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Abstract—The escalating complexity of modern software 

systems has rendered the management of requirements 

increasingly arduous, often plagued by redundancy, inconsistency, 

and inefficiency. Traditional manual methods prove inadequate 

for addressing the intricacies of dynamic, large-scale datasets. In 

response, this research introduces SQUIRE (Semantic Quick 

Requirements Engineering), a cutting-edge automated framework 

leveraging advanced Natural Language Processing (NLP) 

techniques, specifically Sentence-BERT (SBERT) embeddings 

and hierarchical clustering, to semantically organize requirements 

into coherent functional clusters. SQUIRE is meticulously 

designed to enhance modularity, mitigate redundancy, and 

strengthen traceability within requirements engineering 

processes. Its efficacy is rigorously validated using real-world 

datasets from diverse domains, including attendance 

management, e-commerce systems, and school operations. 

Empirical evaluations reveal that SQUIRE outperforms 

conventional clustering methods, demonstrating superior intra-

cluster cohesion and inter-cluster separation, while significantly 

reducing manual intervention. This research establishes SQUIRE 

as a scalable and domain-agnostic solution, effectively addressing 

the evolving complexities of contemporary software development. 

By streamlining requirements management and enabling software 

teams to focus on strategic initiatives, SQUIRE advances the state 

of NLP-driven methodologies in Requirements Engineering, 

offering a robust foundation for future innovations. 

Keywords—Requirements Engineering (RE); semantic 

clustering; sentence-BERT; natural language processing (NLP) 

I. INTRODUCTION 

Requirements Engineering is a cornerstone of software 
development, focusing on the identification, documentation, and 
management of requirements that guide the design and 
implementation of software systems [1]. It ensures alignment 
between user needs and project goals, providing a foundation for 
system functionality and quality. However, as software systems 
grow in complexity and scale, managing requirements 
effectively becomes increasingly challenging. Issues such as 
redundancy, inconsistencies, and overlapping functionalities not 
only complicate design processes but also disrupt modularity, 
traceability, and efficient project execution [2], [3]. These 
challenges highlight the need for innovative solutions to 
streamline requirements management, particularly in large-scale 
projects. 

Conventional approaches to managing requirements rely 
heavily on manual processes, which are often time-consuming, 
prone to human error, and inadequate for handling large datasets 

[4]. These traditional methods, while useful for small-scale 
projects, fail to meet the demands of modern, dynamic software 
development, where requirements are frequently updated and 
involve intricate relationships. Automated techniques, 
particularly those leveraging Natural Language Processing 
(NLP), have emerged as promising solutions for addressing 
these limitations. By analyzing textual requirements for 
semantic relationships, NLP-based methods can uncover 
patterns and organize requirements efficiently [5]. However, 
existing methods face limitations in capturing the subtle 
semantic relationships within diverse or domain-specific 
datasets, restricting their ability to handle the complexity of real-
world requirements engineering tasks. 

To address these gaps, this paper presents SQUIRE 
(Semantic QUIck Requirements Engineering), a novel and 
structured methodology aimed at automating the grouping of 
semantically similar requirements into functional clusters. 
SQUIRE combines state-of-the-art NLP techniques, such as 
Sentence-BERT (SBERT) embeddings, hierarchical clustering, 
and a comprehensive preprocessing pipeline, to analyze and 
group requirements based on their semantic similarity [4], [6], 
[12]. By focusing on reducing redundancy, enhancing 
modularity, and improving traceability, SQUIRE provides a 
practical solution to key challenges in RE, enabling more 
efficient and effective system design [7]. 

The methodology represents a significant advancement in 
the application of NLP to RE, building on recent trends in 
natural language understanding and clustering algorithms [9], 
[10], [17], [18]. The authors' work reflects a broader effort in the 
research community to leverage the capabilities of NLP for 
addressing critical challenges in RE, including the need for 
scalability, semantic analysis, and automation [19]. Recent 
developments in NLP, particularly transformer-based models 
such as Sentence-BERT (SBERT), have enabled significant 
improvements in the ability to capture the semantic meaning of 
textual data, making them well-suited for addressing RE 
challenges. 

The effectiveness of SQUIRE is evaluated across diverse, 
real-world datasets representing distinct functional domains, 
including attendance management, e-commerce, and school 
operations. The methodology’s performance is assessed using 
quantitative metrics such as cohesion, separation, silhouette 
scores, and the Davies-Bouldin Index [20], [24], [25]. 
Visualizations using Principal Component Analysis (PCA) 
further demonstrate the ability of SQUIRE to organize 
requirements into meaningful clusters, providing clear insights 
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into the relationships between requirements. These evaluations 
highlight the robustness of the proposed approach, showcasing 
its potential to improve modularity and traceability in varied 
software development contexts. 

This research contributes to the ongoing integration of NLP 
into requirements engineering by demonstrating how advanced 
language models and clustering techniques can address long-
standing challenges in the field [5]. By automating the grouping 
of requirements, SQUIRE reduces the manual effort required in 
RE, allowing software teams to focus on higher-value activities 
such as innovation and strategic planning. Furthermore, the 
domain-agnostic nature of SQUIRE makes it adaptable to 
various industries, offering a scalable solution for modern 
software development needs. 

SQUIRE advances the state of requirements engineering by 
introducing a systematic and scalable methodology for semantic 
clustering. By leveraging the latest advancements in NLP, it 
bridges the gap between textual complexity and actionable 
insights, enabling software teams to design more organized, 
traceable, and modular systems [22]. This work lays the 
groundwork for further innovations in automated RE, 
positioning NLP as a central tool in the evolution of software 
development practices. 

The remainder of this paper is organized as follows: Section 
II delineates a meticulous review of pertinent literature, 
elucidating seminal advancements and inherent constraints 
within NLP-driven requirements engineering. Section III 
expounds upon the proposed SQUIRE methodology, 
systematically detailing its preprocessing pipeline, embedding 
generation mechanisms, and clustering paradigms. Section IV 
articulates the experimental framework, encompassing the 
evaluation metrics and empirical assessments employed to 
ascertain the model’s efficacy. Section V presents a rigorous 
discourse on the obtained findings, critically analyzing the 
methodological robustness and potential limitations. Lastly, 
Section VI encapsulates the study’s principal contributions and 
delineates prospective avenues for future research. 

II. RELATED WORK 

Modern software development has made RE more 
challenging due to the growing complexity of systems and the 
volume of requirements. Traditional approaches often rely on 
manual analysis, which can lead to errors and inefficiencies. To 
overcome these challenges, researchers have introduced 
techniques like NLP and clustering algorithms. These methods 
aim to simplify requirement management by automating 
processes such as grouping and prioritization. This section 
reviews recent work in applying these techniques to RE, 
focusing on their impact, limitations, and future potential. 

Radwan et al. [8] proposed the CMHR (Conceptual Mapping 
for Healthcare Requirements) approach to enhance the analysis 
of non-functional requirements in healthcare systems. The 
methodology involves clustering requirements using the K-
means++ algorithm based on attributes such as priority and 
suitability, enabling structured visualization through conceptual 
mapping. Applied to ventilator requirements, the approach 
achieved a silhouette score of 0.71 and accurately classified new 
requirements using a Naïve Bayes classifier. However, the study 

is limited by its small dataset and focus on a single domain, 
necessitating further validation across other healthcare systems 
for broader applicability. 

Salman et al. [9] explored semantic clustering of functional 
requirements (FRs) using Agglomerative Hierarchical 
Clustering (AHC). The study addresses a gap in software 
requirements engineering, where functional requirements are 
typically analyzed manually. Existing works focus primarily on 
non-functional requirements classification, leaving FR 
clustering largely unexplored. Previous research has used 
techniques like Support Vector Machines and ontology-based 
methods for requirement classification, but functional 
requirements have lacked similar advancements. This paper 
introduces a semantic similarity-based approach to group FRs, 
validated across four software projects. While the proposed 
method achieved promising results, it relies heavily on 
vocabulary consistency, limiting its applicability across diverse 
datasets. 

Del Sagrado et al. [10] integrate clustering techniques with 
the MoSCoW method to automate requirements prioritization in 
software projects. Their methodology, validated on datasets of 
varying scales (20, 50, and 100 requirements), demonstrates 
clustering’s efficacy in identifying core requirements. While 
enhancing decision-making, the approach is constrained by 
dependency considerations and reliance on subjective 
estimations, leading to variability in algorithmic performance. 

Bakar et al. [11] employ Latent Semantic Analysis (LSA) 
alongside K-Means and Hierarchical Agglomerative Clustering 
(HAC) to facilitate software requirements reuse in Software 
Product Lines (SPL). Evaluations on 27 product review 
documents reveal HAC’s superiority in cluster compactness, 
whereas K-Means marginally outperforms in external 
validation. However, HAC is preferred for its grouping 
precision. Sensitivity to domain-specific data and input 
parameters remains a limitation, with future work directed at 
refining clustering optimization. 

Das et al. [12] introduce PUBER and FiBER, domain-
specific sentence embedding models enhancing similarity 
detection in natural language requirements. Built on the BERT 
architecture, PUBER trains on the PURE dataset, while FiBER 
refines it via fine-tuning. Using cosine similarity, FiBER 
achieves 88.35% accuracy, surpassing Universal Sentence 
Encoder and RoBERTa by up to 10%. These models advance 
classification, similarity detection, and reusability, addressing 
NLP challenges in software engineering. 

The study by Elhassan et al. [13] developed an automated 
conflict detection model using the Mean Shift clustering 
algorithm to identify and classify requirement conflicts during 
elicitation. The methodology involved data transformation 
based on McCall's quality model and clustering requirements 
into three categories: conflict-free, partial conflict, and 
conflicted requirements. Results demonstrated accurate 
clustering, with conflict-free requirements achieving low 
standard error (SE) values, validating the model’s efficiency. 
Limitations include a small dataset size (207 observations), 
restricting generalizability, and challenges in data collection 
from diverse sources. Future work suggests expanding datasets, 
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applying the model to varied IS environments, and exploring 
decision tree algorithms for enhanced detection. 

The reviewed studies show that using NLP and clustering in 
Requirements Engineering has great potential to solve key 
challenges like redundancy and lack of scalability. However, 
issues such as handling diverse requirements and adapting to 
different domains remain. These findings suggest the need for 
smarter, more flexible methods to address these gaps. By 
building on existing work, approaches like SQUIRE offer a step 
forward, combining advanced tools with practical solutions for 
improving how requirements are managed in real-world 
software projects. 

III. RESEARCH METHODOLOGY 

The proposed methodology, SQUIRE offers an automated 
and efficient framework for grouping semantically similar 
requirements into distinct functional clusters. By leveraging 
NLP techniques, embedding models, and hierarchical 
clustering, SQUIRE addresses key challenges in requirements 
engineering, such as redundancy reduction, traceability 
enhancement, and modular system design. 

The methodology comprises five structured stages: 
Preprocessing, Semantic Embedding Generation, Clustering, 
Evaluation, and Visualization. 

A. Data Preprocessing 

The preprocessing stage standardizes and simplifies textual 
requirements, ensuring consistency and reducing noise to 
prepare data for embedding generation [27]. This involves a 
series of transformations applied sequentially: converting text to 
lowercase to eliminate inconsistencies caused by capitalization, 
removing punctuation marks to simplify content, and filtering 
out stopwords such as “the” and “shall” that do not add semantic 
value [30]. The text is then tokenized into individual words or 
phrases, enabling detailed analysis, and normalized to unify 
synonyms or domain-specific terms (e.g., “log in” and “sign in” 
standardized to “log in”). Table I demonstrates the progressive 
refinement of requirements through these steps. 

TABLE I EXAMPLE RESULTS OF DATA PREPROCESSING PIPELINE 

Original 

Requiremen

t 

Lowercase

d 

Punctuatio

n Removed 

Stopword

s 

Removed 

Tokenize

d 

"The system 

shall allow 

users to log 
in." 

"the system 

shall allow 

users to log 
in." 

"the system 

shall allow 

users to log 
in" 

"system 
allow users 

log in" 

["system", 

"allow", 
"users", 

"log", 

"in"] 

"Users can 

register 

themselves 
for access." 

"users can 

register 

themselves 
for access." 

"users can 

register 

themselves 
for access" 

"users 
register 

access" 

["users", 
"register", 

"access"] 

The output of preprocessing is a clean, tokenized, and 
normalized version of each requirement, ready for embedding 
generation. This ensures that noise is minimized while retaining 
the semantic essence of the text. 

B. Semantic Embedding Generation 

To effectively cluster requirements, each preprocessed input 
is transformed into a dense vector representation using SBERT, 

a pre-trained transformer-based model optimized for capturing 
semantic similarity [23]. SBERT excels at encoding contextual 
information and relationships between words, making it an ideal 
choice for analyzing and grouping requirements. Specifically, 
the all-MiniLM-L6-v2 model is utilized, which generates 
embeddings with a dimensionality of 384 [31]. These 
embeddings represent the semantic meaning of textual inputs in 
a high-dimensional vector space. For instance, a requirement 
like "system allow users log in" is converted into a numerical 
vector (e.g., E = [0.23, -0.45, 0.67, …, -0.11]). The proximity of 
two embeddings in this space directly reflects the semantic 
similarity between their corresponding requirements. 

C. Clustering Requirements in Groups 

Using the embeddings generated in the previous step, 
requirements are grouped into clusters through Agglomerative 
Clustering, a hierarchical method that iteratively merges data 
points based on similarity [15]. This process relies on Euclidean 
Distance as the similarity metric, where smaller distances 
indicate higher semantic similarity between requirements [16], 
[29]. To ensure optimal clustering, Ward Linkage is employed, 
which minimizes intra-cluster variance by selecting merges that 
reduce the overall variance [28]. The variance adjustment is 
calculated as: 

𝛥𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐴

+ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐵

− 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 

For better interpretability and functional modularity, the 
number of clusters (k) is predetermined based on the dataset’s 
size and complexity (e.g., k = 4 for smaller datasets). Each 
resulting cluster represents a distinct functional module, 
grouping semantically similar requirements while separating 
unrelated ones [18], [19]. For instance, requirements like 
"System allow users log in" and "Users register access" are 
grouped into Cluster 1, while others such as "System calculate 
attendance" and "Users generate reports" fall into separate 
clusters, reflecting unique functional distinctions. Examples of 
these clusters is shown in Table II. 

TABLE II CLUSTERING OUTPUT EXAMPLE 

Requirement Cluster 

Ensure image sliders work properly and link to the restaurant 

homepage. 
1 

Match UI with the Android version: icons, formats, sizing, 

and alignment. 
1 

Show current prices for discounted items and notify users 

about deletions. 
2 

Show discount value on item card and final total price box for 

% discount items. 
2 

Connect QR code feature and create deep links for reading the 

QR code. 
3 

Ensure every QR code generator has a deep link and forwards 
to the app store/play store if not installed. 

3 

D. Evaluation 

The quality of clustering results is evaluated using several 
key metrics to ensure both intra-cluster cohesion and inter-
cluster separation. Cohesion measures the semantic similarity of 
requirements within a cluster, ensuring that grouped 
requirements share strong relationships [26]. In contrast, 
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Separation evaluates the dissimilarity between clusters, ensuring 
functionally distinct requirements are placed in separate groups 
[20]. The overall clustering quality is assessed using the 
Silhouette Score, which combines both cohesion and separation 
into a single metric. Additionally, the Davies-Bouldin Index is 
used to measure intra-cluster compactness and inter-cluster 
separation, where lower values indicate better clustering 
performance [21]. Together, these metrics provide a 
comprehensive evaluation of clustering effectiveness. 

E. Visualization 

For interpretability, high-dimensional embeddings are 
reduced to two dimensions using Principal Component Analysis 
(PCA). This dimensionality reduction enables the generation of 
scatter plots where each point represents a requirement, and 
clusters are distinguished by color [14]. These visualizations 
provide insights into the clustering structure and relationships 
among requirements. The SQUIRE methodology integrates 
preprocessing, semantic embedding generation, clustering, 
evaluation, and visualization into a cohesive framework for 
automating requirements analysis. By leveraging SBERT 
embeddings and hierarchical clustering with a fixed number of 
clusters, it ensures accurate grouping of semantically similar 
requirements while enhancing modular design and traceability. 

F. Algorithm: SQUIRE (Semantic QUIck Requirements 

Engineering) 

Input:  

 𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑛}: A set of 𝑛 textual requirements. 
Output:  

 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘}: 𝑘 clusters of semantically similar 

requirements. 
Steps:  

1. Preprocessing 

Transform each requirement 𝑅𝑖 into a standardized form: 

 Convert to lowercase: 𝑅𝑖
′= lower(𝑅𝑖). 

 Remove punctuation: 𝑅𝑖
′′= remove_punctuation(𝑅𝑖

′). 

 Tokenize text: 𝑊𝑖= tokenize(𝑅𝑖
′′). 

 Remove stopwords: 𝑊𝑖
′= 𝑊𝑖/𝑆𝑡𝑜𝑝𝑤𝑜𝑟𝑑𝑠 

2. Embedding Generation 

Generate dense vector embeddings 𝐸 = {𝐸1, 𝐸2, … , 𝐸𝑛} using a pre-

trained SBERT model:  

𝐸𝑖 = 𝑆𝐵𝐸𝑅𝑇(𝑅𝑖
′) 

Where 𝐸𝑖  ∈  ℝ384 

3. Similarity Computation 

Compute pairwise similarity between embeddings using the 

Euclidean distance. 

𝑑(𝐸𝑖 , 𝐸𝑗) = √∑(𝐸𝑖𝑘
− 𝐸𝑗𝑘

)2

384

𝑘=1

 

where 𝐸𝑖𝑘
𝑎𝑛𝑑 𝐸𝑗𝑘

are the 𝑘𝑡ℎdimensions of embeddings 𝐸𝑖  𝑎𝑛𝑑 𝐸𝑗. 

4. Clustering  

Perform hierarchical clustering using Agglomerative Clustering: 

 Linkage method: Ward’s linkage minimizes intra-cluster 

variance. 

 Clustering criterion: 

𝑀𝑒𝑟𝑔𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 Δ𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Result: Assign each requirement 𝑅𝑖 to a cluster label 𝐶𝑖 . 
5. Evaluation 

1. Cohesion: Measure intra-cluster similarity: 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 =  
1

|𝐶𝑘|
∑ 𝑆𝑖𝑚(

𝑖,𝑗∈𝐶𝑘

𝐸𝑖 , 𝐸𝑗) 

where 𝑆𝑖𝑚(𝐸𝑖 , 𝐸𝑗) = 1 − 𝑑(𝐸𝑖 , 𝐸𝑗). 

2. Separation: Measure inter-cluster dissimilarity: 

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =  min
𝑖∈𝐶𝑘,𝑗∈𝐶𝑙,𝑘≠𝑙

𝑑(𝐸𝑖 , 𝐸𝑗)  

3. Silhouette Score: Combines cohesion and separation to 

measure the overall clustering quality: 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 =  
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥(𝑎(𝑖), 𝑏(𝑖))
 

where 𝑎(𝑖) is the average intra-cluster distance and 𝑏(𝑖) is the average 

nearest-cluster distance. 

4. Davies-Bouldin Index: Quantifies intra-cluster 

compactness and inter-cluster separation: 

𝐷𝐵 𝐼𝑛𝑑𝑒𝑥 =
1

𝑘
∑ max

𝑗≠𝑖

𝜎𝑖 + 𝜎𝑗

d(𝐶𝑖 , 𝐶𝑗)

𝑘

𝑖=1

  

Lower values indicate better clustering. 

6. Complexity Analysis: 

The complexity of different stages in the SQUIRE methodology is 

analyzed as follows: 

1. Preprocessing Complexity (Time & Space):  
Time Complexity: 𝑂(𝑛) where n is the number of requirements. Each 

requirement undergoes tokenization, stopword removal, and 

normalization, which operates linearly with respect to the number of 

requirements.   

Space Complexity: 𝑂(𝑛), as each requirement is stored as a 

processed text sequence before embedding. 

2. Embedding Generation Complexity (Time & Space): 

Time Complexity: 𝑂(𝑛), since the Sentence-BERT (SBERT) model 

processes each requirement independently, leading to a linear 

complexity.   

Space Complexity: 𝑂(𝑛 ×  𝑑), where 𝑑 is the embedding dimension 

(384 in the case of MiniLM-SBERT). The output matrix of 

embeddings requires storage proportional to the dataset size. 

3. Clustering Complexity (Time & Space): 

Time Complexity: 𝑂(𝑛3) for Agglomerative Clustering, due to the 

hierarchical structure requiring pairwise distance computations and 

iterative merging.   

4. Space Complexity: 𝑂(𝑛2), as the clustering algorithm 

maintains a distance matrix for all requirement pairs. 

This complexity analysis provided a clear distinction between 

time and space requirements at different stages of the methodology. 

The SQUIRE algorithm efficiently organizes textual 
requirements into meaningful clusters by leveraging NLP 
embeddings and hierarchical clustering [28]. Its structured 
workflow ensures semantic precision and scalability while 
minimizing redundancy. With its foundation in advanced 
language models and practical clustering methods, SQUIRE 
lays the groundwork for a streamlined approach to handling 
complex requirements datasets, offering clarity and 
functionality to modern software engineering practices 

IV. RESULTS AND VALIDATION OF PROPOSED MODEL 

The validation of the proposed SQUIRE methodology was 
conducted using four real-world datasets sourced from a 
software company [32]. These datasets, representing diverse 
functional domains, included four different domains as shown 
in Table III. The primary objective of this validation was to 
assess the model's ability to accurately group semantically 
similar requirements into functional clusters. 
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TABLE III DATASETS OVERVIEW 

Dataset Domain 
Number of 

Requirements 

Attendance 
Management 

Employee attendance 
tracking and reporting 

26 

E-commerce 
Online shopping portal 

requirements 
20 

Lottery Management 
Lottery system 

functionality 
24 

School Management 
Educational institution 
operations 

23 

These datasets represent diverse functional requirements, 
providing a robust basis for testing the domain-agnostic 
capabilities of the SQUIRE methodology [32]. 

The evaluation focused on clustering outcomes, visualized 
through scatter plots and assessed quantitatively using 
Cohesion, Separation, Silhouette Score, and Davies-Bouldin 
Index. The results highlight the methodology's strengths and its 
performance across different datasets. 

The clustering results for each dataset were visualized using 
Principal Component Analysis (PCA), reducing the 384-
dimensional embeddings to two dimensions [23]. The scatter 
plots for the datasets Fig. 1 illustrate the semantic clusters, with 
each point representing a requirement and colors distinguishing 
the clusters. 

 

Fig. 1. Distribution of requirements clusters using PCA for each dataset. 
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The clustering performance is summarized in the Table IV 
below: 

TABLE IV CLUSTERING METRICS FOR DIFFERENT DATASETS 

Dataset Cohesion Separation 
Silhouette 

Score 

Davies-

Bouldin 
Index 

Attendance 

Management 
0.2362 1.1306 0.1276 1.7027 

E-commerce 0.1360 1.2911 0.1044 1.7195 

Lottery 

Management 
0.1096 1.2622 0.1587 1.8307 

School 
Management 

0.1940 1.1789 0.1174 1.7759 

1) Cohesion: The Attendance Management dataset 

achieved the highest cohesion (0.2362), indicating well-

grouped clusters. The Lottery Management dataset displayed 

slightly lower cohesion (0.1096), reflecting greater diversity 

within clusters. 

2) Separation: The E-commerce dataset achieved the 

highest separation (1.2911), highlighting distinct clusters. The 

Attendance Management dataset had slightly lower separation 

(1.1306), possibly due to overlapping functional requirements. 

3) Silhouette score: The Lottery Management dataset 

recorded the highest silhouette score (0.1587), indicating a 

good balance between cohesion and separation. 

4) Davies-bouldin index: The Attendance Management 

dataset exhibited the lowest Davies-Bouldin Index (1.7027), 

reflecting compact and well-separated clusters. The Lottery 

Management dataset had the highest index (1.8307), suggesting 

room for improvement in cluster separation. 

The validation results demonstrate the practical utility of the 
SQUIRE methodology in streamlining requirements 
engineering. By automating the clustering of semantically 
similar requirements, SQUIRE significantly reduces the manual 
effort required for organizing and analyzing requirements, 
allowing practitioners to focus on higher-value tasks such as 
decision-making and system design [7]. The methodology's 
ability to achieve high cohesion and separation across diverse 
datasets highlights its adaptability to different functional 
domains, making it a robust solution for handling large-scale 
and dynamic software projects. Furthermore, the integration of 
PCA-based visualizations enhances interpretability, providing 
clear insights into the relationships between requirements and 
supporting better traceability. Overall, SQUIRE offers a scalable 
and domain-agnostic approach that addresses critical challenges 
in requirements engineering, paving the way for more efficient 
and error-free software development processes. 

V. DISCUSSION, LIMITATIONS AND FUTURE WORK 

The validation results of the SQUIRE methodology 
demonstrate its effectiveness in clustering semantically similar 
requirements into distinct functional groups across diverse 
datasets. By leveraging Sentence-BERT embeddings and 
hierarchical clustering techniques, the methodology 
successfully addresses key challenges in requirements 

engineering, such as redundancy reduction, modularity, and 
enhanced traceability [2], [3], [13]. 

The methodology consistently produced meaningful clusters 
across four distinct datasets, sourced from a software company, 
representing domains Attendance Management, E-commerce, 
Lottery Management, and School Management [32]. These 
datasets varied in size and complexity, containing 20–26 
requirements each, and provided a realistic foundation for 
testing the robustness and adaptability of the proposed approach. 
The clustering outputs revealed clear functional distinctions in 
well-structured domains like Attendance Management, while 
moderately overlapping clusters were observed in datasets like 
Lottery Management, which contained diverse and less 
structured requirements. 

The evaluation metrics provided deeper insights into 
clustering performance: 

Cohesion values indicated the strength of relationships 
within clusters, with the Attendance Management dataset 
achieving the highest cohesion, reflecting compact and 
meaningful clusters. Lower cohesion in the Lottery 
Management dataset suggests room for improvement in 
handling more heterogeneous requirements. 

Separation metrics demonstrated the distinctiveness of 
clusters across datasets, with E-commerce showing the highest 
separation due to its well-defined functional boundaries. 

Silhouette Score, a balance of cohesion and separation, 
highlighted the methodology’s ability to achieve reasonable 
clustering quality across all datasets, with the highest score 
recorded for the Lottery Management dataset. 

Davies-Bouldin Index values, indicative of clustering 
compactness and separation, were lowest for Attendance 
Management, reinforcing its strong cluster formations, while 
slightly higher values for Lottery Management reflected less 
compact clusters. 

The visualizations further supported these findings, with 
distinct and well-separated clusters for structured datasets such 
as Attendance Management and School Management, while 
partially overlapping clusters were observed in Lottery 
Management due to functional overlaps in its requirements. The 
PCA-reduced scatter plots provide a clear representation of the 
semantic clustering process, aiding interpretability and further 
validating the methodology [14]. 

Despite the strong results, some limitations were observed. 
The clustering process relied on a fixed number of clusters, 
which may not always align with the inherent structure of the 
dataset. This could result in under- or over-clustering, especially 
in datasets with varied functional complexity. Additionally, the 
preprocessing pipeline, while robust, could be further enhanced 
with more domain-specific customizations, such as advanced 
synonym resolution or enhanced tokenization techniques, to 
address ambiguities in textual requirements. Finally, the 
methodology’s reliance on static embeddings may limit its 
adaptability to rapidly evolving datasets, where requirements are 
frequently updated or redefined. 

Future work will focus on enhancing the SQUIRE 
methodology by integrating advanced preprocessing techniques, 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

510 | P a g e  

www.ijacsa.thesai.org 

such as lemmatization and domain-specific synonym resolution, 
to improve the consistency and semantic accuracy of 
requirements. Adaptive clustering techniques, such as 
silhouette-based optimization, will be explored to dynamically 
determine the optimal number of clusters, ensuring better 
alignment with diverse datasets. Additionally, the use of more 
advanced models, such as GPT-based embeddings, will be 
investigated to capture deeper semantic relationships. A user-
friendly tool incorporating real-time clustering, visualization, 
and traceability features will be developed to make the 
methodology more accessible to practitioners. Validation will be 
extended to real-world software engineering projects across 
various industries to evaluate practical applicability and 
scalability. Finally, interactive 3D visualizations and additional 
evaluation metrics will be introduced to improve interpretability 
and provide more comprehensive assessments of clustering 
quality. 

VI. CONCLUSION 

Requirements Engineering (RE) constitutes a pivotal phase 
in software development, focusing on the elicitation, definition, 
and management of stakeholder needs. Despite its criticality, 
traditional approaches frequently falter in managing the 
complexity, scale, and dynamism of contemporary software 
systems. Natural Language Processing (NLP) has emerged as a 
transformative enabler, offering automation in the analysis and 
organization of textual requirements. The SQUIRE framework, 
leveraging Sentence-BERT embeddings for semantic clustering, 
introduces a structured, scalable methodology for refining 
requirements management. By enhancing traceability, 
minimizing redundancy, and facilitating modular organization, 
SQUIRE addresses key inefficiencies in conventional RE 
practices. Its potential for broad applicability across diverse 
domains underscores its relevance to evolving software 
engineering demands. While SQUIRE has demonstrated 
efficacy, further refinements are necessary to optimize its 
alignment with stakeholder objectives and its adaptability to 
increasingly complex, dynamic requirements. Advancing the 
framework's flexibility and scalability will not only bridge 
theoretical innovations with practical application but also 
expand its impact across a wider spectrum of domains, 
establishing a robust foundation for next-generation RE 
methodologies. 
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