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Abstract—Differentiation of Alzheimer's Disease (AD) and 

Dementia with Lewy Bodies (DLB) utilizing brain perfusion 

Single Photon Emission Tomography (SPECT) is crucial and it 

might be difficult to distinguish between the two illnesses. The 

most recently discovered characteristic of DLB for a possible 

diagnosis is the Cingulate Island Sign (CIS). This work aims to 

differentiate DLB and AD by utilizing a deep learning model and 

this model is named AD-DLB-DNet. Initially, the required 

images are collected from the benchmark dataset. Further, the 

Spatial Attention-Based Adaptive Convolution Neural Network 

(SA-ACNN) is used to visualize the CIS features from the images 

where the attributes are tuned using Improved Random 

Function-based Birds Foraging Search (IRF-BFS).  Further, CIS 

features attained from the SA-ACNN are used to accurately 

differentiate the DLB and AD. Finally, the Dilated Residual-Long 

Short-Term Memory (DR-LSTM) layer is proposed to accurately 

perform the AD and DLB differentiation for identifying the 

clinical characteristics of the DLB. The suggested model is used 

for differentiating between AD and DLB for taking effective 

therapeutic measures. Finally, the validation is performed to 

validate the effectiveness of the introduced system. 

Keywords—Alzheimer's disease and dementia with lewy bodies 

differentiation; spatial attention-based adaptive convolution neural 
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I. INTRODUCTION 

Global healthcare systems are severely impacted by 
neurodegenerative dementias, particularly as the number of 
elderly people rises. The World Health Organization (WHO) 
reports that approximately 50 million individuals globally are 
affected by dementia [1]. AD is responsible for around 60% of 
these cases, making it the most common neurological disorder 
[2]. DLB, characterized by the accumulation of LB, is the 
second most prevalent type of neurodegenerative dementia, 
following AD and some cases are often misdiagnosed and 
overlooked [3], [4]. In addition to identifying and managing 
clinical aspects such as severe autonomic dysfunction, motor 
and mental symptoms, and dangerous antipsychotic sensitivity, 
an accurate and timely detection of DLB is crucial for ensuring 
appropriate care and treatment [5]. 

Predicting the disease's prognosis and organizing clinical 
trials also depend on a reliable diagnosis, but the significant 
clinical and cognitive similarities between AD and DLB may 
make the diagnostic procedure more difficult [6]. Additionally, 
a variety of clinical manifestations may result from the 

common presence of pathological variability in individuals 
containing DLB, particularly the presence of co-occurring AD 
pathology, such as tau tangles and amyloid beta (Aβ) plaques 
[7]. Compared with DLB patients exhibiting solely Lewy body 
pathology, those with Aβ pathology is linked to reduced life 
expectancy and a higher rate of cognitive impairment [8]. 
These findings highlight the clinical significance of detecting 
concomitant amyloid-beta (Aβ) pathology in patients with 
DLB. Functional neuroimaging, a commonly employed tool in 
the medical detection of dementia, it has also been integrated 
into the detection criteria for AD as well as DLB [9], [10]. 
Even seasoned neurologists find it difficult to diagnose certain 
conditions, and sometimes choosing the best course of action is 
also difficult. Therefore, to give more reliable clinical 
evaluations, doctors employ diagnostic techniques such as 
neurofunctional imaging [11], [12]. 

Recently deep learning techniques for medical image 
analysis are growing steadily, particularly in neurodegenerative 
illnesses [13]. This broad recognition stems from its capacity to 
automatically identify useful features and reduce the 
requirement for handcrafted feature extraction. Unlike typical 
machine learning approaches, it can learn intricate patterns in 
imaging information which is difficult for humans to perceive 
[14], [15]. Most deep learning models used in 
neurodegenerative illnesses primarily identify many stages of 
AD, ranging from no dementia to mild AD, utilizing 2D 
imaging scans. Nevertheless, these models are only useful for 
the AD diagnosis, which means they cannot distinguish the 
patterns between AD and DLB. Furthermore, it is challenging 
to confirm their robustness when non-AD dementias are 
present [16], [17]. The quantitative approach requires 
standardized methods for acquiring and interpreting structural 
scans and 18F-FDG-PET, which can be time-consuming. 
Interestingly, in differentiating DLB from AD, a 
straightforward visual evaluation of Cortical Involvement 
(CIS) as either present or absent proved to have higher 
diagnostic accuracy than the quantitative CIS ratio. Although 
visual evaluation of other imaging indicators and modalities is 
widely utilized and has shown to be a quick, accurate, and 
repeatable procedure in clinical practice, there are no 
standardized visual guidelines to assess the extent of CIS. In 
addition to increasing the diagnostic accuracy of DLB, the use 
of pertinent diagnostic data may be improved using a 
consistent approach for classifying and interpreting the 
presence of CIS. Additionally, it is simple to incorporate a 
visual grading system into clinical practice across sites. To 
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effectively identify the differences between DLB and AD, a 
new deep learning model is introduced. The following points 
highlight the contributions of the developed framework. 

 To develop a deep learning model to differentiate DLB 
from AD by utilizing images from a benchmark dataset. 
This approach enhances diagnostic accuracy by 
allowing the model to learn subtle differences between 
DLB and AD from high-quality, standardized brain 
images. 

 To employ SA-ACNN to visualize and extract CIS, 
enabling the model to focus on the most relevant 
regions in medical images, thereby improving feature 
accuracy and relevance. 

 To reintroduce BFS as IRF-BFS to fine-tune and 
optimize the CIS features. The parameters of SA-
ACNN such as hidden neuron count, steps per epoch 
count, and epoch size are optimized that maximize the 
accuracy. 

 To integrate the Dilated Res-LSTM layer, enabling the 
model to accurately identify and differentiate clinical 
features of DLB and AD, which aids in early diagnosis 
and effective therapeutic intervention. 

The structure of the newly introduced deep learning 
technique for differentiating DLB and AD is outlined as 
follows. Section II reviews the literature on DLB and AD 
differentiation models. Section III presents an adaptive deep-
learning mechanism designed to enhance DLB and AD 
differentiation, utilizing an improved optimization algorithm to 
boost performance and accuracy. Section IV explains the 
proposed model for feature extraction. Section V introduces a 
novel approach for differentiating DLB and AD. Part VI 
provides the Experimental results. Section VII contains 
Comparative analysis detailed discussion. Finally, Section VIII 
concludes the study. 

II. LITERATURE SURVEY 

A. Related Works 

In 2023, Nakata et al. [18] assessed the brain imaging 
variance among MCI with Lewy Bodies (MCI-LB) as well as 
MCI due to AD (MCI-AD) by examining brain atrophy and 
brain perfusion patterns. The analysis focused on differences in 
regional brain changes in individuals with these two 
conditions. It was found that MCI-LB and MCI-AD exhibited 
distinct patterns of brain atrophy and blood flow abnormalities. 
These differences helped distinguish between the two types of 
MCI, highlighting the unique features associated with each 
condition. 

In 2024, Karim et al. [19] have used graph theory and 
machine learning measures to forecast AD. Several machine 
learning models were developed for AD prediction using the 
OASIS and SALD datasets. The study identified key elements 
of functional connectivity and brain network structure in AD, 
noting a significant loss of connections between the thalamus 
and top 13 regions. These findings highlighted the potential of 
combining machine learning, graph theory for accurate AD 
diagnosis and for early prediction. 

In 2024, Hasan and Wagler [20] have suggested CNN-
GCN architecture which was produced by first implementing 
the CNNs and feeding it to the GCN classifier. To train and 
assess the suggested techniques the whole-brain images were 
used. They evaluated the effectiveness of the technique by 
presenting the findings from the best fold out of the five folds. 

In 2022, Etminani et al. [21] have developed a 3D deep 
learning model that utilized PET scans with a specific 
radioactive tracer to forecast the final clinical diagnosis of 
DLB, AD, and other conditions. The performance of this 
model was compared to that of experienced nuclear medicine 
physicians. To visualize the regional metabolic changes, 
methods were employed to highlight the areas of interest. 

In 2020, Gjerum et al. [22] implemented a strong visual 
CIS scale and assessed its ability to distinguish between AD 
and DLB. When compared to AD patients and controls, DLB 
patients' visual CIS scores were much greater. To sum up, the 
visual CIS scale was a clinically helpful tool for distinguishing 
AD from DLB. Aβ pathology in DLB patients may be 
connected to the severity of CIS. 

In 2020, Kanetaka et al. [23]  proposed prospective 
research comparing the CIS on Single Photon Emission 
Computed Tomography (SPECT) in individuals. The CIS 
score, calculated using eZIS software, is the ratio of the 
posterior cingulate gyrus (VOI-1) to areas of notably decreased 
regional cerebral blood perfusion (VOI-2). Due to insignificant 
RCBF decline in the PCG, diagnosing MCI with the CIS score 
is challenging. 

In 2022, Lim et al. [24] suggested a multiclass 
categorization technique using 3D T1-weight brain MRI 
images. The ResNet-50 and VGG-16 convolutional bases were 
utilized as feature extractors. A novel densely connected 
classifier was put into place to do classification on top of the 
convolutional bases. 

In 2017, McKeith et al. [25] made a clear distinction 
between clinical characteristics and diagnostic biomarkers and 
provided guidelines on the best ways to determine and interpret 
them. Here, the diagnostic role of laboratory, 
electrophysiologic, and neuroimaging tests has been expanded. 
Significant progress has been made in recognizing DLB. 

B. Problem Statement 

Millions of people worldwide are greatly affected by the 
serious disorder called AD. Behavioral abnormalities and 
memory loss are the symptoms associated with AD. The 
structural changes in the brain are the main cognitive 
dysfunction caused by AD. To initiate the treatment 
approaches, dementia and AD must be detected at an earlier 
stage but the traditional model faces various issues, and it is 
listed in Table I. 

Traditional strategies do not have the capability to diagnose 
the CIS from the images, so they fail to differentiate among the 
AD and DLB. 

The functional connectivity of the brain is not detected by 
this model and this model is so invasive and costly making it 
unsuitable for the early diagnosis process. 
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TABLE I.  FEATURES AND CHALLENGES OF EXISTING DLB AND AD DIFFERENTIATION MODEL 

Author 

[citation] 
Methodology Features Challenges 

Nakata et al. [17] RCBF 

The symptoms of mild cognitive impairment are effectively 

detected by this model. 

It is used for the early AD detection. 

This model fails to identify the signs of dementia. 

Karim et al. [18] SVM 
This model accurately defines the structure of the brain 
network. 

The characteristics of the brain network are not 
analyzed by this model. 

Hasan and 

Wagler [19] 
CNN-GCN The initial symptoms of AD are diagnosed. The imbalanced dataset cannot handle. 

Etminani et al. 

[20] 
3D deep learning 

The systems robustness is high. 
The proposed model is applied in the clinical setting for making 

the effective decision. 

The transparency of the system is low. 

Gjerum et al. 

[21] 

robust visual rating 

scale 

The presence of dementia is effectively detected by this model. 

The degree of the CIS is determined by this model. 

It lacks in the pathological information. 
The memory cohort is not analyzed by this 

model. 

Kanetaka et al. 
[22] 

DLB The volume of the CIS is measured using this model. 
The symptoms of the disease cannot be 
diagnosed. 

Lim et al. [23] CNN 

It is used for executing the multi-classification of images. 

It uses dense connections for accurately classifying the AD in 

the humans. 

This model does not evaluate the low-
dimensional feature scores 

McKeith et al. 

[24] 

Optimal AD 

detection methods 

It is employed to support the medical decision-making process. 

It is used to provide adequate medical support to the patients 

The behavioral abnormalities are not detected by 

this model 
 

The prior systems are ineffective for preventing the 
progression of DLB in individuals as they are not effectively 
determining the synchronization of the brain regions. 

The prior approaches are unsuitable for discriminating 
against DLB patterns from AD patterns, so it is quite difficult 
to automatically detect the presence of DLB and AD from 
humans. 

III. IMAGING CLASSIFICATION OF DEMENTIA WITH LEWY 

BODIES AND ALZHEIMER'S DISEASE USING DEEP LEARNING 

NETWORK 

A. Proposed DLB and AD Imaging Classification Model: 

Description 

Models for differentiating DLB and AD typically depend 
on manual feature extraction, a process that can be time-
intensive and susceptible to human error. The accuracy of these 
models is limited due to the overlap in clinical symptoms 
between the two conditions. Traditional methods may not 
effectively capture complex patterns in neuroimaging data, 
leading to misdiagnosis. Additionally, these models often lack 
the ability to integrate and analyze multiple types of data 
simultaneously. Consequently, a deep learning model was 
developed to enhance differentiation by automatically learning 
and identifying intricate patterns in imaging and clinical data, 
improving diagnostic accuracy and efficiency. However, using 
deep learning for differentiating DLB and AD may face 
challenges including limited availability of labeled data, high 
variability in brain scans due to individual differences, 
difficulty in differentiating subtle disease patterns and so on. 
Thus, it is necessary to develop novel DLB and AD 
differentiating systems with the support of enhanced deep 
learning mechanism. 

This study aims to differentiate DLB from AD using an 
advanced deep learning model. The process begins with 
collecting the necessary brain images from a benchmark 
dataset. Initially, the brain images are fed into the SA-ACNN 
to visualize critical image features, where SA-ACNN is 

developed by integrating spatial attention layer into the CNN 
architecture along with the network parameter optimization. 
For performing this optimization, an efficient heuristic 
algorithm named BFS is reintroduced as EBFS. Here, the 
parameters such as steps per epoch count, hidden neuron count, 
and epoch size in SA-ACNN are optimized to maximize the 
accuracy. The SA-ACNN's spatial attention mechanism 
focuses on the most relevant parts of the images, improving 
CIS feature extraction. Moreover, the EBFS fine-tunes this 
process for supporting more precise differentiation. These 
extracted CIS features are crucial for distinguishing between 
DLB and AD. The CIS involves the preservation of the 
Posterior Cingulate Cortex (PCC) in DLB, while 
hypoperfusion is typically seen in this region during the early 
stages of AD. The presence of the CIS has gained attention as a 
key differentiator, reflecting AD-related pathology that 
influences clinical symptoms in DLB. Notably, CIS is most 
prominent during the mild dementia stage and tends to decline 
as DLB advances. This makes CIS particularly useful for 
distinguishing DLB from AD, especially in the early stages, 
though exceptions like posterior cortical atrophy may 
complicate this distinction. The CIS features are then fed into 
the DR-LSTM for classifying DLB and AD images. This DR-
LSTM combines the benefits of dilated convolutions (captures 
multi-scale context), and the strengths of Res-LSTM 
(effectively handles sequential data and long-term 
dependencies). Moreover, it helps in capturing detailed 
temporal patterns and clinical features, enhancing diagnostic 
capability. Thus, the DR-LSTM is expected to significantly 
improve the differential diagnosis of DLB and AD, enabling 
more effective therapeutic measures. Fig. 1 presents the 
pictorial presentation of the proposed DLB and AD imaging 
classification model. 

B. Brain Image Dataset for Model Analysis 

The developed framework employs brain images to 
differentiate DLB from AD. Table II provides a description of 
the dataset, which consists of images gathered from online 
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resources. In this context, the term 𝐼𝑚 𝑔𝑐
𝐵𝑟  represents the brain 

images, here 𝑐 = 1,2, … , 𝐶 and C indicates the image count. 

 
Fig. 1. Pictorial representation of the proposed DLB and AD imaging 

classification system. 

TABLE II.  DESCRIPTION OF THE INPUT IMAGE DATASET 

Dataset 

name 
Dataset link Dataset description 

Dataset1 

(FDATA 

ADNI 
DATAS

ET) 

https://www.k

aggle.com/dat
asets/ahmeda

shrafahmed/f

data-adni-
dataset. 

This dataset consists of 33,984 records, with 
6,000 records selected for use. These 6,000 

records are divided into training and testing 

sets, with 4,500 used for training and 1,500 for 
testing. The dataset is categorized into four 

classes, each with 1,500 records: CN 

(Cognitively Normal), LMCI (Late Mild 
Cognitive Impairment), AD, and EMCI (Early 

Mild Cognitive Impairment), where LMCI and 

EMCI comes under the category of DLB. 

IV. SPATIAL ATTENTION BASED ADAPTIVE CONVOLUTION 

NEURAL NETWORK FOR CINGULATE ISLAND SIGN FEATURE 

EXTRACTION 

A. Convolution Neural Network 

The convolutional layer is a crucial part of feature 
extraction in a Convolutional Neural Network (CNN) [26], 
which employs certain hidden layers. CNN contains more than 
two hidden layers, and these layers interpret the image as a 
tensor, automatically extracting features and performing 
eventual categorization from input data. The usual CNN layers 
are as follows: 

Input layer: The width, length, and number of channels, or 
their transformations, constitute the input tensor, which 
determines the size of the input layer, which contains the image 
information. 

Convolutional layer: Transformation layers are those that 
imply the warping process from the preceding layer. This layer 
gathers the training outcome's weights or parameters. Usually 
smaller in width and length than the input layer, the output of 

this layer is a tensor known as a feature map, with a depth 
dimension. This layer aids in storing the training weight, which 
is represented by Eq. (1). 

𝐸𝑤𝑥 = (𝑘1 ∗ 𝑘2 ∗ 𝐸𝑃𝑍 ∗ 𝐸𝑄𝑊 + 𝐸𝑀𝐹)

Here, the kernel size is represented with the terms 𝑘1 and 
𝑘2.  

Pooling layer-This layer helps in reducing the size of the 
previous layer to identify the important features from the input 
tensor. The output dimension is determined by the kernel size; 
for instance, with a kernel size of two, the output dimension is 
divided. Fig. 2 illustrates the pictorial representation of a CNN 
for feature extraction process. 

 
Fig. 2. Diagrammatic representation of CNN for feature extraction process. 

B. Developed SA-ACNN-Based CIS Feature Extraction  

Initially, the input brain images 𝐼𝑚 𝑔𝑐
𝐵𝑟 are given for the 

feature extraction phase. The SA-ACNN utilizes spatial 
attention mechanisms to focus on the most relevant areas of 
medical images, such as lesions or other distinguishing 
patterns, enhancing the accuracy of feature extraction. This 
ability to prioritize important image regions allows the network 
to more effectively differentiate between DLB and AD. To 
further refine this process, IRF-BFS is applied to optimize the 
attributes of SA-ACNN. The parameters such as steps per 
epoch count, hidden neuron count, and epoch size in SA-
ACNN are optimized to maximize the accuracy. Thus, it 
ensures that only the most relevant features are extracted for 
accurate diagnosis, with SA-ACNN focusing on key image 
areas. Finally, the CIS features are extracted which means 
neuro imaging features seen on DLB. The extracted features 
are represented with the term 𝑓𝑒𝑘

𝑠𝑎. 

CIS-based feature processing: In the process of 
differentiating DLB and AD, the model integrates Grad-CAM 
(Gradient-weighted Class Activation Mapping) to offer a 
deeper understanding of how the deep learning network 
reaches its diagnostic conclusions. Grad-CAM is a powerful 
visualization tool that helps to highlight which areas of the 
input image are most influential in the model’s final 
predictions. Grad-CAM is specifically employed to locate and 
emphasize the CIS. This feature enables both clinicians and 
researchers to visually track the model's focus during the DLB–
AD classification process. For images of DLB patients, Grad-
CAM frequently highlights the CIS, demonstrating that the 
model places significant emphasis on this feature to 
differentiate DLB from AD. As the model continues to learn, 
its focus on the CIS becomes more pronounced and localized. 
When the CIS appears more prominently, the model assigns 
higher confidence to the DLB diagnosis, while images with 
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lower CIS ratios, suggesting the presence of AD pathology, 
lead to reduced confidence in DLB classification. The 
description of the spatial attention mechanism is provided 
below. 

The spatial attention [27], [28] refers to a process that 
focuses on areas of input (usually images or sequences) that are 
most pertinent to the task at hand. When the model is creating 
predictions or extracting features, it uses this type of attention 
mechanism to help it prioritize geographic locations in the 
incoming images. Eq. (2) and Eq. (3) illustrate how the spatial 
attention mechanism is calculated. 

𝐹 = 𝑁𝑓 . 𝜎 ((𝑣𝑖
(𝑦−1)

𝑅1) 𝑅2(𝑅3𝑣𝑝
(𝑦−1)

)𝑈 + 𝑚𝑓)

𝐹𝑝,𝑙
′ =

𝑒𝑥𝑝(𝐹𝑝,𝑙)

∑ 𝑒𝑥𝑝(𝐹𝑝,𝑙)𝑍
𝑙=1



Here, the input of the 𝑦𝑡ℎspatial block is signified with the 

term 𝑣𝑖
(𝑦−1)

 and the channels in the input images are specified 

with the term 𝐵𝑦−1. The learnable parameters are represented 

with the terms 𝑁𝑓  and 𝑚𝑓 and the term 𝜎 is utilized as the 

activation function. The element 𝐹𝑝,𝑙
′  in 𝐹  signifies the 

semantic correlation strength between node 𝑝and node𝑙. The 
diagrammatic representation of the developed SA-ACNN-
based CIS Feature Extraction is presented in Fig. 3. 

C. Parameter Optimization with IRF-BFS 

The BFS algorithm is selected in this model as it offers 
several advantages, including efficient global search 
capabilities, simplicity, adaptability to various optimization 
problems, parallelism, and a good balance between exploration 
and exploitation. However, BFS also has some drawbacks, 
such as limited exploration of the search space, premature 
convergence and sensitivity to parameter tuning. These 
disadvantages can be addressed by using the IRF-BFS, which 
avoids randomness in the search space by updating the random 
variables to make accurate solution for the search process. 

 
Fig. 3. Graphical representation of the implemented SA-ACNN-based CIS 

feature extraction. 

IRF-BFS overcome premature convergence by adding 
diversity to the search, improving exploration, and minimizing 
the risk of getting stuck in local optima. Additionally, IRF-BFS 
reduces the dependency on manually tuning parameters by 
adapting them during the search. In this improved IRF-BFS 
approach, the random variable 𝑓 is upgraded utilizing Eq. (4). 

𝑓 =
𝑐𝑓
𝑎

𝑏



𝑎 =
𝑏𝑓

𝑐𝑓+𝑤𝑓


𝑏 =
𝑐𝑓+𝑤𝑓

𝑏𝑓


Here, the current fitness value is signified with the term𝑐𝑓, 

the mean fitness value is signified with the term𝑚𝑓, the worst 

fitness value is specified with the term𝑤𝑓, and the best fitness 

value is represented with the term𝑏𝑓. The pseudocode of the 

IRF-BFS is given in Algorithm 1. 

Algorithm 1: Developed IRF-BFS 

Set the values for the parameters: population 𝑍and maximum iteration 
𝑀𝑎𝑥𝑖𝑡𝑒  

While (𝑖𝑡𝑒 ≤ 𝑀𝑎𝑥𝑖𝑡𝑒)do 

 Update random variable𝒇that is computed in Eq. (4) 

 Perform flying search behavior  

  Estimate the new location of the bird in flying search 
region 

 Perform Territorial behavior 

  Determine the new territory bird’s position  

  Estimate the fitness function 

  Determine the new incursion birds’ position 

 If the position of the leading bird is superior to that of all 
other birds  

  Execute the role change mechanism 

 End if 

  Examine the border 

  Estimate the fitness function 

  Upgrade 𝑀𝑝 with 𝑀𝑝
𝑖𝑡𝑒+1 

 𝑖𝑡𝑒 = 𝑖𝑡𝑒 + 1 

End while 

Output 

Output 

D. Objective Function of IRF-BFS-SA-ACNN Model 

In the developed IRF-BFS-SA-ACNN-based feature 
extraction model, IRF-BFS is applied to optimize the attributes 
of SA-ACNN. The parameters such as steps per epoch count, 
hidden neuron count, and epoch size are optimized to 
maximize accuracy. The objective function of the developed 
IRF-BFS-SA-ACNN is expressed mathematically in Eq. (7). 
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𝑂𝑏𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥
{𝐻𝑑𝑑𝑖

𝑐𝑛𝑛,𝐸𝑜𝑜𝑗
𝑐𝑛𝑛,𝑆𝑝𝑒𝑘

𝑐𝑛𝑛}

(𝑎𝑐𝑐)

Here, the term𝑎𝑐𝑐indicates the accuracy, the term 𝑆𝑝𝑒𝑘
𝑐𝑛𝑛 

denotes the steps per epoch count in the CNN with range of 
[500,1000], the term 𝐸𝑜𝑜𝑗

𝑐𝑛𝑛  represents the epoch size with 

the range of [5,50] and the term 𝐻𝑑𝑑𝑖
𝑐𝑛𝑛 signifies the hidden 

neuron count in the CNN with the range of [5,255]. 

The accuracy 𝑎𝑐𝑐  is a measure of how often a method 
accurately forecasts an outcome and it is derived in Eq. (8). 

𝑎𝑐𝑐 =
(𝑘𝑎+𝑒𝑛)

(𝑘𝑎+𝑒𝑛+𝑠ℎ+𝑖𝑘)


Here, the term𝑘𝑎denotes the true positive, 𝑒𝑛 indicates the 
true negative, 𝑠ℎ denotes the false positive, 𝑖𝑘 denotes the false 
negative values. 

V. DILATED RESIDUAL-LONG SHORT TERM MEMORY FOR 

DIFFERENTIATING DEMENTIA WITH LEWY BODIES AND 

ALZHEIMER’S DISEASE 

A. Long Short Term Memory 

A memory element could replace each hidden element in 
the LSTM [29] . Each memory element is made up of different 
parts including input, output, forget, and internal states. The 
operation of the input and reset gate is achieved by Eq. (9) and 
Eq. (10). 

𝑚𝑑 = 𝜎(𝑉𝑏𝑔𝑖𝑑 + 𝑉𝑙𝑧𝑧𝑑−1 + 𝑏𝑏)

𝑗𝑑 = 𝜎(𝑉𝑗𝑖𝑖𝑑 + 𝑉𝑧𝑗𝑧𝑑−1 + 𝑏𝑗)

The operation of the cell state and output gate is expressed 
by Eq. (11) and Eq. (12). 

𝑔𝑑 = 𝑗𝑑𝛩𝑔𝑑−1 + 𝑙𝑑𝛩𝑘(𝑉𝑔𝑖𝑖𝑑 + 𝑉𝑔𝑧𝑧𝑑−1 + 𝑏𝑔)

𝑡𝑑 = 𝜎(𝑉𝑤𝑔𝑖𝑘 + 𝑉𝑤𝑧𝑧𝑘−1 + 𝑏𝑤)

The hidden state and memory state is attained in Eq. (13) 
and Eq. (14). 

𝑧𝑑 = 𝑤𝑑𝛩𝑝(𝑔𝑑)

𝑧𝑎 = 𝑋𝑧𝑛𝑛𝑎 + 𝑏𝑧

Here, the terms 𝑔𝑑−1,𝑗𝑑denotes the internal state,  a forget 
gate, the terms 𝑚𝑑  and  𝑡𝑑  denotes an input gate, an output 
gate, the term 𝑉  represents the weight matrix, the term 𝜎 
represents the logistic sigmoid function, element-wise 
multiplication is denoted by the symbol 𝛩 , 𝑧  represents cell 
result activation point, the term 𝑏indicates bias, the term 𝑖 and  
𝑐 indicates the input point and output point, and the terms 𝑘and 
𝑝indicates the 𝑡𝑎𝑛ℎactivation operations, accordingly. 

B. Dilated Residual-LSTM for Classifying DLB and AD 

The extracted CIS features 𝑓𝑒𝑘
𝑠𝑎 are provided into the 

classification phase. The developed DR-LSTM helps to 
perform the differentiation process of DLB and AD by 
accurately identifying specific clinical features. It combines the 
strengths of dilated convolutions and residual layer networks. 
Dilated convolutions expand the receptive field, enabling the 
model to capture multi-scale contextual data, which is crucial 

for identifying subtle, long-range dependencies in disease 
progression. This combination of dilated convolution and 
residual layers improves the ability of the model to represent 
and track the evolving clinical features of DLB and AD, 
improving diagnostic accuracy. This integrated approach leads 
to a more robust and precise diagnostic process, ultimately 
aiding in the early and effective therapeutic intervention for 
these neurodegenerative diseases. 

A residual block [30] is a fundamental component of 
residual network architecture. It is developed to mitigate the 
vanishing gradient issue and make training deep networks 
more feasible. The residual block can be mathematically 
indicated in Eq. (15). 

𝑖 = 𝐻(𝑣, {𝑅𝑝}) + 𝑣

Here, the term 𝑣signifies the input of the residual block; the 

term 𝐻(𝑣, {𝑅𝑝})indicates the residual mapping. 

Dilated convolutions [32] are commonly used in models 
where capturing long-range dependencies is crucial and they 
allow the model to maintain high resolution while increasing 
the receptive field. This method is particularly advantageous in 
scenarios where traditional convolutions would result in 
excessive computation or loss of resolution due to down 
sampling. The function for a convolution can be computed 
using Eq. (16). 

𝑖(𝑢) = ∑ 𝑣(𝑢 + 𝑝. 𝑔)𝑎
𝑝=0 . 𝑟(𝑝)

Here, the term 𝑟(𝑝)represents the weight at the index𝑝, the 
term 𝑔represents the dilation factor, and 𝑎indicates the filter 
dimension. Finally, the classified outcome is obtained for 
identifying the DLB and AD classes. Fig. 4 represents the 
pictorial representation of developed DR-LSTM for 
Classifying DLB and AD. 

 
Fig. 4. Diagrammatic illustration of the developed DR-LSTM for classifying 

DLB and AD. 
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VI. EXPERIMENTAL RESULTS  

A. Resultant Feature Images by Varying Iteration 

The developed DLB and AD Imaging Classification system 
was implemented utilizing Python. While developing the 

network, a maximum iteration of 50, a chromosome length of 
3, and populations of 10, was considered. Fig. 5 provides the 
resultant feature images of the developed SA-ACNN by 
varying iteration. 

Original 

images 

     

Iteration  at  

25 

     

Iteration  at  

50 

     

Iteration  at  

75 

     

Iteration  at  

100 

     
Fig. 5. Resultant feature images from the developed SA-ACNN. 

B. Training and Testing Progress 

The training progress graph is used to visualize the 
performance of a machine learning model during training and 
testing periods. This graph is a plot of the testing accuracy and 
testing loss over 1000 epochs. Fig. 6 and Fig. 7 provide the 
training progress graphs for the developed method. In Fig. 8 
and Fig. 9, the testing accuracy increased rapidly, indicating 
that the model is learning and improving. However, after 
around 100 epochs, the accuracy fluctuates and stabilizes with 
some noise. The fluctuations suggest that the model's 
performance varies slightly with each epoch. In testing, the loss 
minimizes rapidly, showing that the model is learning to make 
better predictions. After around 100 epochs, the decrease in 
loss slows down and eventually stabilizes, showing minor 
reductions. The constant loss model suggests that a point has 
been reached where further training will not significantly 
improve performance.  

Fig. 6. Training accuracy of CNN model. 
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Fig. 7. Training accuracy of LSTM model. 

 

Fig. 8. Testing accuracy of CNN model. 

 

Fig. 9. Testing accuracy of CNN model. 

C. Correlation Analysis 

This statistical method assesses the strength and direction 
of the relationship between two continuous variables. Here, the 
black line represents a linear regression model, fitting the data 
points, which indicates a trend that supports this positive 
relationship. This type of analysis provides evidence that the 
features extracted by the SA-ACNN (i.e., the CIS ratio) are 
relevant for distinguishing between DLB and AD. It supports 
the effectiveness of the model in capturing clinically 
meaningful data that can be linked to the disease's severity or 
progression. Fig. 10 represents the correlation analysis of the 
developed SA-ACNN-based feature extraction model between 
AD and DLB classes. 

  
(a)      (b) 

  
(c)     (d) 

Fig. 10. Correlation analysis of the developed SA-ACNN-based Feature Extraction Model regarding different classes (a) AD, (b) CN, (c) EMCI, and (d) LMCI. 
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VII. COMPARATIVE ANALYSIS AND DISCUSSION 

A. Batch Size-Based Performance Analysis of Proposed 

Classification Model 

The batch size-based performance analysis evaluates how 
different models perform on a given task by testing them on 
various batch sizes and evaluating metrics such as accuracy, 
MCC, CSI, FPR, FDR, precision. In Fig. 11(a), the accuracy of 
the developed AD-DLB-DNet framework outperforms RAN,  

SVM, CNN-GCN, and CNN by 11.76%, 6.74%, 13.09%, 
and 3.26% in batch size-4, correspondingly. Thus, it is noted 
that the introduced DR-LSTM provides better performance 
than other classification techniques. Fig. 11 provides 
performance analysis by varying batch sizes. 

B. ROC Analysis 

Receiver Operating Characteristic (ROC), which is a 
metric, utilized to estimate the execution of a classification 
model, such as the DLB and AD differentiation model. The 

techniques compared, including RAN, SVM, CNN-GCN, 
CNN, and AD-DLB-DNet, all exhibit powerful performances. 
However, AD-DLB-DNet appears to have a slight edge over 
the others, making it a potentially more reliable choice for 
differentiating AD and DLB in clinical settings. Fig. 12 offers 
the ROC graph analysis of the proposed network. 

C. Convergence Analysis 

Convergence analysis refers to the study of how well the 
model's performance improves as the number of training 
iterations or epochs increases. The effectiveness of the 
implemented framework was estimated by comparing with 
several heuristic algorithms like Dwarf Mongoose 
Optimization (DMO) [31], Sparrow Search Algorithm (SSA) 
[32], Dingo Optimization Algorithm (DOA) [33], Birds 
Foraging Search (BFS) [34], and classifiers like RAN [35] , 
SVM, CNN-GCN, and CNN. 

  
(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

Fig. 11. Batchsize-based performance analysis of the developed method regarding (a) Accuracy, (b) CSI, (c) FDR, (d) FPR, (e) MCC, (f) Precision. 
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Fig. 12. ROC analysis of the developed technique. 

 
Fig. 13. Convergence analysis of the proposed technique. 

At 10th iteration, the developed IRF-BFS approach 
performs better than the existing algorithms like DMO, SSA, 
DOA, and BFS by 13.63%, 11.11%, 12.35%, and 8.69%. By 
performing convergence analysis, researchers can develop a 
robust and accurate model for differentiating DLB and AD, 
ultimately improving diagnostic accuracy and patient 
outcomes. Fig. 13 provides the convergence analysis of the 
developed framework. 

D. Confusion Matrix of the Classification Model 

The confusion matrix is a commonly used performance 
measurement tool in classification issues. It compares a 

model's classified classes with the actual ground truth labels, to 
assess how well the system performs. Moreover, it helps to 
identify areas where the model performs well and where 
improvements are needed. Consequently, it shows how well 
the model can differentiate between AD and DLB, particularly 
by analyzing how often the model misclassifies one disease as 
another. Fig. 14 provides the confusion matrix of the developed 
model. 

 

Fig. 14. Confusion matrix of the proposed classification model. 

E. Comparative Analysis with K-Fold Cross Vadildation 

Comparative Analysis of the Proposed Classification model 
is always needed to analyze the effectiveness of the developed 
model. K-fold cross-validation analysis refers to a method that 
is utilized to assess the effectiveness of a model, especially in 
cases where you want to ensure your method generalizes well 
with new information. K-fold analysis is used to evaluate 
effectively how the model distinguishes between the two 
diseases. In the below Table III, it is clearly shown that the 
developed AD-DLB-DNet system, in terms of accuracy, is 
better in performance than the existing methods such as RAN, 
SVM, CNN-GCN, and CNN by 4.27%, 2.85%, 3.26%, and 
1.988%, respectively. AD-DLB-DNet consistently outperforms 
the other models with the highest accuracy of 92.104%, 
specificity of 97.215, F1 Score of 85.361, MCC value 0.804, 
and CSI value 74.461, while also maintaining the lowest FPR 
of 2.785 and FDR of 7.917 at K-Fold-5. This suggests that AD-
DLB-DNet is the most robust model for differentiating 
between DLB and AD. Table III shows the Comparative K-
fold analysis of the developed framework. 

TABLE III.  COMPARATIVE K-FOLD ANALYSIS OF THE PROPOSED METHOD WITH EXISTING METHODS 

TERMS RAN [30] SVM [2] CNN-GCN [3] CNN [7] AD-DLB-DNet 

K-Fold-1 

Accuracy 87.750 88.958 88.604 90.604 91.500 

Specificity 95.664 96.013 95.910 96.680 96.969 

FPR 4.336 3.987 4.090 3.320 3.031 

FDR 11.917 11.083 11.333 9.333 8.583 

F1 78.238 80.105 79.551 82.832 84.320 

MCC 0.707 0.733 0.725 0.770 0.790 

CSI 64.255 66.813 66.046 70.695 72.890 

K-Fold-2 
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Accuracy 84.708 87.688 85.750 89.146 91.833 

Specificity 94.338 95.494 94.724 96.134 97.121 

FPR 5.662 4.506 5.276 3.866 2.879 

FDR 15.250 12.417 14.333 10.750 8.167 

F1 73.483 78.054 75.036 80.436 84.900 

MCC 0.641 0.704 0.663 0.737 0.798 

CSI 58.081 64.007 60.047 67.274 73.762 

K-Fold-3 

Accuracy 85.896 87.021 86.563 88.583 90.708 

Specificity 94.790 95.450 95.087 95.826 96.740 

FPR 5.210 4.550 4.913 4.174 3.260 

FDR 14.167 12.417 13.417 11.583 9.167 

F1 75.265 77.138 76.313 79.476 83.016 

MCC 0.666 0.692 0.680 0.724 0.772 

CSI 60.340 62.784 61.698 65.942 70.964 

K-Fold-4 

Accuracy 85.500 85.813 83.771 89.229 89.229 

Specificity 94.732 94.701 94.009 96.139 96.167 

FPR 5.268 5.299 5.991 3.861 3.833 

FDR 14.250 14.417 16.000 10.750 10.667 

F1 74.728 75.101 72.129 80.557 80.571 

MCC 0.659 0.664 0.622 0.739 0.739 

CSI 59.652 60.129 56.407 67.443 67.464 

K-Fold-5 

Accuracy 86.500 88.667 87.854 90.500 92.104 

Specificity 95.082 95.969 95.643 96.647 97.215 

FPR 4.918 4.031 4.357 3.353 2.785 

FDR 13.417 11.167 12.000 9.417 7.917 

F1 76.229 79.671 78.367 82.662 85.361 

MCC 0.679 0.727 0.709 0.767 0.804 

CSI 61.589 66.211 64.430 70.447 74.461 

VIII. CONCLUSION 

This study aimed to differentiate DLB from AD using a 
deep learning model. The process began with collecting the 
necessary images from a benchmark dataset. The images were 
fed into the SA-ACNN for CIS feature extraction. Using Grad-
CAM, the deep learning model not only provides accurate 
predictions for distinguishing DLB from AD but also offers a 
clear visual representation of the CIS as an essential feature for 
DLB diagnosis. This visualization technique enhances the 
model’s interpretability, fostering greater trust in its decision-
making process. To perform differentiation, a DR-LSTM was 
proposed, which effectively identified clinical features. This 
comprehensive model aimed to enhance the differential 
diagnosis of DLB as well as AD, facilitating more effective 
therapeutic measures. Finally, validation steps were performed 
to confirm the efficacy of the method that ensures its reliability 
in clinical settings. The accuracy of the developed AD-DLB-
DNet framework is more effective than RAN, SVM, CNN-

GCN, and CNN by 8.41%, 4.72%, 7.09%, and 3.01%, 
respectively at the k-fold value to be 2. The suggested model is 
used for the differentiation of DLB and AD for taking effective 
therapeutic measures. The present study faces limitations such 
as data constraints, generalization challenges, and the need for 
extensive clinical validation to ensure reliability and ethical 
compliance. In future work, several avenues can be explored to 
improve the differentiation of DLB and AD utilizing deep 
learning models. Expanding the dataset to include more diverse 
images from various demographics and medical conditions can 
improve model robustness. 

REFERENCES 

[1] V. Vimbi, N. Shaffi, and M. Mahmud, “Interpreting artificial 
intelligence models: a systematic review on the application of LIME and 
SHAP in Alzheimer’s disease detection,” Brain Inform, vol. 11, no. 1, p. 
10, Dec. 2024, doi: 10.1186/s40708-024-00222-1. 

[2] B. Lei et al., “Hybrid federated learning with brain-region attention 
network for multi-center Alzheimer’s disease detection,” Pattern 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

534 | P a g e  

www.ijacsa.thesai.org 

Recognit, vol. 153, p. 110423, Sep. 2024, doi: 
10.1016/j.patcog.2024.110423. 

[3] N. Pradhan, S. Sagar, and A. S. Singh, “Analysis of MRI image data for 
Alzheimer disease detection using deep learning techniques,” Multimed 
Tools Appl, vol. 83, no. 6, pp. 17729–17752, Jul. 2023, doi: 
10.1007/s11042-023-16256-2. 

[4] S. M. Mahim et al., “Unlocking the Potential of XAI for Improved 
Alzheimer’s Disease Detection and Classification Using a ViT-GRU 
Model,” IEEE Access, vol. 12, pp. 8390–8412, 2024, doi: 
10.1109/ACCESS.2024.3351809. 

[5] M. Trinh, R. Shahbaba, C. Stark, and Y. Ren, “Alzheimer’s disease 
detection using data fusion with a deep supervised encoder,” Frontiers in 
Dementia, vol. 3, Feb. 2024, doi: 10.3389/frdem.2024.1332928. 

[6] D. M. O’Shea et al., “Practical use of DAT SPECT imaging in 
diagnosing dementia with Lewy bodies: a US perspective of current 
guidelines and future directions,” Front Neurol, vol. 15, Apr. 2024, doi: 
10.3389/fneur.2024.1395413. 

[7] M. J. Plastini et al., “Multiple biomarkers improve diagnostic accuracy 
across Lewy body and Alzheimer’s disease spectra,” Ann Clin Transl 
Neurol, vol. 11, no. 5, pp. 1197–1210, May 2024, doi: 
10.1002/acn3.52034. 

[8] N. S. Sjaelland, M. H. Gramkow, S. G. Hasselbalch, and K. S. 
Frederiksen, “Digital Biomarkers for the Assessment of Non-Cognitive 
Symptoms in Patients with Dementia with Lewy Bodies: A Systematic 
Review,” Journal of Alzheimer’s Disease, vol. 100, no. 2, pp. 431–451, 
Jul. 2024, doi: 10.3233/JAD-240327. 

[9] J. Levin et al., “α‐Synuclein seed amplification assay detects Lewy 
body co‐pathology in autosomal dominant Alzheimer’s disease late 
in the disease course and dependent on Lewy pathology burden,” 
Alzheimer’s & Dementia, vol. 20, no. 6, pp. 4351–4365, Jun. 2024, 
doi: 10.1002/alz.13818. 

[10] K. Sravani and V. RaviSankar, “Intelligent Differentiation Framework 
for Lewy Body Dementia and Alzheimer’s disease using Adaptive 
Multi-Cascaded ResNet–Autoencoder–LSTM Network,” Int J Image 
Graph, Apr. 2024, doi: 10.1142/S0219467825500664. 

[11] H. Sohrabnavi, M. Mohammadimasoudi, and H. Hajghassem, “Early 
detection of Alzheimer’s disease by measuring amyloid beta-42 
concentration in human serum based on liquid crystals,” Sens Actuators 
B Chem, vol. 401, p. 134966, Feb. 2024, doi: 
10.1016/j.snb.2023.134966. 

[12] Y. Zeng, Z. Huang, Y. Liu, and T. Xu, “Printed Biosensors for the 
Detection of Alzheimer’s Disease Based on Blood Biomarkers,” J Anal 
Test, vol. 8, no. 2, pp. 133–142, Jun. 2024, doi: 10.1007/s41664-023-
00277-9. 

[13] M. J. Armstrong, D. J. Irwin, J. B. Leverenz, N. Gamez, A. Taylor, and 
J. E. Galvin, “Biomarker Use for Dementia With Lewy Body 
Diagnosis,” Alzheimer Dis Assoc Disord, vol. 35, no. 1, pp. 55–61, Jan. 
2021, doi: 10.1097/WAD.0000000000000414. 

[14] S. Siuly, Ö. F. Alçin, H. Wang, Y. Li et al., “Exploring Rhythms and 
Channels-Based EEG Biomarkers for Early Detection of Alzheimer’s 
Disease,” IEEE Trans Emerg Top Comput Intell, vol. 8, no. 2, pp. 1609–
1623, Apr. 2024, doi: 10.1109/TETCI.2024.3353610. 

[15] B. TaghiBeyglou and F. Rudzicz, “Context is not key: Detecting 
Alzheimer’s disease with both classical and transformer-based neural 
language models,” Natural Language Processing Journal, vol. 6, p. 
100046, Mar. 2024, doi: 10.1016/j.nlp.2023.100046. 

[16] I. Bazarbekov, A. Razaque, M. Ipalakova et al., “A review of artificial 
intelligence methods for Alzheimer’s disease diagnosis: Insights from 
neuroimaging to sensor data analysis,” Biomed Signal Process Control, 
vol. 92, p. 106023, Jun. 2024, doi: 10.1016/j.bspc.2024.106023. 

[17] J. Therriault et al., “Comparison of immunoassay- with mass 
spectrometry-derived p-tau quantification for the detection of 
Alzheimer’s disease pathology,” Mol Neurodegener, vol. 19, no. 1, p. 2, 
Jan. 2024, doi: 10.1186/s13024-023-00689-2. 

[18] T. Nakata et al., “Differential diagnosis of MCI with Lewy bodies and 
MCI due to Alzheimer’s disease by visual assessment of occipital 
hypoperfusion on SPECT images,” Jpn J Radiol, vol. 42, no. 3, pp. 308–
318, Mar. 2024, doi: 10.1007/s11604-023-01501-3. 

[19] S. M. S. Karim, M. S. Fahad, and R. S. Rathore, “Identifying 
discriminative features of brain network for prediction of Alzheimer’s 
disease using graph theory and machine learning,” Front Neuroinform, 
vol. 18, Jun. 2024, doi: 10.3389/fninf.2024.1384720. 

[20] M. E. Hasan and A. Wagler, “New Convolutional Neural Network and 
Graph Convolutional Network-Based Architecture for AI Applications 
in Alzheimer’s Disease and Dementia-Stage Classification,” AI, vol. 5, 
no. 1, pp. 342–363, Feb. 2024, doi: 10.3390/ai5010017. 

[21] K. Etminani et al., “A 3D deep learning model to predict the diagnosis 
of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive 
impairment using brain 18F-FDG PET,” Eur J Nucl Med Mol Imaging, 
vol. 49, no. 2, pp. 563–584, Jan. 2022, doi: 10.1007/s00259-021-05483-
0. 

[22] L. Gjerum et al., “A visual rating scale for cingulate island sign on 18F-
FDG-PET to differentiate dementia with Lewy bodies and Alzheimer’s 
disease,” J Neurol Sci, vol. 410, p. 116645, Mar. 2020, doi: 
10.1016/j.jns.2019.116645. 

[23] H. Kanetaka et al., “Differentiating Mild Cognitive Impairment, 
Alzheimer’s Disease, and Dementia With Lewy Bodies Using Cingulate 
Island Sign on Perfusion IMP-SPECT,” Front Neurol, vol. 11, Nov. 
2020, doi: 10.3389/fneur.2020.568438. 

[24] B. Y. Lim et al., “Deep Learning Model for Prediction of Progressive 
Mild Cognitive Impairment to Alzheimer’s Disease Using Structural 
MRI,” Front Aging Neurosci, vol. 14, Jun. 2022, doi: 
10.3389/fnagi.2022.876202. 

[25] I. G. McKeith et al., “Diagnosis and management of dementia with 
Lewy bodies,” Neurology, vol. 89, no. 1, pp. 88–100, Jul. 2017, doi: 
10.1212/WNL.0000000000004058. 

[26] S. Basheera and M. Satya Sai Ram, “A novel CNN based Alzheimer’s 
disease classification using hybrid enhanced ICA segmented gray matter 
of MRI,” Computerized Medical Imaging and Graphics, vol. 81, p. 
101713, Apr. 2020, doi: 10.1016/j.compmedimag.2020.101713. 

[27] C. Li, H. Zhang, Z. Wang, Y. Wu, and F. Yang, “Spatial-Temporal 
Attention Mechanism and Graph Convolutional Networks for 
Destination Prediction,” Front Neurorobot, vol. 16, Jul. 2022, doi: 
10.3389/fnbot.2022.925210. 

[28] H. Wang et al., “A Residual LSTM and Seq2Seq Neural Network Based 
on GPT for Chinese Rice-Related Question and Answer System,” 
Agriculture, vol. 12, no. 6, p. 813, Jun. 2022, doi: 
10.3390/agriculture12060813. 

[29] C. Chen, X. Lin, and G. Terejanu, “An Approximate Bayesian Long 
Short- Term Memory Algorithm for Outlier Detection,” in 2018 24th 
International Conference on Pattern Recognition (ICPR), IEEE, Aug. 
2018, pp. 201–206. doi: 10.1109/ICPR.2018.8545695. 

[30] C. Tian, X. Zhu, Z. Hu, and J. Ma, “Deep spatial-temporal networks for 
crowd flows prediction by dilated convolutions and region-shifting 
attention mechanism,” Applied Intelligence, vol. 50, no. 10, pp. 3057–
3070, Oct. 2020, doi: 10.1007/s10489-020-01698-0. 

[31] J. O. Agushaka, A. E. Ezugwu, and L. Abualigah, “Dwarf Mongoose 
Optimization Algorithm,” Comput Methods Appl Mech Eng, vol. 391, 
p. 114570, Mar. 2022, doi: 10.1016/j.cma.2022.114570. 

[32] J. Xue and B. Shen, “A novel swarm intelligence optimization approach: 
sparrow search algorithm,” Systems Science & Control Engineering, 
vol. 8, no. 1, pp. 22–34, Jan. 2020, doi: 
10.1080/21642583.2019.1708830. 

[33] J. H. Almazán-Covarrubias, H. Peraza-Vázquez, A. F. Peña-Delgado, 
and P. M. García-Vite, “An Improved Dingo Optimization Algorithm 
Applied to SHE-PWM Modulation Strategy,” Applied Sciences, vol. 12, 
no. 3, p. 992, Jan. 2022, doi: 10.3390/app12030992. 

[34] Z. Zhang, C. Huang, K. Dong, and H. Huang, “Birds foraging search: a 
novel population-based algorithm for global optimization,” Memet 
Comput, vol. 11, no. 3, pp. 221–250, Sep. 2019, doi: 10.1007/s12293-
019-00286-1. 

[35] A. Behera, Z. Wharton, Y. Liu, M. Ghahremani et al., “Regional 
Attention Network (RAN) for Head Pose and Fine-Grained Gesture 
Recognition,” IEEE Trans Affect Comput, vol. 14, no. 1, pp. 549–562, 
Jan. 2023, doi: 10.1109/TAFFC.2020.3031841. 

 


