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Abstract—Skin lesion detection plays a crucial role in the 

diagnosis and treatment of skin diseases. Due to the wide variety 

of skin lesion types, especially when dealing with unknown or rare 

lesions, models tend to exhibit overconfidence. Out-of-distribution 

(OOD) detection techniques are capable of identifying lesion types 

that were not present in the training data, thereby enhancing the 

model's robustness and diagnostic reliability. However, the issue 

of class imbalance makes it difficult for models to effectively learn 

the features of minority class lesions. To address this challenge, a 

Balanced Energy Regularization Loss is proposed in this paper, 

aimed at mitigating the class imbalance problem in OOD 

detection. This method applies stronger regularization to majority 

class samples, promoting the model's learning of minority class 

samples, which significantly improves model performance. 

Experimental results demonstrate that the Balanced Energy 

Regularization Loss effectively enhances the model's robustness 

and accuracy in OOD detection tasks, providing a viable solution 

to the class imbalance issue in skin lesion detection. 

Keywords—Balanced energy regularization loss; skin lesions; 

out-of-distribution detection; convolutional neural networks 

I. INTRODUCTION 

Early detection and regular monitoring of skin lesions, one 
of the most common diseases in daily life, is of great importance; 
this not only helps to improve cure rates and develop accurate 
treatment plans but also effectively reduces mortality [1]. 
Especially for melanoma, the most lethal form of skin cancer, 
this importance is particularly pronounced in study [2]. When 
using convolutional neural networks (CNNs) for skin lesion 
detection, only data with known specific distributions are 
exposed during training; however, due to the characteristics of 
skin lesions, including the diversity and complexity of their 
presentation [3], the actual distribution of data in the clinical 
setting is often uncertain. This poses a challenge with limited 
training data, which is often insufficient to fully cover the 
variety of skin lesions encountered. In addition, the distributions 
of the training data and the actual clinical data may differ 
significantly, further complicating the task. The predictive 
performance of the model is greatly reduced when faced with 
the significant challenges posed by different data distributions 
[4]. By employing an effective out-of-distribution (OOD) 
detection method, the model can identify new data that are 
different from the distribution of the training data. This detection 
mechanism enables the model to perform the special treatment 
or directly reject these OOD data for prediction, avoiding 
making wrong judgments on uncertain data, thus significantly 

improving the robustness and safety of the model [4] [5]. 
Effective OOD detection not only enhances the generalization 
ability of the model but also improves the reliability and 
robustness of the system in practical applications [6] [7]. 
Therefore, an effective tool in the diagnosis and management of 
skin lesions will be methods that can accurately detect OOD 
images of skin lesions. 

In recent years, CNNs have made significant advances in the 
use of medical image data for disease diagnosis and analysis [8], 
and these models demonstrate performance comparable to that 
of professional physicians in the identification and classification 
of a wide range of common skin lesions [9], especially in binary 
and multiclassification tasks [10]. Specifically, CNNs can 
accurately differentiate between malignant melanoma, basal cell 
carcinoma, or other types of skin lesions [11]. However, OOD 
detection remains a challenging problem when confronted with 
skin lesions of unknown characteristics. Furthermore, for 
assessing the performance of models in different datasets, cross-
dataset validation has not yet been widely applied to the OOD 
detection of skin lesions, which is crucial to ensure the 
generalizability and validity of the models given the potential 
differences in the data information in different datasets. 

CNNs achieve great success in natural language processing 
and image recognition tasks, mainly due to their excellent 
feature learning, large-scale data processing, and generalization 
capabilities [12] [13]. Although the use of techniques such as 
self-attention mechanisms [14], regularization [15], and transfer 
learning [16] can significantly improve the performance of a 
model, their performance in OOD detection may still be 
unsatisfactory. This is because the features of the OOD samples 
are significantly different from the features of the distribution of 
the training data, which causes the model to be prone to 
prediction errors when dealing with these samples, thus reducing 
the robustness and reliability of the model. Therefore, a method 
called Balanced Energy Regularization Loss (BERL) [17] is 
applied to CNNs for OOD detection of skin lesions; The model 
is named energy-balance based OOD detection (EBOD). 

In skin lesion image datasets, the class distribution is often 
highly imbalanced, with some lesion categories having a large 
number of samples, while others have relatively few. Traditional 
OOD detection methods struggle to effectively handle the 
disparity between majority and minority categories under such 
imbalanced distributions. The BERL method addresses this 
issue by introducing regularization based on the prior class 

*Corresponding Author 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

536 | P a g e  

www.ijacsa.thesai.org 

probabilities, which enhances the regularization of majority 
class samples, thereby allowing the model to focus more on 
minority class samples and improving the detection accuracy for 
these categories. This method effectively mitigates the detection 
bias caused by class imbalance and optimizes the overall OOD 
detection performance. During the training process, the prior 
probability of each class is computed, allowing the model to 
adjust for the class distribution imbalance, thereby improving 
detection accuracy. Particularly in high-dimensional image 
datasets, the BERL enhances the model's robustness to unseen 
skin lesions, providing strong support for OOD detection of skin 
lesions. The successful application of this method not only 
generates significant impacts in skin lesion detection but also 
provides a new perspective for OOD detection in other medical 
imaging tasks. Through this technology, medical imaging 
systems are enabled to more accurately identify emerging 
disease types or lesions, thereby enhancing the intelligence and 
precision of medical diagnosis. 

The remainder of this paper is structured as follows: Section 
II reviews the research advancements in the relevant field; 
Section III provides a detailed description of the proposed 
model’s architecture, data acquisition and preparation process, 
as well as the evaluation metrics; Section IV discusses the model 
evaluation, computational cost, and presents the experimental 
results, accompanied by a comparative analysis with existing 
methods; Section V summarizes the main contributions of this 
paper, clarifies the motivation and potential advantages of the 
proposed method, and discusses the limitations of the research; 
Section VI outlines the directions for future research. 

II. RELATED WORK 

During the past few years, a variety of methods based on 
CNNs have emerged in the field of OOD detection. These 
methods are not only innovative in theory but also show 
excellent performance in practical applications. These methods 
can be broadly classified into the following groups: output 
score-based methods, generative model-based methods, 
adversarial training-based methods, and feature space-based 
methods, according to their basic principles and application 
characteristics. 

A. Methodology Based on Output Scores 

Output score-based methods rely heavily on the output 
probability distribution of the classifier for the detection of OOD 
samples. This type of approach works by analyzing the 
confidence level of the classifier as it processes the samples, and 
samples with a low confidence level are considered to be 
possible OOD samples. Hendrycks and Gimpel [5] propose this 
method, which is widely used due to its simplicity and low 
computational cost. However, in some cases, such as skin lesion 
OOD detection, certain OOD samples may have higher softmax 
values, resulting in detection errors. 

B. Generative Modeling-Based Methods 

Generative models detect OOD samples by learning the 
latent distribution of the data, and the variation autoencoder 
(VAE) method proposed by An and Cho [18] is a typical 
example. The VAE detects samples that do not match the 

distribution of the training data by reconstructing the data. This 
method is particularly suitable for OOD detection of medical 
image data and can identify rare or unseen lesion types. 

C. Adversarial Training-Based Methods 

The adversarial training-based approach utilizes Generative 
Adversarial Networks (GANs) for OOD detection. The method 
proposed by Schlegl, Seeböck, and Waldstein [19] generates 
samples that are similar to normal data employing GANs and 
identifies OOD samples utilizing reconstruction errors. This 
approach significantly improves the sensitivity of the model to 
OOD samples and is well-suited for application in complex 
clinical settings. 

D. Feature Space-Based Methods 

Feature space-based methods include the Mahalanobis 
distance-based method introduced by Lee et al. [20] and the 
One-Class Support Vector Machine (One-Class SVM) method 
developed by Schölkopf et al. [21]. The former identifies OOD 
samples by calculating the Mahalanobis distance of the input 
data in the feature space, which is suitable for feature extraction 
of high-dimensional data, but requires careful tuning of the 
distance metric and high computational cost. The latter separates 
most of the training data by constructing hyperplanes or decision 
boundaries to distinguish between normal and abnormal data, 
and is suitable for initial screening for OOD detection of skin 
lesions, but may not perform well on large and complex datasets. 

In addition, several studies explore ways to enhance OOD 
detection by integrating multiple models. Xu et al. [22] present 
a deep integrated learning approach to enhance the accuracy and 
robustness of detection by combining the predictions of multiple 
deep neural network models. Dai et al. [23] designed a 
multimodal detection method utilizing multiple data sources 
(e.g., images, text, and clinical data) to improve the detection 
performance, and the combination of patient history, symptom 
descriptions, and image data in OOD detection of skin lesions 
can significantly improve the accuracy of OOD detection. 

III. METHODOLOGY 

This section describes the three modules of the experiment 
in this study: data acquisition, model architecture, and model 
evaluation. The first section outlines the methodological steps 
adopted by the researchers in the data collection and analysis 
process, which is the core part of the study. The next subsections 
explain the specific steps of the study in terms of model 
architecture design and model evaluation, respectively. The 
experimental workflow shown in Fig. 1 provides a clear 
overview of the experimental process. 

 
Fig. 1. Experiment module diagram. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

537 | P a g e  

www.ijacsa.thesai.org 

A. Data Acquisition 

1) Data sources: The medical datasets used in this study are 

obtained from open-source databases, including but not limited 

to the International Skin Imaging Collaboration (ISIC), the 

Harvard University database 

(https://data.harvard.edu.dataverse), the Portuguese Pedro 

Hispano Hospital Dermoscopy Image Database 

(https://www.fc.up.pt/addi/project.html), and Stanford AIMI 

Shared Database (https://stanfordaimi.azurewebsites.net). These 

databases provide rich and diverse images of skin lesions for this 

study, ensuring broad applicability and reliability for model 

training and evaluation. To validate the external generalization 

ability of the model, several datasets of non-skin lesions are also 

obtained from the Kaggle platform (www.kaggle.com) for OOD 

detection. In terms of data use, this study strictly follows ethical 

principles to ensure that patient privacy is adequately protected, 

data security is effectively guaranteed, and patients' rights are 

respected. At the same time, this study actively promotes data 

sharing and open scientific research and assumes corresponding 

responsibilities and obligations. 

2) Data collection: In this study, several open-source skin 

lesion datasets are used. These include images of different types 

of skin lesions as well as images of normal skin from different 

locations with manually created or corrected annotation 

information. From the ISIC2018, ISIC2019, ISIC2020, 

HAM10000 [24], PH2 [25], DDI [26], Dermnet [27], UMCG 

[28], and PAD-UFES-20 [29] datasets, several datasets 

containing multiple lesion types are screened. The prevalence 

of various skin lesions varies due to differences in the number 

of images of various lesion types in different datasets. In 

addition, abdominal MRI, brain tumor, kidney stone, and 

Places365 datasets are obtained from the Kaggle platform. 

These are used as auxiliary datasets [30] along with the skin 

lesion datasets for model training. Table I provides a summary 

of the fundamental characteristics of the datasets employed in 

this study. To ensure the breadth of the training datasets, 13 

datasets containing four diseases and one non-disease are used 

during model training. For OOD data, three other disease 

datasets and two object detection datasets are used in this study: 

the colon adenocarcinoma dataset, the gastrointestinal disease 

dataset, the cataract dataset, the Street View House Numbers 

(SVHN) dataset  [31], and the Cifar10  dataset [32]. 

TABLE I. BASIC CHARACTERISTICS OF EACH SKIN LESION DATASET 

Dataset 
Count of 

Types 
Number of 

Photos 
Source 

ISIC2018 7 11720 ISIC 

ISIC2019 8 25331 ISIC 

ISIC2020 5 33126 ISIC 

HAM10000 7 10015 Harvard Dataset 

PH2 2 200 PH2 Dataset 

Dermnet 5 579 Kaggle 

PAD-UFES-

20 
5 2298 GitHub 

UMCG 2 170 
MED-NODE 
Dataset 

DDI 6 656 Stanfordaimi AIMI 

 

3) Label preparation: In the many open-source datasets on 

skin lesions, many different types of skin lesions are usually 

covered. However, the types of skin lesions that are recorded in 

the different datasets are not the same. It is not possible to train 

directly with these raw datasets as the model needs to be trained 

by lesion type for classification when performing training. For 

example, the ISIC2019 database contains eight different types 

of skin lesions. The HAM10000 database [24] contains seven 

types, and the lesion types differ between the two. To solve this 

problem, we use a strategy that requires a two-stage labeling 

process. Firstly, skin lesion types are classified according to the 

label files in each data set. When the same lesion is encountered 

but in different locations, it is combined into the same lesion 

type, and the original label file is reordered to generate a new 

label file based on the lesion type. Subsequently, the images in 

each of the datasets are then retrieved and organized according 

to these new label files.  By using this method, each data set is 

divided into sub-datasets that contain multiple types of lesions. 

Finally, all datasets are regrouped and fused by skin lesion type 

to better support model training. Images of each type of skin 

lesion are shown in Fig. 2. 

 
(0)                      (1)                       (2)                  (3)                (4) 

 
(5)                    (6)                        (7)                    (8                    (9) 

Fig. 2. Images of each type of skin lesion. 0: actinic keratosis; 1: basal cell 

carcinoma; 2: dermatofibroma; 3: seborrheic keratosis; 4: benign keratosis; 5: 

vascular lesions; 6: freckles; 7: squamous cell carcinoma; 8: melanoma; 9: 

melanocytic nevus. 

4) Data preparation: All datasets used in this study show 

significant heterogeneity [33], involving differences in lesion 

characteristics, lesion sites, and recording devices. To reduce 

the impact of the differences between these datasets on the 

model, appropriate corrective measures are taken to standardize 

the datasets to ensure their compatibility with the model. When 

determining the size of the input image, the standard 224 × 224 

size is selected. If the dimensions of the input image exceed 224 

× 224, the image undergoes a process of cropping and scaling, 

referred to as center crop scaling [34], in order to align with the 

specifications of the model. The rationale behind the selection 

of this size is that image dimensions fluctuate across the 

datasets, rendering a uniform input size conducive to the 

model's capacity to discern pivotal characteristics. This 

uniformity simplifies data manipulation, reduces the 

complexity of computational operations, accelerates the 

convergence process, enhances the model's capacity to 

generalize, and facilitates the improvement of the model's 

performance. In both steps of training and detecting the model, 
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the images are cropped and the newly generated data obtained 

from cropping is used for training and detection. 

B. Model Architecture 

1) Model framework: The current model, similar to other 

models for OOD detection, uses neural networks to design 

appropriate OOD detection scores [4] [5] [35]. However, unlike 

most previous OOD detection methods that focus on designing 

OOD scores or introducing multiple outlier samples to retrain 

the model [36] [37], this study delves into the obstacle factors 

in OOD detection from the perspective of class imbalance in 

the auxiliary datasets [38]. To address the imbalance problem, 

a BERL is used, with different regularizations for each category 

of auxiliary data, to achieve reliable uncertainty estimates. 

The training model employed in this study is primarily 
ResNet18 [39]. In comparison with other neural network models, 
ResNet18 demonstrates notable advantages in terms of feature 
extraction and generalizability. ResNet18 is a relatively deep 
network architecture that is capable of learning more abstract 
and complex feature representations through multi-level 
convolutional operations and feature extraction. This allows 
ResNet18 to extract more information from skin lesion data. In 
addition, ResNet18 is connected in a way that helps mitigate the 
problem of vanishing gradients and allows the network to be 
deeper. In the field of skin lesion OOD detection, residual 
connectivity and CNNs are both useful in enhancing the 
efficiency of feature capturing in images, which in turn leads to 
improved performance and greater model generalization. 
Although ResNet18 itself is not specifically designed for the 
detection of OOD, it can be appropriately adapted and enhanced 
to make it applicable to the detection of OOD [40]. ResNet18, 
with its deep convolutional architecture, is capable of effectively 
capturing latent patterns within skin lesion images, including 
both the intricate details and the overall morphology of the 
lesions. These patterns aid the model in distinguishing between 
in-distribution (known) and OOD (unknown) samples. During 
training, the residual connections in ResNet18 effectively 
alleviate the issue of overfitting, particularly when dealing with 
complex textures or lesion structures. This enables the extraction 
of robust and discriminative features, thereby enhancing the 
performance of OOD detection. Specifically, ResNet18 learns 
multi-scale features through convolution operations at different 
layers, from fine details to global representations. At lower 
layers, the network is capable of identifying minute textures and 
details on the skin surface, while at higher layers, it can capture 
the broader shapes of larger skin lesion areas. This hierarchical 
feature learning enables ResNet18 to accurately identify 
unknown lesion types in OOD detection tasks and effectively 
avoid misclassifying them as known types. The restrained 
ResNet18 model extracts feature from the image and feeds those 
features into a separate classifier to map the features of the image 
into a specific space and use the classification boundaries in that 
space to distinguish between known and unknown data.  Finally, 
an energy function is introduced into the model for the 
calculation of OOD scores. Since the energy function does not 
require labeling information between known and unknown data, 
OOD detection can be performed without unknown data labels. 
In addition, energy functions usually have a good generalization 
ability to deal with different types of unknown data and to 

establish reasonable boundaries between the known data and the 
unknown data. The model structure is schematically shown in 
Fig. 3. 

 
Fig. 3. Schematic diagram of the balanced energy regularization loss OOD 

detection model. 

2) Balanced energy regularization loss: When regularizing 

auxiliary data, due to the imbalance of its class distribution, this 

may result in the model not being able to effectively learn 

information about the data of a few classes, thus affecting the 

model's ability to generalize to OOD data. In order to solve this 

problem, a variable M is introduced to measure whether the 

sample of the auxiliary data belongs to the majority class or the 

minority class [17]. In addition, the prior probabilities of the 

distributions of the auxiliary data were used to determine which 

class was to be categorized as a minority class. When this model 

is used to make inferences on the OOD auxiliary data, a 

statistical value iN  can be obtained that indicates the number 

of samples that are classified in class i . Then, the prior 

probability of the OOD distribution can be calculated using the 

following formula: 

1 2

( | ) i

K

N
P y i o

N N N
 

  
.                      (1) 

For a neural network classifier f , the a posteriori 

probability that the input image x belongs to a class i  is 

acquired by performing a softmax operation on the production 

of  f , which is, 

( )
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1

( | , )
i

j
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Σ e

 
x

x
x .                            (2) 

As the posterior probability that x belongs to the class i

increases, the probability that x belongs to the class i  increases 

accordingly. Similarly, if the prior probability of category i  is 

higher, then the probability of category  becoming the 

majority category will increase. Thus, as the probability that x
belongs to the majority class i  increases, the product of 

 |y i o  and  |y i ,o  x must increase. Based on this 

result, the metric  for measuring the probability that x  
belongs to the majority class is defined as follows: 

1 ( | , ) ( | )K
jM Σ P y j o P y j o  x .                    (3) 

Moreover, a hyperparameter   is introduced to model an 

additional generalized prior probability, which is used to 

i
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regulate the degree of prior difference between categories. 

Ultimately, the generalized form Μ  is as follows: 

1 ( | , ) ( | )K
jM Σ P y j o P y j o   x .               (4) 

Where 1( | ) ( | )P y i o L norm{ P y i o }
    . In order to 

ensure numerical reliability, the  -th power operation was 

performed on the a priori probability  |y i o  , and the L1- 

normalization was applied [41]. When  = 0, the uniform prior 

probability model is established and Μ  becomes a constant 

value 
1

K
, resulting in equal regularization strength across 

samples of different classes during the regularization process. 

When   > 0, Μ amplifies the regularization strength for the 

majority class while reducing it for the minority class, thus 
directing the model's focus more towards enhancing the OOD 
detection capability of majority class samples. In contrast, when 
  < 0, the inverse distribution of the prior probability will be 

modeled, and the regularization strength for the minority class 
samples is increased, allowing the model to better adapt to OOD 
samples from the minority class. The optimal value    varies 

across different OOD datasets. Generally, a larger value   

indicates a greater prior difference between classes, which is 
more suitable for datasets dominated by the majority class. 
Conversely, smaller or negative values   are better suited for 

scenarios where the class distribution is more balanced or where 
the minority classes are of greater importance. With   growth, 

the prior probability gap among classes grows. According to the 

Μ  component, the BERL is given by: 

   

   

energy,bal , ,

2

( )

2

,
max 0,

max 0,

r
in

t ain
in

train
in

y

~

in hinge out bal

in~D

outD

L = L + L

= E m

+ E m M M 

 
  

  
  

x

x

x

x

E

E
 (5) 

where 
 

1( ; ) log( )jf /TK

jE x f T Σ e  
x

. In this formula,

 jf x  denotes the logit output of the model for the input 

sample x  in class j , while T  representing the temperature 

parameter, which is employed to smooth the logits distribution, 
By performing an exponentially weighted summation of the 
logits across all classes, the energy value for each sample is 
computed. Lower energy values are generally associated with 
OOD samples, whereas higher energy values are typically 

indicative of in-distribution samples. The energy loss energy,balL

of the model is the sum of both ,in hingeL and ,out balL . 

The key characteristic of the energy function lies in its ability 
to compute an energy value for each sample that is associated 
with its corresponding class. For in-distribution samples, the 
energy values are typically low because the predictions for these 
samples are usually accurate and consistent with the distribution 
of the training data. In contrast, the energy values for OOD 

samples are generally higher, as they do not conform to the 
distribution of the training data, thereby reflecting the greater 
uncertainty the model has regarding these samples. For instance, 
consider a pre-trained model designed to classify cats, dogs, and 
birds. When an image of a car is input, the model's logit output 
tends to be more dispersed, resulting in a higher energy value, 
which indicates that the model has lower confidence in 
classifying this sample. Conversely, when an image of a cat is 
input, the model’s logit output is more concentrated, leading to 
a lower energy value, thus demonstrating the model's higher 
confidence in classifying this sample. 

C. Model Evaluation 

The key metrics that researchers typically focus on when 
performing model evaluations include Recall, the area under the 
receiver operating characteristic curve (AUROC), and the false 
positive rate at 95% true positive rate (FPR95). Recall is used to 
measure the proportion of OOD samples that are correctly 
detected by the model out of all actual OOD samples. 

1) AUROC: AUROC, on the other hand, represents the 

relationship between the True Positive Rate (TPR) and False 

Positive Rate (FPR), calculated as the area under the ROC 

curve, which can synthesize the performance of the model 

under different classification thresholds. The value of AUROC 

ranges from 0.5 to 1. The closer the value is to 1, the better the 

ability of the model to discriminate. 

2) FPR95: On the other hand, FPR95 focuses on the false 

alarm situation under high recall conditions, specifically 

calculating the false positive rate while maintaining a 95% true 

positive rate. FPR95, as a performance evaluation index, 

reflects the ability of the model to control the false alarm rate 

under the premise of guaranteeing a high detection rate in 

practical applications, and the smaller its value is, the lower the 

false alarm rate of the model is, thus proving the better 

performance of OOD detection. 

Therefore, in this study, AUROC and FPR95 are used as the 
core metrics to assess the reliability of the model in OOD image 
detection of skin lesions. The FPR95 evaluates the ability to 
achieve high recall while controlling for false positives, while 
the AUROC provides an overall performance evaluation 
showing the average performance of the model across all 
thresholds. Recall as a base metric plays an important role in the 
calculation of AUROC and FPR95 as it has a direct impact on 
the results and performance analysis of these two metrics. The 
formulas for these indicators are shown below: 

Re
TP

call = TPR =
TP FN

                   (6) 

FP
FPR =

FP TN
    (7) 

 95 0.95FPR FPR TPR      (8) 

 
1

0
( )AUROC = TPR x  dx  x = FPR                (9) 
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Where TP denotes true positive, TN denotes true negative, 
FP denotes false positive and FN denotes false negative. 

D. Model Inference and Post Processing 

Although the model is trained using only the skin lesion 
datasets, it is equally capable of handling datasets from other 
diseases. The output generated by the model is an energy score 
that reflects the difference between the input sample data 
distribution and the known sample data distribution. Since the 
model is designed for OOD detection of skin lesions, its output 
can be interpreted as a measure of the model's classification 
accuracy in distinguishing between known and unknown 
samples, i.e., the model's ability to determine whether or not a 
sample is an OOD. The level of the energy score then indicates 
how confident the model is in classifying the input samples. 
Therefore, a post-processing step was used so that when the 
energy score is low, the model has a higher confidence that the 
input samples belong to known data, and conversely, when the 
energy score is high, the model has a higher confidence that the 
input samples belong to unknown data [42]. The course of the 
training and testing steps is summarized in Fig. 4. 

 

Fig. 4. Overview of training and testing procedures. 

In the context of OOD detection for skin lesions, the model 
may encounter challenging scenarios such as noise, occlusion, 
and small-sized OOD samples. When confronted with noise and 
small-sized OOD samples, the application of energy 
regularization loss results in greater regularization being 
imposed on these samples, while less regularization is applied to 
other samples, thereby maintaining the model’s ability to 
effectively detect OOD samples. In the case of occlusion, the 
integration of an attention mechanism enables the model to 
adaptively focus on the key regions of interest during training. 
Furthermore, by adjusting the class distribution of auxiliary data 
and weighting each sample according to the prior probability of 
its respective class, the model can effectively control the 
regularization strength across different classes, ensuring fairness 
in the data distribution. 

IV. RESULTS 

A. Performance Evaluation 

In order to evaluate the performance of the models, this 
experiment presents and analyzes the detection results of five 
models on OOD datasets from multiple domains, both medical 
and non-medical; the models used in this analysis are MSP [5], 

OE [43], OECC [44], Energy OOD [45], and EBOD. The FPR95 
and AUROC metrics for the five models on each of the OOD 
data sets are shown in Table II. The experimental results show a 
slight difference in the performance of EBOD on OOD data in 
non-medical domains. However, the difference is not significant 
compared to its performance on OOD data in medical domains. 
This means that although there may be some differences in the 
performance of the EBOD model on OOD data from different 
domains, over the performance is relatively stable and has strong 
generalization capabilities. Compared to the other four models, 
the EBOD model shows significant performance gains on most 
OOD datasets. A sample of the OOD data used in the study is 
shown in Fig. 5, where colon_aca represents colon 
adenocarcinoma images, stomach represents gastrointestinal 
disorders, and cataracts represent cataract images. 

   
colon_aca                  stomach                  cataracts 

  
SVHN                CIFAR10 

Fig. 5. Sample graph of OOD data. 

In exploring the factors that enhance the performance of the 
model, the significant difference between the EBOD model 
compared to the WideResNet-based Energy OOD model [45] is 
the use of BERL for the auxiliary datasets. This innovative 
approach plays a key role in the optimization process and has a 
profound impact on the OOD detection performance of the 
model. A comparison of the FPR95 and AUROC metrics for the 
Energy OOD and EBOD models reveals that the incorporation 
of BERL is a pivotal factor in enhancing the OOD detection 
capabilities of the models. The EBOD model introduces BERL, 
which serves to balance the energy distribution of the auxiliary 
datasets during the training process. This significantly improves 
the model's generalization ability on different datasets. Table II 
details the results of the comparison of the models on different 
datasets. The FPR95 metrics for multiple OOD datasets are 
significantly lower when only the energy model is used and no 
BERL is introduced. 

TABLE II. EVALUATION RESULTS OF THE MODEL ON THE OOD 

DATASETS 

 MSP OE OECC Energy OOD 
EBOD 

(Ours) 

colon_aca 6.28 5.43 4.26 3.61 1.07 

stomach 4.76 2.57 0.79 1.21 0.41 

cataracts 3.55 1.93 2.87 2.08 0.49 

SVHN 43.11 35.41 29.68 36.39 14.03 

CIFAR10 45.26 38.71 32.52 29.01 5.85 

(a) FPR95
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 MSP OE OECC Energy OOD 
EBOD 

(Ours) 

colon_aca 88.53 92.81 95.83 95.02 99.36 

stomach 89.37 93.46 94.29 92.38 99.85 

cataracts 88.61 95.36 99.57 97.54 99.76 

SVHN 86.83 90.19 90.68 91.49 95.83 

CIFAR10 88.15 91.72 92.64 92.78 98.53 

(b) AUROC 

B. Calculate Cost 

In the practical deployment of OOD detection for skin 
lesions, the computational cost is a crucial factor that determines 
model selection and deployment efficiency. To ensure the 
effectiveness and scalability of OOD detection methods in real-
world applications, it is essential to optimize training and 
inference times, as well as reduce memory consumption, thereby 
minimizing computational overhead. Through the 
implementation of effective optimization strategies, the usability 
of the model in resource-constrained environments can be 
enhanced while maintaining its accuracy, thus meeting the 
demands of practical applications. Regarding training time, the 
BERL function proposed in this paper, compared to traditional 
methods, mitigates overfitting on minority class samples and 
excessive training on all class samples by precisely adjusting the 
regularization strength for each sample. This accelerates model 
convergence, thus reducing training time. In terms of inference 
time, the introduction of the M-value to quantify the likelihood 
of each sample belonging to a specific class, coupled with the 
adjustment of the loss function based on this value, reduces the 
computational complexity required for each sample during 
inference, thereby optimizing inference speed. Table III lists the 
calculated costs of different skin lesion OOD detection 
techniques. 

TABLE III. CALCULATED COST OF DIFFERENT SKIN LESION OOD 

DETECTION TECHNIQUES 

 
Training time 

(Sheets/ms) 

Reasoning time 

(Sheets/ms) 
 

MEM 

La-OOD [46] 4.57 1.46 6.87% 

Bayesian [47] 5.13 1.51 7.63% 

Ours 3.28 1.32 6.50% 

C. Ablation Study 

To validate the effectiveness of the proposed method, two 
ablation experiments were conducted. First, the BERL was 
introduced into DenseNet [48] for OOD detection of skin lesions. 
Subsequently, the BERL was removed from the EBOD model 
(i.e., EBOD-), and the same experiment was repeated. The 
experimental results demonstrate that the EBOD model exhibits 
superior performance in the OOD detection of various types of 
skin lesions, with the specific results summarized in Table IV. 

TABLE IV. RESULTS OF ABLATION EXPERIMENTS 

 DenseNet EBOD- 
EBOD 
(Ours) 

colon_aca 2.61 4.39 1.07 

stomach 1.82 2.07 0.41 

cataracts 2.69 1.85 0.49 

SVHN 34.50 42.37 14.03 

CIFAR10 27.14 16.29 5.85 

(a) FPR95 

 DenseNet EBOD- 
EBOD 

(Ours) 

colon_aca 92.21 95.77 99.36 

stomach 93.09 96.18 99.85 

cataracts 95.61 94.80 99.76 

SVHN 90.04 89.45 95.83 

CIFAR10 91.62 93.37 98.53 

(b) AUROC 

In contrast to previous studies, few studies synthesize 
multiple datasets on skin lesions by lesion type and further 
validate them using OOD datasets from a variety of different 
domains. Therefore, the present study is based on this innovation 
and improvement. Firstly, this study employs a methodology 
analogous to that employed in previous studies, whereby the 
training and test sets are rationalized in order to ensure a 
balanced data distribution and representative samples. 
Furthermore, this study introduces auxiliary datasets, which are 
employed to facilitate the model's ability to characterize a more 
expansive range of data, thereby enhancing its performance in 
the context of novel and previously unseen data. This enhanced 
generalization capacity enables the model to more effectively 
adapt to diverse application contexts and data distributions, and 
remains stable in the presence of noise, outliers, and other 
disturbances, thereby enhancing the model's resilience. 

V. DISCUSSION 

This study introduces BERL into CNNs, aiming to 
accurately detect OOD data in skin lesions. EBOD achieves 
state-of-the-art performance in cross-database evaluations and 
demonstrates a high degree of accuracy, even under a wide range 
of special conditions. In comparing the model performance 
under different training methods, the introduction of energy 
balance regularization [17] plays an important role in improving 
the excellent performance of the model. In addition, EBOD has 
potential applications in other clinical OOD detection situations. 

CNNs produce good results in several areas, such as natural 
language processing and image recognition [12][13]. In addition, 
its application is extended to the medical field, bringing great 
convenience to medical research and clinical practice [49][50]. 
CNNs have significant potential to improve the accuracy of 
medical image data analysis, which may have far-reaching 
implications in the field of medical image diagnosis [51]. The 
performance of EBOD may be overestimated due to the 
exclusion of certain types of skin lesions (e.g., common nevi) 
from the dataset, but the model demonstrates excellent 
performance in high noise and strong motion environments. 
Interpreting skin lesions in practical clinical applications is a 
challenging and complex task. Therefore utilizing this model 
can potentially reduce the misdiagnosis rate of skin lesions in 
clinical practice and enhance patient care. 

It is well known that the application of energy regularization 
techniques plays a crucial role in CNNs. Despite the 
demonstrated efficacy of energy regularization techniques in 
many other fields, there remains a paucity of research 
investigating their application to the domain of medical image 
processing. Inspired by the obstacles in OOD detection caused 
by a class imbalance in auxiliary datasets and internal 
mechanisms of the model, this study employs BERL to enhance 
the performance of CNNs in OOD detection. The introduction 
of BERL lays the foundation for applying CNNs to OOD 
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detection of medical images. If OOD detection is performed on 
multiple categories of medical images in the future, it is possible 
to achieve more efficient performance. Skin lesions are complex 
in shape and type, and especially under actual clinical conditions, 
OOD detection of skin lesions is more important than 
identification to minimize panic in the minds of patients and the 
rate of misdiagnosis. 

In the case of ancillary data, especially in real-world 
scenarios, there is often an imbalance in the distribution of 
classes in the ancillary OOD data, e.g. there is a significant 
difference in the amount of data in the two classes. It can be 
difficult to effectively capture the diversity of the auxiliary 
samples of the OOD data using the traditional methods of cross-
entropy loss and regularized loss. The model tends to learn the 
features of samples from a numerically larger number of 
categories while ignoring the features of samples from a 
numerically smaller number of categories, which reduces the 
model's ability to generalize when dealing with samples from 
unknown distributions. To overcome this problem, this study 
uses BERL to apply higher regularization to the data of the more 
numerous categories in the auxiliary data to ensure that the 
features of the data of the less numerous categories are also 
adequately extracted. This approach improves the robustness of 
the model and makes its performance more stable in the face of 
a variety of unknown distribution samples. 

The evaluation metrics are determined based on the 
information from each OOD data after it has been tested by the 
model, which is critical to understanding and measuring the 
overall performance of the model. Previous research has shown 
that many detection models tend to produce overly confident 
prediction results when confronted with OOD data, resulting in 
less reliable detection of this OOD data. If the skin lesion 
features are similar in each training dataset, the model may 
suffer from overfitting, which weakens its generalization ability 
and leads to poor performance in OOD detection. As open-
source datasets continue to proliferate in the medical field, 
researchers are able to utilize datasets with more comprehensive 
and diverse lesion characteristics, providing a valuable resource 
for OOD detection research. The current study involves skin 
lesion information from multiple datasets, which helps to ensure 
diversity in the training dataset and significantly improves the 
stability and robustness of the model. In the OOD detection 
model, the diversity of training data samples has a particularly 
significant impact on the detection results. The diversity of the 
training data allows the model to better recognize data with 
unknown distributions, demonstrating the potential value and 
reliability of the model in real-world applications. 

Despite the progress made in this study in the field of OOD 
detection of skin lesions, however, there are still some 
limitations that need to be further explored and addressed. First, 
the limited size of the dataset used may not adequately represent 
the diversity of skin lesions in actual clinical settings. Therefore, 
when confronted with certain rare or emerging skin lesion types, 
the generalization ability and detection accuracy of the model 
may be insufficient. Moreover, in the OOD detection of skin 
lesions, the similarity between images presents a complex and 
challenging issue. In particular, the high similarity between 
certain non-skin lesion images and skin lesion images often 

leads to misclassifications in OOD detection. For example, 
varicose veins may cause the appearance of red or purple net-
like patches on the skin surface, accompanied by localized 
swelling, which is prone to be misjudged as hemangiomas or 
purpuric skin lesions. Similarly, in some cases, lymphadenitis 
may lead to the formation of pustule-like or erythematous areas 
on the skin surface, especially when skin changes caused by 
enlarged lymph nodes closely resemble those of skin lesions, 
leading to incorrect identification as ulcers or nodules. Given the 
visual similarity between these non-skin lesions and actual 
lesions, effectively distinguishing these similar types of lesions 
has become a significant challenge in the OOD detection task 
for skin lesions. Finally, factors such as noise and image quality 
differences that may be encountered in practical applications are 
not yet fully considered in this study. Therefore, future research 
should focus on expanding the size of the dataset, improving the 
generalization ability of the model, exploring more different 
models, and testing them under conditions closer to clinical 
application scenarios to further validate and improve the 
performance of the model. 

VI. CONCLUSION AND FUTURE RESEARCH 

The current study is testing the accuracy of depth models for 
OOD detection of skin lesions, specifically for the detection of 
unknown distribution skin lesion images from known 
distribution skin lesion images. The results of the study show 
that the models tested exhibit almost similar performance. 
However, the best-performing model was EBOD, which 
significantly outperformed the other models in both the AUROC 
and FPR95 metrics. Future research should focus on the creation 
of larger databases and the expansion of the variety of skin 
lesions used to train the models, which could help the models 
learn a wider range of features and allow them to better 
understand the differences between known distribution data and 
unknown data, thus improving their performance in OOD 
detection. This means that the model not only performs well on 
training data but also maintains high accuracy on unknown 
distribution data. As more and more research is devoted to OOD 
detection modeling, researchers believe that more advanced 
algorithms will emerge to improve the accuracy and stability of 
the models and make them perform better in the face of different 
types of OOD data. This study provides a basis for further 
research on OOD detection of skin lesions using depth modeling 
and demonstrates its great potential for medical applications. 
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