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Abstract—Among humans, lung and colon cancers are 

regarded as primary contributors to mortality and morbidity. 

They may grow simultaneously in organs, having a harmful 

influence on the lives of people. If tumor is not diagnosed early, it 

is likely to spread to both of those organs. This research presents 

a flexible framework that employs lightweight Convolutional 

Neural Networks architecture for automating lung and colon 

cancer diagnosis in histological images across multiple diagnosis 

scenarios. The LC25000 dataset is commonly used for this task. It 

includes 25000 histopathological images belonging to 5 distinct 

classes, which are lung adenocarcinoma, lung squamous cell 

carcinoma, benign lung tissue, colon adenocarcinoma, and benign 

colonic tissue. This work includes three diagnosis scenarios: (S1) 

evaluates lung or colon samples, (S2) distinguishes benign from 

malignant images, and (S3) classifies images into five categories 

from the LC25000 dataset. Across all the scenarios, the scored 

accuracy, recall, precision, F1-score, and AUC exceeded 0.9947, 

0.9947, and 0.9995, respectively. This investigation with a 

lightweight Convolutional Neural Network containing only 1.612 

million parameters is extremely efficient for automated lung and 

colon cancer diagnosis, outperforming several current methods. 

This method might help doctors provide more accurate diagnoses 

and improve patient outcomes. 
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I. INTRODUCTION 

Statistical analysis undertaken in the United States showed 
that lung and colon (LC) cancers are expected to be among the 
three most prevalent cancer types in 2020. Moreover, these 
malignancies were expected to have the most fatality rates of 
any cancer diagnosis. The GLOBOCAN 2020 data indicated LC 
cancer incidence rates of 11.4% and 18.0%, respectively [1]. 
The World Health Organization (WHO) anticipated that roughly 
4 Million persons on a global scale will acquire lung or colon 
cancer in 2020, resulting in approximately 2.7 Million deaths. 
The presented information highlights the substantial worldwide 
health effects of lung and colon cancers. It is worth noting that 
LC cancers can coexist, with roughly 17% of cases containing 
both tumors concurrently [2]. 

Lung cancer, a malignant disease, arises from the excessive 
and unregulated multiplication of atypical cells within the lung 
[3]. This can result in tumor formation, which may spread to 
other parts of the body. Various factors play a role in the 
increasing incidence of lung cancer, including exposure to 
harmful substances, such as tobacco smoke, and aging. Early-
stage lung cancer often presents with subtle or no symptoms, 
making early detection challenging [4]. Consequently, diagnosis 
frequently occurs at a late stage, when therapeutic options are 
curtailed. Adenocarcinoma and squamous cell carcinoma 
constitute the majority of lung cancer cases [5]. 
Adenocarcinoma, which can affect both smokers and non-
smokers, is more prevalent in women and younger individuals It 
often originates in the outermost regions of the pulmonary tissue 
and can spread rapidly. Squamous cell carcinoma, primarily 
associated with smoking, can develop anywhere in the lungs and 
tends to grow and spread aggressively [6,7]. 

The causes of LC cancer are multiple and complex. Smoking 
is the main risk factor for lung cancer, while for colon cancer, a 
low-fiber diet, prolonged sedentary lifestyle obesity, and certain 
genetic factors can increase the risk of other environmental 
factors such as exposure to certain chemical substances or air 
pollution contribute in the multiplication of these cancers. It is 
crucial to note that these risk factors are not synonymous with 
inevitable cancer development, but adopting them can 
considerably increase the chances of developing these diseases. 

Generally, to detect and diagnose cancer, a variety of 
diagnostic tests are employed, including imaging modalities 
such as Magnetic Resonance Imaging (MRI) [8-11], X-rays 
[12], CT scans, and dermoscopy [13-16], as well as tissue 
sampling procedures such as biopsies. Histological images offer 
considerable advantages over other types of medical imaging in 
the analysis and characterization of LC cancers. Histology 
enables microscopic analysis of tissues removed during biopsy 
or surgery. This enables us to observe cancer cells directly, and 
determine their type, stage, and aggressiveness. This 
information is crucial for making an accurate diagnosis, 
choosing the most appropriate treatment, and assessing 
prognosis. Additional imaging techniques, such as radiography, 
computed tomography, or MRIs, provide information on the 
anatomy and size of tumors but do not allow detailed analysis of 
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cellular characteristics. The microscopic examination of tissue 
parts by experienced pathologists is crucial for determining the 
presence of cancer cells and classifying their type and subtype 
[17,18]. Although, manual analysis of histopathological images 
consumes time. Also, it is labor-intensive and subjective 
process, prone to inter-observer variability. Pathologists may 
have differing interpretations of the same image, leading to 
potential diagnostic errors, especially when dealing with subtle 
morphological features. Additionally, the growing number of 
medical images and the complexity of certain cases further 
exacerbate the challenge. 

To overcome these constraints [19], this work investigates 
the application of Deep Learning (DL) and machine learning 
(ML) approaches to automate cancer analysis in medical images 
[12,20]. DL techniques provide potential solutions to mitigate 
these challenges. Through the utilization of deep neural 
networks, DL models can process high quantities of 
histopathological images, learning to recognize complex 
characteristics and features associated with LC cancers. This can 
lead to improved diagnostic and efficiency and precision in 
comparison with traditional approaches. 

This study tries to balance dependability as well as precision 
in LC cancer classification. The main contributions of this study 
include: 

 Proving that DL approaches can effectively diagnose and 
analyze LC cancers. 

 Employing a huge dataset of 25000 histopathological 
images to classify LC cancers. 

 Illustrating three diagnosis scenarios to ensure the 
flexibility of the presented framework. 

 Designing a lightweight CNN model with only 1.6 
million parameters, assessing its performance, while 
comparing it to current approaches. 

 Achieving accuracy, F1-score, and AUC over 99.47%, 
99.47%, and 99.95%, respectively, throughout all 
analytic phases and diagnosis scenarios. 

 Scoring F1-score and accuracy of 99.17% and 99.47%. 
Also, a sensitivity and specificity of 99.07%, and 99.65% 
across all classes of overall diagnosis scenarios, 
respectively. 

This investigation employs a classification approach to 
analyze a dataset containing lung and colon cancer images. The 
subsequent sections of this investigation are organized as 
follows: the second section presents a review of pertinent 
literature. The third section delineates the proposed 
methodology. The fourth section provides a detailed 
performance evaluation of the presented lightweight CNN. The 
fifth section offers a thorough discussion of the findings. This 
paper will be ended by the last section, Section VI. 

II. RELATED WORK 

This study contributes to the research effort aimed at 
improving diagnostic support for LC cancer using artificial 
intelligence techniques. A new method for diagnosing 
histopathological images on the LC25000 dataset [21], a 

reference in the field. Several academics have recently used this 
dataset to develop AI-based applications. 

Sakr et al. [22] introduce a lightweight DL approach using a 
CNN for powerful categorization of cancer of the colon. 
Histopathological images were normalized before being 
processed by the CNN model. Across two classes, their 
proposed system attained a high accuracy of 99.50%. Using the 
same data, Hasan et al. [23] presented an innovative DL strategy 
for the automated identification of colon adenocarcinomas. 
Their approach involved a DCNN model, coupled with several 
image preprocessing techniques, to obtain meaningful features 
from digital histological images. The proposed system 
demonstrated impressive performance, achieving a maximum 
accuracy of 99.80% in differentiating between non-cancerous 
and cancerous tissues. For the same target, Gabralla et al [24] 
introduced a novel stacking-based deep learning framework. 
Their approach involved integrating multiple pre-trained CNN 
models (ResNet50 [25], DenseNet121 [26], InceptionV3, and 
VGG16 [27]) with a meta-learner. The meta-learner was trained 
to effectively combine the predictions of the individual models, 
resulting in a significant improvement in overall performance. 
The proposed method achieved an ideal score of 100% in terms 
of F1-score and accuracy, using the LC25000 dataset [21]. In 
addition, they attained F1-score and accuracy of 98% when 
employing the WCE dataset [28,29], surpassing the 
performance of the individual base models.  To enhance the 
accuracy of colon cancer prediction, Di Giammarco et al. [30] 
employed different pre-trained models. The metrics of the 
proposed method was assessed on a sub-dataset of LC25000 
comprising 10,000 colon images. The experimental results 
demonstrated that MobileNet [31] had the highest, f1-score, 
accuracy, recall, and precision of 99.9%, indicating the model's 
capability of the model to efficiently categorize colon issues. 

Concerning lung cancer, Hatuwal and Thapa [32] aimed to 
classify three classes of tissue: benign, squamous cell 
carcinoma, and adenocarcinoma. A CNN approach was trained 
and validated on a sub-dataset of histological data, LC25000 
dataset [21]. The model demonstrated strong performance, 
achieving an accuracy of 96.11% and 97.2%, during the training 
and validation phases. Nishio et al. [33] established a CAD 
system to automate the analysis of lung tissue in histological 
images. The system employed a multi-stage approach involving 
image feature extraction and ML classification. Two feature 
extraction techniques were investigated: conventional texture 
analysis (TA) and homology-based image processing (HI). 
Eight ML algorithms were trained and evaluated using the 
extracted features. The results found in the experiments 
demonstrated the higher efficiency of the HI-based approach 
over the TA-based system, achieving an accuracy of 99.33%. 
The study of Hamed et al. [34] is about a novel system for the 
rapid and precise classification of lung tissue histological data. 
The treated tissue types were only benign and squamous cell 
carcinoma. The proposed approach involves a two-stage 
process: feature extraction using a lightweight CNN model and 
classification using a LightGBM classifier. The CNN technique, 
designed with a minimal number of parameters, efficiently 
extracts discriminative features from the preprocessed images. 
Subsequently, the LightGBM classifier, leveraging multiple 
threads, effectively classifies the input data into various tissue 
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types. When evaluated on the LC25000 dataset, the approach 
achieved a remarkable accuracy of 99.6% and a sensitivity of 
99.6%. To increase lung cancer classification accuracy, Noaman 
et al [35] propose a novel hybrid feature extraction technique 
where the powerful capabilities of charateristic extraction of 
DenseNet201 was combined with the complementary 
information provided by color histograms. A comprehensive 
evaluation of eight machine learning algorithms, including, 
SVM, MultinomialNB, LGBM, CatBoost, XGBoost, KNN, and 
RF, was conducted on the LC25000 dataset [21]. The outcomes 
demonstrate that the established hybrid feature set, when 
coupled with an appropriate ML algorithm, achieves a 
remarkable accuracy of 99.683%. To further validate the 
generalizability of our approach, we applied it to the task of the 
analysis of the breast cancer utilizing the images of the BreakHis 
dataset [36]. The model achieved a high accuracy of 94.808%, 
highlighting the advantage of their hybrid feature extraction 
technique for various medical image analysis tasks. 

Several researchers tried to classify the whole of the five 
types of tissues figured in the LC25000 dataset [21]. In fact, Ali 
et al. [37] reached 99.04% and 99.58% as F1-score and accuracy 
LC cancer classification. They employed a multi-input dual-
stream Capsule Network (CapsNet) [38]. It consists of two 
major blocks: Convolutional Layers Block (CLB) and Separable 
Convolutional Layers Block (SCLB). CLB and SCLB uses 
traditional and separable convolutional layers. The SCLB block 
takes uniquely preprocessed images using gamma correction 
and color balancing. Also, it takes multi-scale fusion and image 
sharpening. This dual-input approach enhances feature learning. 
Besides CapsNet, numerous works applied Efficient Networks 
(EfficientNets) [39] for LC cancer classification. Masud et al 
[40] present a novel DL-based framework for the diagnostic of 
five distinct classes of LC tissues, containing both benign and 
malignant conditions. By leveraging advanced digital image 
processing techniques and DL models, the proposed framework 
effectively extracts relevant features from histopathological 
images and accurately classifies them. Experimental results 
demonstrate that the developed tool can detect cancer tissues 
with a high accuracy and F1-score with values of 96.33% and 
96.38%, respectively. In Mehmood et al.’s study [41], a pre-
trained AlexNet was adapted for the task of histological image 
classification. The initial model, trained using a generic dataset, 
achieved promising results for most image classes, except for 
one class where the accuracy was relatively low. To address this 
issue, the simple and effective technique of contrast 
enhancement was applied to enhance the quality of images from 
the underperforming class. This targeted approach significantly 
boosted the overall accuracy of the model to 98.4% while 
maintaining computational efficiency. Attallah et al. [42] 
developed a novel framework that integrated DL and feature 
reduction techniques to ameliorate the accuracy of the 
classification of histopathology images. To extract relevant 
features, histopathology scans were processed using three 
models: ShuffleNet [43], MobileNet [31], and SqueezeNet [44]. 
The high-dimensional feature vectors obtained from these 
models are then subjected to Fast Walsh-Hadamard Transform 
(FWHT) and dimensionality reduction by the application of 
Principal Component Analysis (PCA). To further enhance 
feature representation, Discrete Wavelet Transform (DWT) was 
employed to combine the reduced characteristics from the three 

DL models. The resulting reduced and fused feature sets are 
subsequently passed into four different ML algorithms for 
classification. The established framework achieves F1-score and 
accuracy of 99.6% on the given dataset. The study of Al-Jabbar 
et al. [45] introduces three novel strategies for the early 
diagnostic of the lung cancer based on the LC25000 dataset. To 
enhance image quality and improve diagnostic accuracy, 
preprocessing techniques were applied to enhance the contrast 
of affected areas. Subsequently, high-dimensional patterns were 
determined using the VGG-19 [27] and GoogLeNet [46] 
models. To reduce dimensionality and retain crucial 
information, Principal Component Analysis (PCA) was 
employed. The first strategy involved training separate Artificial 
Neural Networks (ANN) models using the features extracted 
from VGG-19 and GoogLeNet. The other approach combined 
the patterns from both models before applying dimensionality 
reduction and ANN classification. The third strategy, which 
yielded the best performance, involved fusing the features 
extracted from VGG-19, GoogLeNet, and handcrafted 
characteristics before training the ANN model. This approach 
achieved a sensitivity, specificity, precision, accuracy, and AUC 
surpassing 99.64%. Kumar et al. [47] did a comparative analysis 
to measure the effectiveness of handcrafted and DL-based 
feature extraction techniques for LC cancer classification. In this 
research, six handcrafted pattern extraction methods were 
employed to capture color, texture, shape, and structural 
information from histopathological images. These handcrafted 
features were then used to train and evaluate 4 ML classifiers: 
Gradient Boosting, MLP, Random Forest, and SVM-RBF. In 
another approach, seven pre-trained DL models are utilized to 
determine high-level patterns from data. These deep features 
were subsequently fed into the same four ML classifiers. The 
findings demonstrated that the classification performance was 
significantly enhanced when using DL-based features compared 
to handcrafted features. Notably, the Random Forest categorizer 
combined with DenseNet-121 achieved the highest ROC-AUC, 
accuracy, and F1-score with values exceeding 91%. In Anjum et 
al’s work [48] EfficientNet models (B0 to B7) [39] were applied 
for the diagnostic of LC cancer in histopathological data. To 
improve model performance and mitigate overfitting, transfer 
learning, and parameter tuning techniques were employed. After 
preprocessing the LC25000 dataset [21] to remove noise and 
standardize image formats, experiments were conducted using 
different image resolutions, ranging from 224x224 pixels to 
600x600 pixels. The models were evaluated based on 
classification accuracy and loss. While all EfficientNet [39] 
variants achieved promising results, EfficientNetB2 
demonstrated the highest performance, attaining an accuracy of 
97.24% when trained on 260x260 pixel images. 

Some studies did not concentrate on creating automated 
diagnostic approaches specifically for colon or lung, or lung and 
colon cancer. Rather, they developed methods that can 
comprehensively address the diagnosis of colon cancer, lung 
cancer, or both. The work of Talkuder et al. [49] identified 
efficiently LC cancers by the employment of a hybrid ensemble 
method. The proposed model integrates powerful feature 
extraction approaches with ensemble learning and high-
performance filtering to effectively analyze histopathological 
images from the LC25000 dataset [21]. The results demonstrate 
the superior performance of their hybrid model, reaching 
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accuracies of 100%, 99.05%, and 99.30% for colon, lung, and 
combined LC cancer classification, respectively. In the research 
of Hage Chehade et al. [50], they aimed to develop a 
computerized diagnostic system capable of efficiently 
categorizing the five distinct classes of LC tissues, including two 
types of colon cancer and three categories of lung cancer. When 
leveraging ML techniques, feature engineering, and image 
processing methods, meaningful information was extracted 
from histopathological data. The LC25000 dataset [21] was 
utilized to train and evaluate five ML models: Random Forest, 
XGBoost, SVM, Multilayer Perceptron, and Linear 
Discriminant Analysis. The best results were obtained using 
XGBoost. For colon cancer, they reached accuracy and F1-score 
of 99.3% and 99.5%, respectively. Concerning lung cancer, the 
accuracy, precision, recall, and F1-score reached were 99.53%, 
99.33%, 99.33%, and 99.33%, respectively. Also, for LC cancer, 
they got an accuracy of 99%, precision of 98.6%, recall of 99%, 
and F1-score of 98.8%. 

This work aims to develop a flexible based on multi-scenario 
diagnosis for LC cancer automated analysis. This framework is 
based on a lightweight CNN and uses the LC25000 dataset to 
evaluate its performance in this task. For the first scenario, a 
method was developed to detect if the input image corresponds 
to a lung or a colon. The results were perfect since all the 
performance metrics had attained 100%. Based on this result, 
two methods were established. The first approach is dedicated 
to determining the nature of the colon tissue type. Its AUC, F1-
score, and accuracy reached 100%. The second method aims to 
classify lung cancer. It got AUC, F1-score, and accuracy with 
values of 99. 95%, 99.47%, and 99. 47%, respectively. The 
target of the second scenario is LC malignancy detection in 
histological images. This approach scored perfect AUC, F1-
score, and accuracy with values of 100%, respectively. The 
purpose of the third scenario is to classify the totality of LC 
tissue types. AUC, F1-score, and accuracy achieved values of 
99.96%, 99.76%, and 99.76%, respectively. Table I presents the 
description of the cited methods from the literature and the 
proposed approaches. 

III. PROPOSED METHOD 

In this study, three diagnosis scenarios are presented. The 
first scenario (S1) is composed of two distinct stages: the initial 
stage (S1-1) aims to evaluate whether the input image 
corresponds to either a lung or colon sample. Based on the 
outcome of this stage, the second stage (S1-2) is designed to 
determine the specific class associated with the identified organ. 
In the second scenario (S2), the target is to identify whether the 
input data belongs to either the benign or malignant class, 
irrespective of its origin. The third scenario (S3) involves 
categorizing the input data among all the type of the tissues (5 
classes) of LC25000 dataset. Fig. 1 illustrates an overview of the 
three scenarios presented. Fig. 2 presents the workflow of the 
presented strategies of analysis. 

A. Dataset 

This investigation uses the LC25000 dataset [21], which 
includes 25000 histopathological images whose size is 768x768 
pixels in JPEG format. This dataset is an invaluable resource for 
training and assessing ML models in cancer diagnosis, 

particularly for LC cancer. The dataset is distributed across five 
classes: lung squamous cell carcinoma (lung_scc), lung 
adenocarcinoma (lung_aca), benign lung tissue (lung_n), benign 
colonic tissue(colon_n), and colon adenocarcinoma 
(colon_aca). It was methodically obtained from an initial pool 
of 750 HIPAA-compliant and verified data, which included 250 
cases of each class. Then, it was subsequently augmented using 
the Augmentor software where the used techniques are random 
horizontal/vertical flips and left/right rotations (higher than 25 
degrees). Consequently, the number of images was enlarged to 
25000 and 5000 histopathological images per class. 

B. Data Preparation 

This section is reserved to detail the data preparation steps, 
including data pre-processing and data splitting. 

1) Data Pre-processing: This step is about resizing images 

from the original shape to (64, 64, 3). Then, for each scenario, 

the images belonging to the appropriate classes were selected. 

 
Fig. 1. Synoptic of the three scenarios presented. 
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TABLE I.  STATE-OF-THE-ART AND PROPOSED METHODS DESCRIPTION 

Method Year Organ classes Params(M) Description Accuracy 

[33] 2021 Lung 3 - 
- Image Feature Extraction: HI, TA, Multiscale Analysis 

- ML Models: KNN, SVM, DT, RF… 
0.9933 

[40] 2021 LC 5 - 
- Digital Image Processing (DIP) 

- CNN 
0.9633 

[37] 2021 LC 5 - 

- Image Preprocessing: Color Balancing, Image Sharpening, Gamma 

Correction, and Multi-Scale Fusion. 

- Multi-Input Capsule Network. 

- Dual-Input Learning. 

0.9958 

[50] 2022 

Lung 

Colon 

LC 

3 

2 

5 

- 

- Feature Engineering: texture, shape, color histograms… 

- Image Processing: image normalization, noise removal, and contrast 

enhancement. 

-ML Models: XGBoost, SVM, RF, LDA… 

0.9953 

0.993 

0.99 

[42] 2022 LC 5 - 

- DL models: ShuffleNet, MobileNet, SqueezeNet. 

- Feature Reduction: PCA, FHWT 

- Feature Fusion: Discrete Wavelet Transform (DWT) 

- ML Algorithms: SVM, RF, KNN, LR 

0.9960 

[23] 2022 Colon 2 - 
- Digital Image Processing: Noise reduction, data normalization 

- Deep CNN 
0.9980 

[47] 2022 LC 5 - 

- Handcrafted Feature Extraction: color, texture, shape, and structure 

- Deep Feature Extraction: Transfer Learning models 

- Classifiers: GB, SVM-RBF, MLP, RF 

0.9860 

[49] 2022 

Lung 

Colon 

LC 

3 

2 

5 

- 

-Hybrid Ensemble Feature Extraction strategy: Deep Feature Extraction 

using DL models and integration of multiple classifiers. 

- High-Performance Filtering for enhancing image features 

0.9905 1.0000 

0.9930 

[22] 2022 Colon 2 4.6 
- Image Preprocessing: Image normalization 

- DL Model: Convolutional Neural Networks (CNNs) 
0.9950 

[41] 2022 LC 5 - 
- Image Preprocessing: Contrast enhancement. 

- DL Model: Fine-tuned AlexNet (a pretrained CNN model). 
0.984 

[34] 2023 Lung 2 - 

- Image Preprocessing: 

Data normalization, resizing, and potentially other enhancements. 

- Deep Feature Extraction: 

Convolutional Neural Networks (CNNs) for feature extraction. 

- ML Models: LightGBM for classification of extracted features. 

0.996 

[48] 2023 LC 5 9.2 

- Image Preprocessing: Image cleaning, resizing, and normalization. 

- Transfer Learning: EfficientNet and its variants (B0 to B7) for image 

classification. 

- Parameter Tuning 

0.9724 

[45] 2023 LC 5 - 

- Deep Features Extraction: GoogLeNet and VGG-19 for highlighting 

characteristics. 

- Dimensionality Reduction: PCA 

- Feature Fusion: Combining features from different models VGG-19 and 
GoogLeNet, and handcrafted patterns. 

- Classifier: Artificial Neural Network (ANN) 

0.9964 

[24] 2023 Colon 2 - 

- Ensemble Learning: Stacking DL models to combine predictions from 

multiple base models. 

- Pretrained CNNs: InceptionV3, ResNet50, VGG16, DenseNet121 for 
feature extraction and initial predictions. 

- Meta-learner: Combined prediction based on SVM and base models. 

- Explainable AI (XAI) 

1.0000 

[30] 2024 Lung 3 - 
- Deep Learning: CNN 

- Explainable AI (XAI) 
0.999 

[35] 2024 Lung 3  

- Deep Features extraction: DenseNet201 

- Image Preprocessing: Color Histogram Technique. 

- ML Algorithms: SVM, MultinomialNB, LGBM, CatBoost, XGBoost, 

KNN, RF 

0.9968 

Proposed 

Methods 
2024 

Lung 

Colon 

LC 

LC 

3 

2 

2 

5 

1.6 
- Image Preprocessing: Resizing 

- DL Models: Lightweight CNN 

0.9947 

1.0000 

1.0000 

0.9976 
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Fig. 2. Workflow of the proposed methods. 

2) Data split: DL studies often divide the totality of the data 

into three sets which are training set, validation set, and testing 

set. The training set determines model parameters, whereas the 

validation set adjusts hyperparameters and measures overall 

performance. The testing dataset measures the model's 

effectiveness using previously unknown data. The LC25000 

dataset was partitioned into training and validation subsets, and 

also a test set, with an 80:20 split. 

The training and validation sets were partitioned using a 
90:10 ratio. 

C. Model 

The proposed model's design belongs to CNN architecture. 
It consists of two main components: the Features Extractor (FE) 
and the Classifier. The input data (histological images) will be 
transformed by FE to advanced characteristics that identify 
shapes and correlations. This is achieved by the use of three 
repetitious blocks, including Convolution (Conv2D) and Max 
Pooling (MaxPool2D) bidimensional layers. The repeated 
blocks consist of four layers: 2 Conv2D, MaxPool2D, and Batch 
Normalization (BN). The extracted characteristics will be turned 
by the classifier to predicted labels of classes. It comprises 
Dense, Dropout, and Flatten layers, and 4x repeated blocks. The 
repeated blocks consist of BN and Dense layers. The designed 
lightweight CNN is depicted in Fig. 3. 

D. Hyperparameters 

For the training process, this research uses the trial-and-error 
process to determine the most optimal method. The model's 
input parameters were set at (64, 64, 3), matching the 
dimensions of the given image. 32 was the set batch size. The 
optimal number of epochs (ep) was 50. Adam which has a 
learning rate of 1.10-3 was the employed optimizer. In addition, 
the categorical cross-entropy loss was utilized as a loss function. 

During training, a learning rate schedule was used to manage 
this phase. It was set as follows: 

𝑙𝑟 = {
𝑙𝑟, 𝑒𝑝 ≤ 10

𝑙𝑟. exp(−10−1), 𝑒𝑝 > 10
 (1) 

 
Fig. 3. Architecture of the proposed lightweight CNN. 

E. Metrics 

The proposed methods were evaluated using different 
metrics such as AUC, accuracy, F1 score, and. AUC calculates 
the ability of the system to differentiate between positive and 
negative data. F1-score incorporates precision and recall into a 
one statistic. Finally, Accuracy is the proportion of correct 
predictions to total calculated by the model. 

IV. RESULTS 

This section is dedicated to show the experiment results. The 
training phases were done on a personal computer with 16GB of 
NVIDIA T4 x 2 GPU, 30GB of RAM, and a CPU of 2.20 GHz 
Intel Xeon. The goal of this research is to provide a versatile 
framework based on multi-scenario for automated LC cancer 
analysis. This paragraph aims to present the results for each 
diagnosis scenario. 

1) Diagnosis Scenario (S1): The first scenario (S1) consists 

of two dependent stages: the first stage (S1-1) determines 

whether the input image refers to lung or colon data. Based on 

the results of this stage, the second stage (S1-2) is meant to 
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determine the exact class corresponding to the indicated organ 

Table II represents the results of the proposed system during the 

diagnosis scenarios S1-1, S1-2 Colon, and S1-2 Lung in the 

training, validation, and test phases. In fact, for scenario S1-1, 

the AUC F1-score, and accuracy of the established method 

reached 1.0000 in all phases.  This perfect result enables us to 

pass to the second level of the actual scenario. Regarding the 

second level, scenario S1-2 Colon, the proposed model attained 

the same efficiency excluding the loss. Concerning the 

diagnosis scenario S1-2 Lung, the AUC, F1-score, and 

accuracy exceeded 0.9947 in the totality of phases. 

TABLE II.  RESULTS OF THE PROPOSED METHOD DURING THE DIAGNOSIS SCENARIOS S1-1, S1-2 COLON, AND S1-2 LUNG IN THE TRAINING, VALIDATION, AND 

TEST PHASES 

 S1-1 S1-2 Colon S1-2 Lung 

Phase Train Valid Test Train Valid Test Train Valid Test 

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9983 0.9947 

F1-Score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9983 0.9947 

AUC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 
 

In this study, the classification metrics were also presented 
for the classes. The proposed approach reached an accuracy, 
sensitivity, specificity, and F1-score, of 1.000 for both the colon 
and lung classes. Moreover, in the S1-2 Colon, the previous 
metrics scored a value of 1.0000. Furthermore, for the S1-2 
Lung, with the designed LWCNN, accuracy and F1-score 
surpassed 0.9947 and 0.9917, while the specificity and 
sensitivity, each exceeded, 0.9954 and 0.9907, respectively. 
Table III illustrates the results of the proposed method across all 
classes during the diagnosis scenarios S1-1, S1-2 Colon, and S1-
2 Lung. 

These highly performant results can be confirmed by the 
confusion matrixes. Fig. 4(a), (b), and (c) depict the confusion 
matrix of the presented scenarios S1-1, S1-2 Lung, and S1-2 
Colon, respectively. This indicates that the proposed LWCNN 
can not only properly identify instances belonging to their 
respective classes but also successfully separate them from other 

classes, resulting in no substantial confusion or 
misclassification. For the S1-2 Lung, the proposed model’s 
confusion matrix is nearly ideal. 

TABLE III.  RESULTS OF THE PROPOSED METHOD ACROSS ALL CLASSES 

DURING THE DIAGNOSIS SCENARIOS S1-1, S1-2 COLON, AND S1-2 LUNG 

 Class Accuracy F1-score Se Sp 

S1-1 
Lung 1.0000 1.0000 1.0000 1.0000 

Colon 1.0000 1.0000 1.0000 1.0000 

S1-2 

Lung 

lung_aca 0.9947 0.9923 0.9933 0.9954 

lung_scc 0.9947 0.9917 0.9907 0.9965 

lung_n 1.0000 1.0000 1.0000 1.0000 

S1-2 

Colon 

colon_aca 1.0000 1.0000 1.0000 1.0000 

colon_n 1.0000 1.0000 1.0000 1.0000 
 

 
Fig. 4. Confusion matrices of presented LWCNN for diagnosis scenarios: (a) S1-1, (b) S1-2 Colon, and (c) S1-2 Lung. 

Similar findings were observed through the ROC (Receiver 
Operating Characteristic) curve, which illustrates the balance 
between the true positive rate (TPR) and the false positive rate 
(FPR) at varying classification levels. As the curve approaches 
the plot’s top-left corner, the model's efficiency improves. 
Fig. 5(a), (b), and (c) illustrate the ROC curves for the three 
diagnostic scenarios. In the lung and colon classification (S1-1), 
the curve attained a point at (0,1), indicating 0% false positives 
and 100% true positives. The same result was observed for colon 
classification in S1-2 Colon, confirming an AUC value of 
1.0000 for the studied classes. For the S1-2 Lung scenario, the 

ROC curve was very near to the top-left corner, with AUC 
values for the lung class above 0.9999. 

Overall, the proposed method is efficient for the diagnosis 
scenario (S1). This was confirmed by a batch of images 
randomly chosen from the test set for each diagnosis sub-
scenario. Fig. 6 depicts the reel test using random test images. 
All input test images were correctly predicted with a confidence 
rate higher than 99.99%. 

2) Diagnosis Scenario (S2): The second scenario (S2) is 

designed to find out whether the input data is attributed to the 
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malignant or benign class, irrespective of its origin (lung or 

colon). Table IV presents the outcomes for this scenario across 

the training, validation, and testing phases. The designed 

LWCNN achieved flawless performance in this scenario, with 

accuracy, F1-score, and AUC all reaching 1.0000 across every 

phase. 

 
Fig. 5. ROC curves for diagnosis scenarios: (a) S1-1, (b) S1-2 Colon, and 

(c) S1-2 Lung. 

TABLE IV.  PROPOSED APPROACH’S FINDINGS DURING THE DIAGNOSIS 

SCENARIO (S2) IN THE TRAINING, VALIDATION, AND TEST PHASES 

Phase Training Validation Test 

Accuracy 1.0000 1.0000 1.0000 

F1-Score 1.0000 1.0000 1.0000 

AUC 1.0000 1.0000 1.0000 

 
Fig. 6. Framework Test images arbitrarily selected from the test data used for 

the diagnosis of the sub-scenarios: (a) S1-1, (b) S1-2 Lung, and (c) S1-2 

Colon. 

This shows that it was capable to consistently and perfectly 
differentiate between malignant and benign classes with perfect 
precision, recall, and overall classification metrics. 

The classification metrics for each class (benign and 
malignant) further confirm this outstanding performance. In all 
phases, the proposed approach attained a sensitivity, specificity, 
F1-score, and an accuracy of 1.0000 for both classes. These 
results suggest that the model not only accurately identified 
instances as either benign or malignant but also demonstrated 
exceptional sensitivity in detecting positive cases and specificity 
in ruling out negatives, leading to no false positives or false 
negatives. The results of the proposed method across all classes 
during the diagnosis scenario (S2) in Table V. 

The confusion matrix, depicted in Fig. 7, provides further 
validation of the model's perfect performance. Both matrices 
reveal zero false positives and false negatives, indicating that the 
LWCNN model accurately classified all instances without any 
misclassification. This underscores the model's robustness in 
distinguishing between benign and malignant cases with 
absolute accuracy. 

Moreover, the ROC curves for scenario (S2), illustrated in 
Fig. 8, also demonstrate the exceptional performance of the 
LWCNN model. The ROC curve reaches the top-left corner, 
signifying 0% false positives and 100% true positives for both 
benign and malignant classifications. This results in an AUC 
value of 1.0000, confirming that the model performed optimally 
across all thresholds. 

In conclusion, the results of scenario S2 demonstrate the 
effectiveness of the presented method in discriminating between 
malignant and benign cases with 100% accuracy. This finding is 
further corroborated by a set of arbitrairly selected images from 
the test set, all of which were correctly classified with a 
confidence rate exceeding 99.99%. Fig. 9 illustrates these 
perfect predictions, further demonstrating the reliability of the 
model in real diagnostic applications. 

3) Diagnosis Scenario (S3): The third scenario (S3) 

addresses the categorization of treated images to one of the five 

available categories from LC25000 dataset. Table VI 
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summarizes the results of this scenario across all phases. The 

described LWCNN model demonstrated strong performance, 

achieving accuracy, F1-score, and AUC values ranging 

between 0. 9976 and 1.0000, depending on the specific class 

and phase. While some variations in performance were 

observed, the model consistently classified the majority of 

images with high precision and reliability across all phases. 

 
Fig. 7. Confusion matrix of presented LWCNN for diagnosis scenario (S2). 

 

Fig. 8. ROC curves for diagnosis scenario (S2). 

 
Fig. 9. Framework Test images arbitrarily selected from the test data used for 

the diagnosis scenario (S2). 

TABLE V.  RESULTS OF THE PROPOSED METHOD ACROSS ALL CLASSES 

DURING THE DIAGNOSIS SCENARIO (S2) 

Class Accuracy F1-score Se Sp 

Benign 1.0000 1.0000 1.0000 1.0000 

Malignant 1.0000 1.0000 1.0000 1.0000 

TABLE VI.  PROPOSED APPROACH’S FINDINGS DURING THE DIAGNOSIS 

SCENARIO (S3) IN THE TRAINING, VALIDATION, AND TEST PHASES 

Phase Training Validation Test 

Accuracy 1.0000 0.9970 0.9976 

F1-Score 1.0000 0.9970 0.9976 

AUC 1.0000 0.9991 0.9996 

TABLE VII.  RESULTS OF THE PROPOSED METHOD ACROSS ALL CLASSES 

DURING THE DIAGNOSIS SCENARIO (S3) 

Class Accuracy F1-score Se Sp 

colon_aca 0.9996 0.9990 0.9990 0.9998 

colon_n 0.9996 0.9990 0.9990 0.9998 

lung_aca 0.9980 0.9949 0.9949 0.9988 

lung_scc 0.9980 0.9949 0.9949 0.9987 

lung_n 1.0000 1.0000 1.0000 1.0000 

A detailed examination of the classification metrics reveals 
that the model achieved near-perfect results in several classes, 
with accuracy, F1-score, sensitivity, and specificity reaching 
values as high as 1.0000 for the lung_n class. In other classes, 
the performance remained highly competitive, with these 
metrics exceeding 0.9949. This demonstrates the robustness of 
the model in handling multiple classification tasks while 
maintaining substantial accuracy. Table VII demonstrates the 
results of the proposed method across all classes during the 
diagnosis scenario (S3). 

 
Fig. 10. Confusion matrix of presented LWCNN for the diagnosis scenario 

(S3). 

Fig. 10 illustrates the confusion matrix for the five classes, 
further validating the model’s efficacy in scenario (S3). While 
some minor misclassifications occurred, indicated by a low 
value of FP and FN, the overall confusion matrix reveals that the 
LWCNN model effectively distinguished between the five 
classes with minimal error, maintaining a high level of 
classification accuracy. 

The ROC curves for scenario (S3), shown in Fig. 11, further 
support the model's effectiveness. Across all categories, the 
ROC curve closely approaches the top-left corner. This 
demonstrates the outstanding capability of the presented 
approach to distinguish between positive and negative cases. 
The corresponding AUC values exceed 0.9999, confirming the 
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model’s high sensitivity and specificity across multiple 
thresholds. 

 
Fig. 11. ROC curves for diagnosis scenario (S3). 

In conclusion, the third scenario (S3) demonstrates that the 
proposed method is highly performant in categorizing input data 
into one of the five LC25000 dataset classes, with results 
consistently ranging between 99% and 100%. Despite the minor 
variations in performance across classes, the model exhibited 
reliable classification capabilities. Fig. 12 displays randomly 
selected test images, which were classified with a confidence 
rate exceeding 99%, further confirming the model’s potential in 
practical diagnostic tasks. 

 
Fig. 12. Framework Test images arbitrarily selected from the test data used for 

the diagnosis scenario (S3). 

V. DISCUSSION 

This section is dedicated to debate the experiment results, 
and compare them to existing approaches. Table VIII illustrates 
a comparative analysis of the performances of the presented 
approaches against a selection of well-established ML and DL-
based systems for LC cancer classification, as detailed in 
Section II. Similarly, all the selected literature strategies which 
employed LC25000 dataset when assessing the outcomes of 
their models. 

TABLE VIII.  COMPARISON OF THE OVERALL FINDINGS OF THE PRESENTED APPROACHES AND THE LITERATURE APPROACHES 

Method Year Organ Classes Parameters (M) Accuracy F1-Score AUC 

[33] 2021 Lung 3 - 0.9933 - - 

[40] 2021 LC 5 - 0.9633 0.9638 - 

[37] 2021 LC 5 - 0.9958 0.9904 - 

[50] 2022 

Lung 

Colon 

LC 

3 

2 

5 

- 

0.9953 

0.993 

0.99 

0.9933 

0.995 

0.988 

- 

[42] 2022 LC 5 - 0.9960 0.9960 - 

[23] 2022 Colon 2 - 0.9980 0.9980 - 

[47] 2022 LC 5 - 0.9860 0.9850 - 

[49] 2022 
Lung 
Colon 

LC 

3 
2 

5 

- 
0.9905 
1.0000 

0.9930 

- - 

[22] 2022 Colon 2 4.6 0.9950 0.9849 - 

[41] 2022 LC 5 - 0.984 - - 

[34] 2023 Lung 2 - 0.996 0.996 - 

[48] 2023 LC 5 9.2 0.9724 - - 

[45] 2023 LC 5 - 0.9964 - 0.998 

[24] 2023 Colon 2 - 1.0000 1.0000 - 

[30] 2024 Colon 2 - 0.999 0.999 0.998 

[35] 2024 Lung 3  0.9968 - - 

Proposed 

Methods 
2024 

Lung 
Colon 

LC 

LC 

3 
2 

2 

5 

1.6 

0.9947 

1.0000 

1.0000 

0.9976 

0.9947 

1.0000 

1.0000 

0.9976 

0.9995 

1.0000 

1.0000 

0.9996 
 

This research introduces a flexible framework for automatic 
analysis of LC cancer. The performance obtained highlights its 
robustness and efficiency. In fact, the used model was a 
lightweight CNN, which has a minimalist total number of 

parameters, 1.6 million parameters, when compared to those of 
Sakr et al [22] and Anjum et al. [48] where the total parameter 
is 4.6 and 9.2 million parameters, respectively.  The comparison 
will cover three developed methods, which are colon cancer 
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classification, lung cancer classification, and LC classification. 
In colon classification, the proposed method reached the top 
efficiency with 100% AUC, F1-score, and accuracy. Equally, 
Gabralla et al. [24] attained the same performance. However, the 
authors used a more complex model with two levels, which 
contained individual models and stacking models. 

In addition, they used more data preprocessing steps. For 
example, they applied common data augmentation (DA) like 
rotating, rescaling, zooming etc. In LC classification, the 
proposed method reaches an accuracy, F1-score, and AUC of 
0.9947, 0.9947, and 0.9995, respectively. This performance is 
higher than those of Nishio et al. [33], and Talukder et al.’s [49] 
methods. Although it is very slightly lower than those of Masud 
et al. [40], Hage Chehad et al. [50], Hamed et al. [34], and 
Noaman et al.’s [35] approaches. Hamed et al. [34] worked only 
on two tissue types and not on the totality of the presented lung 
tissue types. In LC cancer classification, the proposed method 
outperformed all the cited approaches having the same task. The 
accuracy scored 0.9976. The F1-score reached 0.9976. The 
AUC attained 0.9996. These results demonstrate the model's 
remarkable accuracy, precision, recall, and discriminative 
power. Thus, the proposed approach is superior in terms of 
performance, lower in terms of complexity, and more 
recommended in terms of flexibility and practical usability, 
highlighting its suitability for this task at hand. 

VI. CONCLUSION 

This work aims to build a flexible framework based on 
multi-scenario diagnosis for LC cancers automated analysis. 
This was ensured by the employment of a lightweight CNN 
architecture with a small parameters number against other 
studies. In fact, the number of parameters was 1.612 million 
parameters. It was assessed using the LC25000 dataset which 
comprises five LC tissue types. The presented approach includes 
three diagnosis scenarios. The first diagnosis scenario (S1) is 
composed of two distinct stages: the initial stage (S1-1) aims to 
evaluate whether the input image corresponds to either a lung or 
colon sample. Based on the outcome of this stage, the second 
stage (S1-2) is designed to determine the specific class 
associated with the identified organ. In the second scenario (S2), 
the aim is to identify whether the input image belongs to either 
the benign or malignant class, irrespective of its origin. The third 
scenario (S3) involves categorizing the introduced image into 
one of the predefined categories in the LC25000 dataset. In the 
totality of these scenarios, the accuracy, F1-score, and AUC 
exceeded 0.9947. Regarding these metrics for each class in the 
presented scenarios, they were higher than 0.9907. The findings 
of this investigation highlight the important advantages of using 
the proposed method for the analysis of LC cancer. The model's 
improved accuracy, dependability, accessibility, flexibility, and 
capacity for continual development provide major benefits to 
improving patient care and outcomes. Upcoming work efforts 
should concentrate on analyzing the performance of the 
proposed technique over a variety of LC datasets, as well as 
expanding its assessment to other medical image modalities, 
such as radiographic or pathological imaging, in addition to 
histological images. This will assist to demonstrate its resilience, 
adaptability, and application in a variety of clinical contexts. 
Furthermore, future research should focus on demonstrating its 
use in real-world clinical settings to assure its widespread 

acceptance, generalizability, and potential to enhance diagnostic 
accuracy and patient outcomes. 
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