases with r > l, l > r and r == l.

x0

y0

x0

y0

x1 x0
y0

y0 x0

Fig. 12. 2D spherical representation illustrating the classification of intersection points between the sphere and the cross.
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Fig. 13. Plot of the equation
√

2ryc − y2c − r +
√

r2 − y2c , for r = 1.

2) 3D Case: To convert this proof from 2D to 3D, we need
to extend the concepts from the circle and cross to a sphere
and a three dimensional cross.8 Consider a sphere with radius r
centered at (xc, yc, zc) in 3D space, and a cross (or coordinate
axes) centered at the origin with each axis extending from
−l to l. We are interested in analyzing the intersection of the
sphere with the axes, focusing particularly on the first octant
where 0 ≤ xc ≤ l, 0 ≤ yc ≤ l, and 0 ≤ zc ≤ l.

The equation of the sphere is given by:

(x− xc)
2 + (y − yc)

2 + (z − zc)
2 = r2. (10)

The coordinates of the intersection points of the sphere
with the axes are found by setting two of the coordinates to
zero in the sphere’s equation:

• Intersection with the x-axis (set y = 0 and z = 0):

x = xc ±
√
r2 − y2c − z2c (11)

8That is, three axis aligned orthogonal segments of the same size intersect-
ing at their respective centers.

• Intersection with the y-axis (set x = 0 and z = 0):

y = yc ±
√

r2 − x2
c − z2c (12)

• Intersection with the z-axis (set x = 0 and y = 0):

z = zc ±
√
r2 − x2

c − y2c (13)

Let’s denote the intersection points on the positive half of
the axes as:

• x1 = xc +
√
r2 − y2c − z2c

• y1 = yc +
√
r2 − x2

c − z2c

• z1 = zc +
√
r2 − x2

c − y2c

We need to analyze whether these points lie within the
bounds of the cross, i.e. whether x1 ≤ l, y1 ≤ l, and z1 ≤ l.

Assume that one of these coordinates, say x1, exceeds l.
This would mean that the intersection does not lie on the cross,
i.e. xc +

√
r2 − y2c − z2c > l.

Similarly, for y1 and z1, we require that:

yc+
√
r2 − x2

c − z2c > l or zc+
√
r2 − x2

c − y2c > l. (14)

These conditions cannot all be true simultaneously for xc,
yc, and zc within the defined range, similar to the 2D case.
Thus, a sphere will intersect the cross at most once per axis.

Next, we determine the axis closest to the sphere’s center.
If xc > yc > zc, we aim to prove that the intersection on the
x-axis occurs first (i.e. is the smallest).

Starting with:

xc +
√
r2 − y2c − z2c < yc +

√
r2 − x2

c − z2c

and xc +
√
r2 − y2c − z2c < zc +

√
r2 − x2

c − y2c .
(15)
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These can be simplified, following similar steps as in the
2D case:

√
r2 − y2c − z2c −

√
r2 − x2

c − z2c < yc − xc

and
√
r2 − y2c − z2c −

√
r2 − x2

c − y2c < zc − xc.
(16)

The argument follows that since xc > yc > zc, the
inequalities hold true, confirming that the x-axis is the closest,
and thus it is intersected first.

The 3D extension of the proof shows that a sphere inter-
sects each axis of a coordinate cross at most once, and the axis
closest to the sphere’s center (in the order of xc > yc > zc)
will have the intersection point closest to the origin.

B. CONVERSION FROM PARTICLES’ POSITIONS TO
TRIANGLES

1 for(int i = 0; i < nbPoints; i++)

2 {

3 const float3 point = points[i];

4 std::array<float3, 8> corners;

5 for(int idxCorner = 0 ; idxCorner < 8 ; ++idxCorner){

6 corners[idxCorner].z = point.z + (idxCorner&1 ? ...
(cutoffRadius/2)+epsilon : (-cutoffRadius/2)-epsilon );

7 corners[idxCorner].y = point.y + (idxCorner&2 ? ...
(cutoffRadius/2)+epsilon : (-cutoffRadius/2)-epsilon );

8 corners[idxCorner].x = point.x + (idxCorner&4 ? ...
cutoffRadius/2 : -cutoffRadius/2 );

9 }

10 vertices.push_back(corners[0]);

11 vertices.push_back(corners[1]);

12 vertices.push_back(corners[3]);

13
14 vertices.push_back(corners[0]);

15 vertices.push_back(corners[2]);

16 vertices.push_back(corners[3]);

17
18 vertices.push_back(corners[4]);

19 vertices.push_back(corners[5]);

20 vertices.push_back(corners[7]);

21

22 vertices.push_back(corners[4]);

23 vertices.push_back(corners[6]);

24 vertices.push_back(corners[7]);

25 }

26

Code 1: Triangles generation from particles’s positions.

C. GENERATION OF PARTICLES ON A SPHERE

1 const int MaxParticlesPerCell = 32;

2 const int MaxBoxDiv = 128;

3 for(int boxDiv = 2 ; boxDiv <= MaxBoxDiv ; boxDiv *= 2){

4 const int nbBoxes = boxDiv*boxDiv*boxDiv;

5 for(int nbParticles = nbBoxes ; nbParticles <= ...
nbBoxes*MaxParticlesPerCell ; nbParticles *= 2){

6 const double particlePerCell = ...
double(nbParticles)/double(nbBoxes);

7 const double expectedNbNeighbors = 9*particlePerCell;

8 const double coef = 1. - ...
((2*expectedNbNeighbors)/nbParticles);

9 const double validCoef = std::min(1.0, std::max(-1.0, coef));

10 const double sphereRadius = acos(validCoef);

11
12 // The following is only used if we need to build a grid ...

of cell

13 const float boxWidth = std::ceil(2.0 / sphereRadius) * ...
sphereRadius;

14 const int gridDim = boxWidth/sphereRadius;

15 const float cellWidth = boxWidth/gridDim;

16 ......

17
18 auto generateRandomParticle() {

19 double theta = 2.0 * M_PI * ((double)rand() / RAND_MAX); // ...
Random angle between 0 and 2PI

20 double phi = acos(1.0 - 2.0 * ((double)rand() / RAND_MAX)); ...
// Random angle between 0 and PI

21
22 // Convert spherical coordinates to Cartesian coordinates

23 double x = sin(phi) * cos(theta);

24 double y = sin(phi) * sin(theta);

25 double z = cos(phi);

26
27 return Particle{x, y, z};

28 }

29

Code 2: Non-uniform test case generation.
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