
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

504 | P a g e

www.ijacsa.thesai.org

An NLP-Enabled Approach to Semantic Grouping for

Improved Requirements Modularity and Traceability

Rahat Izhar1, Shahid Nazir Bhatti2, Sultan A. Alharthi3

Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand1

Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah

21493, Saudi Arabia2, 3

Abstract—The escalating complexity of modern software

systems has rendered the management of requirements

increasingly arduous, often plagued by redundancy, inconsistency,

and inefficiency. Traditional manual methods prove inadequate

for addressing the intricacies of dynamic, large-scale datasets. In

response, this research introduces SQUIRE (Semantic Quick

Requirements Engineering), a cutting-edge automated framework

leveraging advanced Natural Language Processing (NLP)

techniques, specifically Sentence-BERT (SBERT) embeddings

and hierarchical clustering, to semantically organize requirements

into coherent functional clusters. SQUIRE is meticulously

designed to enhance modularity, mitigate redundancy, and

strengthen traceability within requirements engineering

processes. Its efficacy is rigorously validated using real-world

datasets from diverse domains, including attendance

management, e-commerce systems, and school operations.

Empirical evaluations reveal that SQUIRE outperforms

conventional clustering methods, demonstrating superior intra-

cluster cohesion and inter-cluster separation, while significantly

reducing manual intervention. This research establishes SQUIRE

as a scalable and domain-agnostic solution, effectively addressing

the evolving complexities of contemporary software development.

By streamlining requirements management and enabling software

teams to focus on strategic initiatives, SQUIRE advances the state

of NLP-driven methodologies in Requirements Engineering,

offering a robust foundation for future innovations.

Keywords—Requirements Engineering (RE); semantic

clustering; sentence-BERT; natural language processing (NLP)

I. INTRODUCTION

Requirements Engineering is a cornerstone of software
development, focusing on the identification, documentation, and
management of requirements that guide the design and
implementation of software systems [1]. It ensures alignment
between user needs and project goals, providing a foundation for
system functionality and quality. However, as software systems
grow in complexity and scale, managing requirements
effectively becomes increasingly challenging. Issues such as
redundancy, inconsistencies, and overlapping functionalities not
only complicate design processes but also disrupt modularity,
traceability, and efficient project execution [2], [3]. These
challenges highlight the need for innovative solutions to
streamline requirements management, particularly in large-scale
projects.

Conventional approaches to managing requirements rely
heavily on manual processes, which are often time-consuming,
prone to human error, and inadequate for handling large datasets

[4]. These traditional methods, while useful for small-scale
projects, fail to meet the demands of modern, dynamic software
development, where requirements are frequently updated and
involve intricate relationships. Automated techniques,
particularly those leveraging Natural Language Processing
(NLP), have emerged as promising solutions for addressing
these limitations. By analyzing textual requirements for
semantic relationships, NLP-based methods can uncover
patterns and organize requirements efficiently [5]. However,
existing methods face limitations in capturing the subtle
semantic relationships within diverse or domain-specific
datasets, restricting their ability to handle the complexity of real-
world requirements engineering tasks.

To address these gaps, this paper presents SQUIRE
(Semantic QUIck Requirements Engineering), a novel and
structured methodology aimed at automating the grouping of
semantically similar requirements into functional clusters.
SQUIRE combines state-of-the-art NLP techniques, such as
Sentence-BERT (SBERT) embeddings, hierarchical clustering,
and a comprehensive preprocessing pipeline, to analyze and
group requirements based on their semantic similarity [4], [6],
[12]. By focusing on reducing redundancy, enhancing
modularity, and improving traceability, SQUIRE provides a
practical solution to key challenges in RE, enabling more
efficient and effective system design [7].

The methodology represents a significant advancement in
the application of NLP to RE, building on recent trends in
natural language understanding and clustering algorithms [9],
[10], [17], [18]. The authors' work reflects a broader effort in the
research community to leverage the capabilities of NLP for
addressing critical challenges in RE, including the need for
scalability, semantic analysis, and automation [19]. Recent
developments in NLP, particularly transformer-based models
such as Sentence-BERT (SBERT), have enabled significant
improvements in the ability to capture the semantic meaning of
textual data, making them well-suited for addressing RE
challenges.

The effectiveness of SQUIRE is evaluated across diverse,
real-world datasets representing distinct functional domains,
including attendance management, e-commerce, and school
operations. The methodology’s performance is assessed using
quantitative metrics such as cohesion, separation, silhouette
scores, and the Davies-Bouldin Index [20], [24], [25].
Visualizations using Principal Component Analysis (PCA)
further demonstrate the ability of SQUIRE to organize
requirements into meaningful clusters, providing clear insights

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

505 | P a g e

www.ijacsa.thesai.org

into the relationships between requirements. These evaluations
highlight the robustness of the proposed approach, showcasing
its potential to improve modularity and traceability in varied
software development contexts.

This research contributes to the ongoing integration of NLP
into requirements engineering by demonstrating how advanced
language models and clustering techniques can address long-
standing challenges in the field [5]. By automating the grouping
of requirements, SQUIRE reduces the manual effort required in
RE, allowing software teams to focus on higher-value activities
such as innovation and strategic planning. Furthermore, the
domain-agnostic nature of SQUIRE makes it adaptable to
various industries, offering a scalable solution for modern
software development needs.

SQUIRE advances the state of requirements engineering by
introducing a systematic and scalable methodology for semantic
clustering. By leveraging the latest advancements in NLP, it
bridges the gap between textual complexity and actionable
insights, enabling software teams to design more organized,
traceable, and modular systems [22]. This work lays the
groundwork for further innovations in automated RE,
positioning NLP as a central tool in the evolution of software
development practices.

The remainder of this paper is organized as follows: Section
II delineates a meticulous review of pertinent literature,
elucidating seminal advancements and inherent constraints
within NLP-driven requirements engineering. Section III
expounds upon the proposed SQUIRE methodology,
systematically detailing its preprocessing pipeline, embedding
generation mechanisms, and clustering paradigms. Section IV
articulates the experimental framework, encompassing the
evaluation metrics and empirical assessments employed to
ascertain the model’s efficacy. Section V presents a rigorous
discourse on the obtained findings, critically analyzing the
methodological robustness and potential limitations. Lastly,
Section VI encapsulates the study’s principal contributions and
delineates prospective avenues for future research.

II. RELATED WORK

Modern software development has made RE more
challenging due to the growing complexity of systems and the
volume of requirements. Traditional approaches often rely on
manual analysis, which can lead to errors and inefficiencies. To
overcome these challenges, researchers have introduced
techniques like NLP and clustering algorithms. These methods
aim to simplify requirement management by automating
processes such as grouping and prioritization. This section
reviews recent work in applying these techniques to RE,
focusing on their impact, limitations, and future potential.

Radwan et al. [8] proposed the CMHR (Conceptual Mapping
for Healthcare Requirements) approach to enhance the analysis
of non-functional requirements in healthcare systems. The
methodology involves clustering requirements using the K-
means++ algorithm based on attributes such as priority and
suitability, enabling structured visualization through conceptual
mapping. Applied to ventilator requirements, the approach
achieved a silhouette score of 0.71 and accurately classified new
requirements using a Naïve Bayes classifier. However, the study

is limited by its small dataset and focus on a single domain,
necessitating further validation across other healthcare systems
for broader applicability.

Salman et al. [9] explored semantic clustering of functional
requirements (FRs) using Agglomerative Hierarchical
Clustering (AHC). The study addresses a gap in software
requirements engineering, where functional requirements are
typically analyzed manually. Existing works focus primarily on
non-functional requirements classification, leaving FR
clustering largely unexplored. Previous research has used
techniques like Support Vector Machines and ontology-based
methods for requirement classification, but functional
requirements have lacked similar advancements. This paper
introduces a semantic similarity-based approach to group FRs,
validated across four software projects. While the proposed
method achieved promising results, it relies heavily on
vocabulary consistency, limiting its applicability across diverse
datasets.

Del Sagrado et al. [10] integrate clustering techniques with
the MoSCoW method to automate requirements prioritization in
software projects. Their methodology, validated on datasets of
varying scales (20, 50, and 100 requirements), demonstrates
clustering’s efficacy in identifying core requirements. While
enhancing decision-making, the approach is constrained by
dependency considerations and reliance on subjective
estimations, leading to variability in algorithmic performance.

Bakar et al. [11] employ Latent Semantic Analysis (LSA)
alongside K-Means and Hierarchical Agglomerative Clustering
(HAC) to facilitate software requirements reuse in Software
Product Lines (SPL). Evaluations on 27 product review
documents reveal HAC’s superiority in cluster compactness,
whereas K-Means marginally outperforms in external
validation. However, HAC is preferred for its grouping
precision. Sensitivity to domain-specific data and input
parameters remains a limitation, with future work directed at
refining clustering optimization.

Das et al. [12] introduce PUBER and FiBER, domain-
specific sentence embedding models enhancing similarity
detection in natural language requirements. Built on the BERT
architecture, PUBER trains on the PURE dataset, while FiBER
refines it via fine-tuning. Using cosine similarity, FiBER
achieves 88.35% accuracy, surpassing Universal Sentence
Encoder and RoBERTa by up to 10%. These models advance
classification, similarity detection, and reusability, addressing
NLP challenges in software engineering.

The study by Elhassan et al. [13] developed an automated
conflict detection model using the Mean Shift clustering
algorithm to identify and classify requirement conflicts during
elicitation. The methodology involved data transformation
based on McCall's quality model and clustering requirements
into three categories: conflict-free, partial conflict, and
conflicted requirements. Results demonstrated accurate
clustering, with conflict-free requirements achieving low
standard error (SE) values, validating the model’s efficiency.
Limitations include a small dataset size (207 observations),
restricting generalizability, and challenges in data collection
from diverse sources. Future work suggests expanding datasets,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

506 | P a g e

www.ijacsa.thesai.org

applying the model to varied IS environments, and exploring
decision tree algorithms for enhanced detection.

The reviewed studies show that using NLP and clustering in
Requirements Engineering has great potential to solve key
challenges like redundancy and lack of scalability. However,
issues such as handling diverse requirements and adapting to
different domains remain. These findings suggest the need for
smarter, more flexible methods to address these gaps. By
building on existing work, approaches like SQUIRE offer a step
forward, combining advanced tools with practical solutions for
improving how requirements are managed in real-world
software projects.

III. RESEARCH METHODOLOGY

The proposed methodology, SQUIRE offers an automated
and efficient framework for grouping semantically similar
requirements into distinct functional clusters. By leveraging
NLP techniques, embedding models, and hierarchical
clustering, SQUIRE addresses key challenges in requirements
engineering, such as redundancy reduction, traceability
enhancement, and modular system design.

The methodology comprises five structured stages:
Preprocessing, Semantic Embedding Generation, Clustering,
Evaluation, and Visualization.

A. Data Preprocessing

The preprocessing stage standardizes and simplifies textual
requirements, ensuring consistency and reducing noise to
prepare data for embedding generation [27]. This involves a
series of transformations applied sequentially: converting text to
lowercase to eliminate inconsistencies caused by capitalization,
removing punctuation marks to simplify content, and filtering
out stopwords such as “the” and “shall” that do not add semantic
value [30]. The text is then tokenized into individual words or
phrases, enabling detailed analysis, and normalized to unify
synonyms or domain-specific terms (e.g., “log in” and “sign in”
standardized to “log in”). Table I demonstrates the progressive
refinement of requirements through these steps.

TABLE I EXAMPLE RESULTS OF DATA PREPROCESSING PIPELINE

Original

Requiremen

t

Lowercase

d

Punctuatio

n Removed

Stopword

s

Removed

Tokenize

d

"The system

shall allow

users to log
in."

"the system

shall allow

users to log
in."

"the system

shall allow

users to log
in"

"system
allow users

log in"

["system",

"allow",
"users",

"log",

"in"]

"Users can

register

themselves
for access."

"users can

register

themselves
for access."

"users can

register

themselves
for access"

"users
register

access"

["users",
"register",

"access"]

The output of preprocessing is a clean, tokenized, and
normalized version of each requirement, ready for embedding
generation. This ensures that noise is minimized while retaining
the semantic essence of the text.

B. Semantic Embedding Generation

To effectively cluster requirements, each preprocessed input
is transformed into a dense vector representation using SBERT,

a pre-trained transformer-based model optimized for capturing
semantic similarity [23]. SBERT excels at encoding contextual
information and relationships between words, making it an ideal
choice for analyzing and grouping requirements. Specifically,
the all-MiniLM-L6-v2 model is utilized, which generates
embeddings with a dimensionality of 384 [31]. These
embeddings represent the semantic meaning of textual inputs in
a high-dimensional vector space. For instance, a requirement
like "system allow users log in" is converted into a numerical
vector (e.g., E = [0.23, -0.45, 0.67, …, -0.11]). The proximity of
two embeddings in this space directly reflects the semantic
similarity between their corresponding requirements.

C. Clustering Requirements in Groups

Using the embeddings generated in the previous step,
requirements are grouped into clusters through Agglomerative
Clustering, a hierarchical method that iteratively merges data
points based on similarity [15]. This process relies on Euclidean
Distance as the similarity metric, where smaller distances
indicate higher semantic similarity between requirements [16],
[29]. To ensure optimal clustering, Ward Linkage is employed,
which minimizes intra-cluster variance by selecting merges that
reduce the overall variance [28]. The variance adjustment is
calculated as:

𝛥𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐴

+ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐵

− 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑙𝑢𝑠𝑡𝑒𝑟

For better interpretability and functional modularity, the
number of clusters (k) is predetermined based on the dataset’s
size and complexity (e.g., k = 4 for smaller datasets). Each
resulting cluster represents a distinct functional module,
grouping semantically similar requirements while separating
unrelated ones [18], [19]. For instance, requirements like
"System allow users log in" and "Users register access" are
grouped into Cluster 1, while others such as "System calculate
attendance" and "Users generate reports" fall into separate
clusters, reflecting unique functional distinctions. Examples of
these clusters is shown in Table II.

TABLE II CLUSTERING OUTPUT EXAMPLE

Requirement Cluster

Ensure image sliders work properly and link to the restaurant

homepage.
1

Match UI with the Android version: icons, formats, sizing,

and alignment.
1

Show current prices for discounted items and notify users

about deletions.
2

Show discount value on item card and final total price box for

% discount items.
2

Connect QR code feature and create deep links for reading the

QR code.
3

Ensure every QR code generator has a deep link and forwards
to the app store/play store if not installed.

3

D. Evaluation

The quality of clustering results is evaluated using several
key metrics to ensure both intra-cluster cohesion and inter-
cluster separation. Cohesion measures the semantic similarity of
requirements within a cluster, ensuring that grouped
requirements share strong relationships [26]. In contrast,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

507 | P a g e

www.ijacsa.thesai.org

Separation evaluates the dissimilarity between clusters, ensuring
functionally distinct requirements are placed in separate groups
[20]. The overall clustering quality is assessed using the
Silhouette Score, which combines both cohesion and separation
into a single metric. Additionally, the Davies-Bouldin Index is
used to measure intra-cluster compactness and inter-cluster
separation, where lower values indicate better clustering
performance [21]. Together, these metrics provide a
comprehensive evaluation of clustering effectiveness.

E. Visualization

For interpretability, high-dimensional embeddings are
reduced to two dimensions using Principal Component Analysis
(PCA). This dimensionality reduction enables the generation of
scatter plots where each point represents a requirement, and
clusters are distinguished by color [14]. These visualizations
provide insights into the clustering structure and relationships
among requirements. The SQUIRE methodology integrates
preprocessing, semantic embedding generation, clustering,
evaluation, and visualization into a cohesive framework for
automating requirements analysis. By leveraging SBERT
embeddings and hierarchical clustering with a fixed number of
clusters, it ensures accurate grouping of semantically similar
requirements while enhancing modular design and traceability.

F. Algorithm: SQUIRE (Semantic QUIck Requirements

Engineering)

Input:

 𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑛}: A set of 𝑛 textual requirements.
Output:

 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘}: 𝑘 clusters of semantically similar

requirements.
Steps:

1. Preprocessing

Transform each requirement 𝑅𝑖 into a standardized form:

 Convert to lowercase: 𝑅𝑖
′= lower(𝑅𝑖).

 Remove punctuation: 𝑅𝑖
′′= remove_punctuation(𝑅𝑖

′).

 Tokenize text: 𝑊𝑖= tokenize(𝑅𝑖
′′).

 Remove stopwords: 𝑊𝑖
′= 𝑊𝑖/𝑆𝑡𝑜𝑝𝑤𝑜𝑟𝑑𝑠

2. Embedding Generation

Generate dense vector embeddings 𝐸 = {𝐸1, 𝐸2, … , 𝐸𝑛} using a pre-

trained SBERT model:

𝐸𝑖 = 𝑆𝐵𝐸𝑅𝑇(𝑅𝑖
′)

Where 𝐸𝑖 ∈ ℝ384

3. Similarity Computation

Compute pairwise similarity between embeddings using the

Euclidean distance.

𝑑(𝐸𝑖 , 𝐸𝑗) = √∑(𝐸𝑖𝑘
− 𝐸𝑗𝑘

)2

384

𝑘=1

where 𝐸𝑖𝑘
𝑎𝑛𝑑 𝐸𝑗𝑘

are the 𝑘𝑡ℎdimensions of embeddings 𝐸𝑖 𝑎𝑛𝑑 𝐸𝑗.

4. Clustering

Perform hierarchical clustering using Agglomerative Clustering:

 Linkage method: Ward’s linkage minimizes intra-cluster

variance.

 Clustering criterion:

𝑀𝑒𝑟𝑔𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 Δ𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

Result: Assign each requirement 𝑅𝑖 to a cluster label 𝐶𝑖 .
5. Evaluation

1. Cohesion: Measure intra-cluster similarity:

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 =
1

|𝐶𝑘|
∑ 𝑆𝑖𝑚(

𝑖,𝑗∈𝐶𝑘

𝐸𝑖 , 𝐸𝑗)

where 𝑆𝑖𝑚(𝐸𝑖 , 𝐸𝑗) = 1 − 𝑑(𝐸𝑖 , 𝐸𝑗).

2. Separation: Measure inter-cluster dissimilarity:

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = min
𝑖∈𝐶𝑘,𝑗∈𝐶𝑙,𝑘≠𝑙

𝑑(𝐸𝑖 , 𝐸𝑗)

3. Silhouette Score: Combines cohesion and separation to

measure the overall clustering quality:

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥(𝑎(𝑖), 𝑏(𝑖))

where 𝑎(𝑖) is the average intra-cluster distance and 𝑏(𝑖) is the average

nearest-cluster distance.

4. Davies-Bouldin Index: Quantifies intra-cluster

compactness and inter-cluster separation:

𝐷𝐵 𝐼𝑛𝑑𝑒𝑥 =
1

𝑘
∑ max

𝑗≠𝑖

𝜎𝑖 + 𝜎𝑗

d(𝐶𝑖 , 𝐶𝑗)

𝑘

𝑖=1

Lower values indicate better clustering.

6. Complexity Analysis:

The complexity of different stages in the SQUIRE methodology is

analyzed as follows:

1. Preprocessing Complexity (Time & Space):
Time Complexity: 𝑂(𝑛) where n is the number of requirements. Each

requirement undergoes tokenization, stopword removal, and

normalization, which operates linearly with respect to the number of

requirements.

Space Complexity: 𝑂(𝑛), as each requirement is stored as a

processed text sequence before embedding.

2. Embedding Generation Complexity (Time & Space):

Time Complexity: 𝑂(𝑛), since the Sentence-BERT (SBERT) model

processes each requirement independently, leading to a linear

complexity.

Space Complexity: 𝑂(𝑛 × 𝑑), where 𝑑 is the embedding dimension

(384 in the case of MiniLM-SBERT). The output matrix of

embeddings requires storage proportional to the dataset size.

3. Clustering Complexity (Time & Space):

Time Complexity: 𝑂(𝑛3) for Agglomerative Clustering, due to the

hierarchical structure requiring pairwise distance computations and

iterative merging.

4. Space Complexity: 𝑂(𝑛2), as the clustering algorithm

maintains a distance matrix for all requirement pairs.

This complexity analysis provided a clear distinction between

time and space requirements at different stages of the methodology.

The SQUIRE algorithm efficiently organizes textual
requirements into meaningful clusters by leveraging NLP
embeddings and hierarchical clustering [28]. Its structured
workflow ensures semantic precision and scalability while
minimizing redundancy. With its foundation in advanced
language models and practical clustering methods, SQUIRE
lays the groundwork for a streamlined approach to handling
complex requirements datasets, offering clarity and
functionality to modern software engineering practices

IV. RESULTS AND VALIDATION OF PROPOSED MODEL

The validation of the proposed SQUIRE methodology was
conducted using four real-world datasets sourced from a
software company [32]. These datasets, representing diverse
functional domains, included four different domains as shown
in Table III. The primary objective of this validation was to
assess the model's ability to accurately group semantically
similar requirements into functional clusters.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

508 | P a g e

www.ijacsa.thesai.org

TABLE III DATASETS OVERVIEW

Dataset Domain
Number of

Requirements

Attendance
Management

Employee attendance
tracking and reporting

26

E-commerce
Online shopping portal

requirements
20

Lottery Management
Lottery system

functionality
24

School Management
Educational institution
operations

23

These datasets represent diverse functional requirements,
providing a robust basis for testing the domain-agnostic
capabilities of the SQUIRE methodology [32].

The evaluation focused on clustering outcomes, visualized
through scatter plots and assessed quantitatively using
Cohesion, Separation, Silhouette Score, and Davies-Bouldin
Index. The results highlight the methodology's strengths and its
performance across different datasets.

The clustering results for each dataset were visualized using
Principal Component Analysis (PCA), reducing the 384-
dimensional embeddings to two dimensions [23]. The scatter
plots for the datasets Fig. 1 illustrate the semantic clusters, with
each point representing a requirement and colors distinguishing
the clusters.

Fig. 1. Distribution of requirements clusters using PCA for each dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

509 | P a g e

www.ijacsa.thesai.org

The clustering performance is summarized in the Table IV
below:

TABLE IV CLUSTERING METRICS FOR DIFFERENT DATASETS

Dataset Cohesion Separation
Silhouette

Score

Davies-

Bouldin
Index

Attendance

Management
0.2362 1.1306 0.1276 1.7027

E-commerce 0.1360 1.2911 0.1044 1.7195

Lottery

Management
0.1096 1.2622 0.1587 1.8307

School
Management

0.1940 1.1789 0.1174 1.7759

1) Cohesion: The Attendance Management dataset

achieved the highest cohesion (0.2362), indicating well-

grouped clusters. The Lottery Management dataset displayed

slightly lower cohesion (0.1096), reflecting greater diversity

within clusters.

2) Separation: The E-commerce dataset achieved the

highest separation (1.2911), highlighting distinct clusters. The

Attendance Management dataset had slightly lower separation

(1.1306), possibly due to overlapping functional requirements.

3) Silhouette score: The Lottery Management dataset

recorded the highest silhouette score (0.1587), indicating a

good balance between cohesion and separation.

4) Davies-bouldin index: The Attendance Management

dataset exhibited the lowest Davies-Bouldin Index (1.7027),

reflecting compact and well-separated clusters. The Lottery

Management dataset had the highest index (1.8307), suggesting

room for improvement in cluster separation.

The validation results demonstrate the practical utility of the
SQUIRE methodology in streamlining requirements
engineering. By automating the clustering of semantically
similar requirements, SQUIRE significantly reduces the manual
effort required for organizing and analyzing requirements,
allowing practitioners to focus on higher-value tasks such as
decision-making and system design [7]. The methodology's
ability to achieve high cohesion and separation across diverse
datasets highlights its adaptability to different functional
domains, making it a robust solution for handling large-scale
and dynamic software projects. Furthermore, the integration of
PCA-based visualizations enhances interpretability, providing
clear insights into the relationships between requirements and
supporting better traceability. Overall, SQUIRE offers a scalable
and domain-agnostic approach that addresses critical challenges
in requirements engineering, paving the way for more efficient
and error-free software development processes.

V. DISCUSSION, LIMITATIONS AND FUTURE WORK

The validation results of the SQUIRE methodology
demonstrate its effectiveness in clustering semantically similar
requirements into distinct functional groups across diverse
datasets. By leveraging Sentence-BERT embeddings and
hierarchical clustering techniques, the methodology
successfully addresses key challenges in requirements

engineering, such as redundancy reduction, modularity, and
enhanced traceability [2], [3], [13].

The methodology consistently produced meaningful clusters
across four distinct datasets, sourced from a software company,
representing domains Attendance Management, E-commerce,
Lottery Management, and School Management [32]. These
datasets varied in size and complexity, containing 20–26
requirements each, and provided a realistic foundation for
testing the robustness and adaptability of the proposed approach.
The clustering outputs revealed clear functional distinctions in
well-structured domains like Attendance Management, while
moderately overlapping clusters were observed in datasets like
Lottery Management, which contained diverse and less
structured requirements.

The evaluation metrics provided deeper insights into
clustering performance:

Cohesion values indicated the strength of relationships
within clusters, with the Attendance Management dataset
achieving the highest cohesion, reflecting compact and
meaningful clusters. Lower cohesion in the Lottery
Management dataset suggests room for improvement in
handling more heterogeneous requirements.

Separation metrics demonstrated the distinctiveness of
clusters across datasets, with E-commerce showing the highest
separation due to its well-defined functional boundaries.

Silhouette Score, a balance of cohesion and separation,
highlighted the methodology’s ability to achieve reasonable
clustering quality across all datasets, with the highest score
recorded for the Lottery Management dataset.

Davies-Bouldin Index values, indicative of clustering
compactness and separation, were lowest for Attendance
Management, reinforcing its strong cluster formations, while
slightly higher values for Lottery Management reflected less
compact clusters.

The visualizations further supported these findings, with
distinct and well-separated clusters for structured datasets such
as Attendance Management and School Management, while
partially overlapping clusters were observed in Lottery
Management due to functional overlaps in its requirements. The
PCA-reduced scatter plots provide a clear representation of the
semantic clustering process, aiding interpretability and further
validating the methodology [14].

Despite the strong results, some limitations were observed.
The clustering process relied on a fixed number of clusters,
which may not always align with the inherent structure of the
dataset. This could result in under- or over-clustering, especially
in datasets with varied functional complexity. Additionally, the
preprocessing pipeline, while robust, could be further enhanced
with more domain-specific customizations, such as advanced
synonym resolution or enhanced tokenization techniques, to
address ambiguities in textual requirements. Finally, the
methodology’s reliance on static embeddings may limit its
adaptability to rapidly evolving datasets, where requirements are
frequently updated or redefined.

Future work will focus on enhancing the SQUIRE
methodology by integrating advanced preprocessing techniques,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

510 | P a g e

www.ijacsa.thesai.org

such as lemmatization and domain-specific synonym resolution,
to improve the consistency and semantic accuracy of
requirements. Adaptive clustering techniques, such as
silhouette-based optimization, will be explored to dynamically
determine the optimal number of clusters, ensuring better
alignment with diverse datasets. Additionally, the use of more
advanced models, such as GPT-based embeddings, will be
investigated to capture deeper semantic relationships. A user-
friendly tool incorporating real-time clustering, visualization,
and traceability features will be developed to make the
methodology more accessible to practitioners. Validation will be
extended to real-world software engineering projects across
various industries to evaluate practical applicability and
scalability. Finally, interactive 3D visualizations and additional
evaluation metrics will be introduced to improve interpretability
and provide more comprehensive assessments of clustering
quality.

VI. CONCLUSION

Requirements Engineering (RE) constitutes a pivotal phase
in software development, focusing on the elicitation, definition,
and management of stakeholder needs. Despite its criticality,
traditional approaches frequently falter in managing the
complexity, scale, and dynamism of contemporary software
systems. Natural Language Processing (NLP) has emerged as a
transformative enabler, offering automation in the analysis and
organization of textual requirements. The SQUIRE framework,
leveraging Sentence-BERT embeddings for semantic clustering,
introduces a structured, scalable methodology for refining
requirements management. By enhancing traceability,
minimizing redundancy, and facilitating modular organization,
SQUIRE addresses key inefficiencies in conventional RE
practices. Its potential for broad applicability across diverse
domains underscores its relevance to evolving software
engineering demands. While SQUIRE has demonstrated
efficacy, further refinements are necessary to optimize its
alignment with stakeholder objectives and its adaptability to
increasingly complex, dynamic requirements. Advancing the
framework's flexibility and scalability will not only bridge
theoretical innovations with practical application but also
expand its impact across a wider spectrum of domains,
establishing a robust foundation for next-generation RE
methodologies.

REFERENCES

[1] H. Villamizar, T. Escovedo and M. Kalinowski, "Requirements
Engineering for Machine Learning: A Systematic Mapping Study," 2021
47th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Palermo, Italy, 2021, pp. 29-36, doi:
10.1109/SEAA53835.2021.00013.

[2] L. Karlsson, Å. G. Dahlstedt, and A. Persson, “Requirements engineering
challenges inmarket-driven software development An interview study
withpractitioners”, Inf and Soft Techn, vol. 49, Dec. 2007, pp.588-604,
doi: 10.1016/j.infsof.2007.02.008.

[3] R. Izhar, Kenneth Cosh, “Enhancing Agile Software Development: A
Novel Approach to Automated Requirements Prioritization”, 2024 21st
International Joint Conference on Computer Science and Software
Engineering, 2024.

[4] Sonbol, R., Rebdawi, G., and Ghneim, N. (2022). The use of nlp-based
text representation techniques to support requirement engineering tasks:
A systematic mapping review. IEEE Access.

[5] Pei, Z., Liu, L., Wang, C., and Wang, J. (2022). Requirements engineering
for machine learning: A review and reflection. In 2022 IEEE 30th
International Requirements Engineering Conference Workshops (REW),
pages 166–175. IEEE.

[6] Ahanger, M.M.; Wani, M.A.; Palade, V. sBERT: Parameter-Efficient
Transformer-Based Deep Learning Model for Scientific Literature
Classification. Knowledge 2024, 4, 397-421.
https://doi.org/10.3390/knowledge4030022.

[7] Sehrish Alam, Shahid N. Bhatti,” Impact and challenges of requirement
engineering in agile methodologies: A systematic review”, International
Journal of Advanced Computer Science and Applications, 2017.
http://dx.doi.org/10.14569/IJACSA.2017.080455.

[8] Radwan, Aya, et al. “An Approach for Requirements Engineering
Analysis Using Conceptual Mapping in Healthcare Domain.”
International Journal of Advanced Computer Science and Applications,
vol. 12, no. 8, 2021, https://doi.org/10.14569/ijacsa.2021.0120822.

[9] Eyal Salman, H.; Hammad, M.; Seriai, A.-D.; Al-Sbou, A. Semantic
Clustering of Functional Requirements Using Agglomerative
Hierarchical Clustering. Information 2018, 9, 222.
https://doi.org/10.3390/info9090222.

[10] del Sagrado, J., del Águila, I.M. Assisted requirements selection by
clustering. Requirements Eng 26, 167–184 (2021).
https://doi.org/10.1007/s00766-020-00341-1.

[11] Bakar, N. H., et al. (2014). Tochs requirements reuse: Identifying similar
requirements with latent semantic analysis and clustering algorithms.
International Journal of Software Engineering and Its Applications.

[12] Das, S., Deb, N., Cortesi, A. et al. Sentence Embedding Models for
Similarity Detection of Software Requirements. SN COMPUT. SCI. 2, 69
(2021). https://doi.org/10.1007/s42979-020-00427-1.

[13] Elhassan, H. et al. (2022) ‘Requirements Engineering: Conflict Detection
Automation Using Machine Learning’, Intelligent Automation & Soft
Computing, 33(1), pp. 259–273. Available at:
https://doi.org/10.32604/iasc.2022.023750.

[14] R. Izhar, K. Cosh and S. N. Bhatti, "Enhancing Agile Software
Development: A Novel Approach to Automated Requirements
Prioritization," 2024 21st International Joint Conference on Computer
Science and Software Engineering (JCSSE), Phuket, Thailand, 2024, pp.
286-293, doi: 10.1109/JCSSE61278.2024.10613648.

[15] M. P. Naik, H. B. Prajapati and V. K. Dabhi, "A survey on semantic
document clustering,"2015 IEEE International Conference on Electrical,
Computer and Communication Technologies (ICECCT), Coimbatore,
India, 2015, pp. 1-10, doi: 10.1109/ICECCT.2015.7226036.

[16] Nagwani, N.K. Summarizing large text collection using topic modeling
and clustering based on MapReduce framework. Journal of Big Data 2, 6
(2015). https://doi.org/10.1186/s40537-015-0020-5.

[17] Fougères, A.-J., & Ostrosi, E. (2020). Intelligent requirements
engineering from natural language and their chaining toward CAD
models. https://doi.org/10.48550/arXiv.2007.07825.

[18] Mehta, V., Agarwal, M. & Kaliyar, R.K. A comprehensive and analytical
review of text clustering techniques. Int J Data Sci Anal 18, 239–258
(2024). https://doi.org/10.1007/s41060-024-00540-x.

[19] Haji, S.H., Jacksi, K., Salah, R.M. (2022). Systematic Review for
Selecting Methods of Document Clustering on Semantic Similarity of
Online Laboratories Repository. In: Daimi, K., Al Sadoon, A. (eds)
Proceedings of the ICR’22 International Conference on Innovations in
Computing Research. ICR 2022. Advances in Intelligent Systems and
Computing, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-
031-14054-9_23.

[20] Chen, D.; Wang, J. A Prompt Example Construction Method Based on
Clustering and Semantic Similarity. Systems 2024, 12, 410.
https://doi.org/10.3390/systems12100410.

[21] A. K. Singh, S. Mittal, P. Malhotra and Y. V. Srivastava, "Clustering
Evaluation by Davies-Bouldin Index(DBI) in Cereal data using K-
Means," 2020 Fourth International Conference on Computing
Methodologies and Communication (ICCMC), Erode, India, 2020, pp.
306-310, doi: 10.1109/ICCMC48092.2020.ICCMC-00057.

[22] Noor Hasrina Bakar, Zarinah M. Kasirun, Norsaremah Salleh, Feature
extraction approaches from natural language requirements for reuse in
software product lines: A systematic literature review, Journal of Systems

http://dx.doi.org/10.14569/IJACSA.2017.080455

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 2, 2025

511 | P a g e

www.ijacsa.thesai.org

and Software, Volume 106, 2015, Pages 132-149, ISSN 0164-1212,
https://doi.org/10.1016/j.jss.2015.05.006.

[23] R. Izhar, S. N. Bhatti, "Bridging Precision and Complexity: A Novel
Machine Learning Approach for Ambiguity Detection in Software
Requirements," in IEEE Access, vol. 13, pp. 12014-12031, 2025, doi:
https://doi.org/10.1109/ACCESS.2025.3529943.

[24] A. Udomchaiporn, N. Prompoon and P. Kanongchaiyos, "Software
Requirements Retrieval Using Use Case Terms and Structure Similarity
Computation," 2006 13th Asia Pacific Software Engineering Conference
(APSEC'06), Bangalore, India, 2006, pp. 113-120, doi:
10.1109/APSEC.2006.53.

[25] A. Radovanović, J. Li, J. V. Milanović, N. Milosavljević and R. Storchi,
"Application of Agglomerative Hierarchical Clustering for Clustering of
Time Series Data," 2020 IEEE PES Innovative Smart Grid Technologies
Europe (ISGT-Europe), The Hague, Netherlands, 2020, pp. 640-644, doi:
10.1109/ISGT-Europe47291.2020.9248759.

[26] Jie He, Wanqiu Long, and Deyi Xiong. 2022. Evaluating Discourse
Cohesion in Pre-trained Language Models. In Proceedings of the 3rd
Workshop on Computational Approaches to Discourse, pages 28–34,
Gyeongju, Republic of Korea and Online. International Conference on
Computational Linguistics.

[27] Hazem Abdelazim, Mohamed Tharwat and Ammar Mohamed, “Semantic
Embeddings for Arabic Retrieval Augmented Generation (ARAG)”
International Journal of Advanced Computer Science and
Applications(IJACSA), 14(11),
2023. http://dx.doi.org/10.14569/IJACSA.2023.01411135.

[28] Murtagh, F., Legendre, P. Ward’s Hierarchical Agglomerative Clustering
Method: Which Algorithms Implement Ward’s Criterion?. J Classif 31,
274–295 (2014). https://doi.org/10.1007/s00357-014-9161-z.

[29] I. Dokmanic, R. Parhizkar, J. Ranieri and M. Vetterli, "Euclidean Distance
Matrices: Essential theory, algorithms, and applications," in IEEE Signal
Processing Magazine, vol. 32, no. 6, pp. 12-30, Nov. 2015, doi:
10.1109/MSP.2015.2398954.

[30] Amato, Alberto and Di Lecce, Vincenzo. "Data preprocessing impact on
machine learning algorithm performance" Open Computer Science, vol.
13, no. 1, 2023, pp. 20220278. https://doi.org/10.1515/comp-2022-0278.

[31] Bin Wang and C.-C. Jay Kuo. 2020. SBERT-WK: A Sentence Embedding
Method by Dissecting BERT-Based Word Models. IEEE/ACM Trans.
Audio, Speech and Lang. Proc. 28 (2020), 2146–2157.
https://doi.org/10.1109/TASLP.2020.3008390.

[32] rahat-23. “GitHub - Rahat-23/Datasets-For-Requirements.” GitHub,
2024, github.com/rahat-23/Datasets-for-Requirements.

