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Abstract—Monte Carlo (MC) rendering is a powerful 

technique for achieving photorealistic images by simulating 

complex light interactions. However, the inherent noise 

introduced by MC rendering necessitates effective denoising 

techniques to enhance image quality. This paper presents a 

comprehensive review and comparative analysis of various 

machine learning (ML) methods for denoising MC renderings, 

focusing on four main categories: radiance prediction using 

convolutional neural networks (CNNs), kernel prediction 

networks, temporal rendering with recurrent architectures, and 

adaptive sampling approaches. Through systematic analysis of 7 

peer-reviewed studies from 2019-2024, the author's findings reveal 

that deep learning models, particularly generative adversarial 

networks (GANs), achieve superior denoising performance. The 

study identifies key challenges including computational demands, 

with some methods requiring significant GPU resources, and 

generalization across diverse scenes. Additionally, we observe a 

trade-off between denoising quality and processing speed, 

particularly crucial for real-time applications. The study 

concludes with recommendations for future research, 

emphasizing the need for hybrid approaches combining physics-

based models with ML techniques to improve robustness and 

efficiency in production environments. 
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I. INTRODUCTION 

Monte Carlo (MC) rendering has emerged as a fundamental 
technique in computer graphics, enabling the simulation of light 
behavior in virtual environments through probabilistic sampling 
methods. By tracing numerous light paths and statistically 
sampling their contributions, MC rendering effectively captures 
complex light interactions with surfaces, materials, and 
volumes, resulting in highly realistic images characterized by 
accurate lighting, shadows, reflections, and refractions [1] [2]. 
This capability has rendered MC rendering indispensable across 
various industries, including film production, architectural 
visualization, and video game development, where 
photorealistic visuals are paramount [3] [4]. In film production, 
noise can disrupt the photorealism required for high-quality 
visual effects, while in video games, it can hinder real-time 
performance and user experience. 

However, a notable challenge associated with MC rendering 
is the presence of noise in the generated images. Noise, which 
manifests as random variations or artifacts, arises from the 
inherent probabilistic nature of light path sampling. This issue is 
particularly pronounced in scenes with intricate lighting, glossy 

surfaces, or complex geometries, leading to grainy or speckled 
appearances that detract from the visual quality and realism of 
the rendered outputs [5] [6]. The reliance on probabilistic 
sampling methods contributes to this noise, as low sample 
counts can result in high variance in light estimates. While 
increasing the sample count can mitigate noise, it significantly 
escalates computational demands, rendering such approaches 
impractical for real-time or interactive applications [7]. 

To combat the noise prevalent in MC renderings, denoising 
techniques have become essential for enhancing image quality. 
These algorithms are designed to intelligently filter out noise 
while preserving critical image details, textures, and features, 
thereby yielding smoother and cleaner final renderings [7][8]. 
Recent advancements in machine learning (ML), particularly 
through deep learning models such as convolutional neural 
networks (CNNs) and generative adversarial networks (GANs), 
have opened new avenues for effective denoising. These ML 
techniques can learn complex noise patterns from extensive 
datasets of noisy and clean images, enabling them to generalize 
across various scenes and lighting conditions while maintaining 
the fidelity of essential image details during the denoising 
process [3] [9]. 

Despite the extensive exploration of ML-based denoising 
methods, there remains a scarcity of work synthesizing and 
comparing these approaches across diverse rendering scenarios. 
Challenges such as high computational demands, generalization 
across varying scenes, and interpretability of the models persist 
as unresolved issues. High computational demands limit the 
applicability of ML-based denoising in real-time applications, 
while generalization issues arise due to the variability of noise 
patterns across different scenes and lighting conditions. This 
study endeavors to fill these gaps by providing a systematic 
review and comparative analysis of existing methods, offering 
practical recommendations for future research in the field of MC 
rendering and denoising [5] [9]. 

To address these challenges, this study seeks to answer the 
following key research questions: 

1) What ML methods have been employed for denoising 

MC renderings, according to the existing literature? 

2) How do these ML methods compare in terms of 

performance, efficiency, and application? 

3) What are the current challenges and future directions for 

ML-based denoising in MC rendering? 

The primary objective of this study is to provide a 
comprehensive review and comparative analysis of these 
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techniques, categorizing them into radiance prediction, kernel 
prediction, temporal rendering, and adaptive sampling. 
Performance evaluations will utilize metrics such as Peak 
Signal-to-Noise Ratio (PSNR), Structural Similarity Index 
(SSIM), and Relative Mean Squared Error (rMSE) [4] [8]. 
Additionally, this study will highlight gaps in the current 
literature and propose future research directions to advance ML-
based denoising techniques, ultimately enhancing rendering 
workflows and visual outputs. 

II. METHOD 

A systematic literature review (SLR) methodology was 
employed to ensure a comprehensive and unbiased review of 
ML techniques for denoising in MC rendering. An SLR involves 
analyzing existing research by defining clear research questions, 
identifying relevant studies, appraising their quality, and 
synthesizing findings both qualitatively and quantitatively [10]. 
This structured approach ensures transparency, replicability, and 
rigor in the review process. The methodology adheres to the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) framework to enhance methodological 
rigor and quality. 

The methodology of this study is organized into three key 
stages: planning the review, which involves defining research 
questions, developing search strategies, and establishing 
inclusion/exclusion criteria; conducting the review, which 
includes searching and screening relevant studies, extracting 
data, and assessing the quality of selected studies; and analyzing 
the gathered information, which consists of synthesizing results, 
discussing trends, and identifying challenges and opportunities 
for future research. 

A. Planning the Review 

1) Scope of the review: The SLR focuses specifically on 

machine learning ML applied to denoising in MC rendering. MC 

rendering is widely used in computer graphics to simulate 

realistic lighting effects, but its probabilistic nature often 

introduces noise into rendered images. This noise can degrade 

visual quality, making effective denoising techniques essential 

for achieving high-quality outputs. Despite recent advancements 

in ML-based denoising methods, there remains a scarcity of 

work synthesizing and comparing these approaches across 

diverse rendering scenarios. Challenges such as high 

computational demands, generalization across varying scenes, 

and interpretability of the models persist as unresolved issues. 

This study aims to address these gaps by providing a 

comprehensive review and comparative analysis of ML-based 

denoising techniques, categorizing them into radiance 

prediction, kernel prediction, temporal rendering, and adaptive 

sampling. 

2) Research questions: The formulation of research 

questions was guided by an iterative process involving pilot 

searches and consultations with domain experts. Initial 

exploratory searches were conducted across academic databases 

such as IEEE Xplore, ACM Transactions on Graphics, and 

ScienceDirect using broad keywords like “Monte Carlo 

rendering,” “denoising,” and “machine learning.” These 

searches helped identify recurring themes and trends in 

literature, such as the use of CNNs, GANs, and kernel prediction 

methods. Informal consultations with an expert in computer 

graphics and ML-based rendering techniques provided valuable 

feedback on the scope and relevance of the questions, suggesting 

additional considerations such as computational efficiency and 

generalization across diverse scenes. The final research 

questions guiding this SLR are as follows: 

1) What ML methods have been employed for denoising 

MC renderings, according to the existing literature? 

2) How do these ML methods compare in terms of 

performance, efficiency, and application? 

3) What are the current challenges of ML for denoising MC 

rendering? 

4) Search strategy: A comprehensive search strategy was 

developed to gather relevant literature across multiple academic 

databases. The search was conducted using keywords such as 

“Monte Carlo rendering,” “denoising,” “convolutional neural 

network,” “deep learning,” “machine learning denoising 

techniques,” and “generative adversarial network”. The 

databases searched included IEEE Xplore, Google Scholar, 

ScienceDirect, Computer Graphics Forum, and ACM 

Transactions on Graphics. To ensure consistency in the analysis, 

the search was limited to studies published in English between 

2019 and 2024. 

5) Inclusion and exclusion criteria: Specific criteria were 

established to filter the studies for inclusion in this review, 

ensuring the relevance and quality of the selected literature. This 

study employed a filtration process guided by predefined 

inclusion and exclusion criteria as shown in Tables I and II. All 

the papers were assessed against a set of inclusion and exclusion 

criteria to ensure they directly addressed the research questions. 

TABLE I.  INCLUSION CRITERIA 

ID Inclusion criterion 

I1 
Studies explicitly focus on machine learning techniques for 
denoising in Monte Carlo rendering. 

I2 
Studies published in peer-reviewed journals and conferences to 

ensure credibility and quality. 

I3 
Studies that provide quantitative performance metrics such as 

PSNR, SSIM, rMSE, or computational efficiency. 

I4 Studies published in English. 

I5 Studies published between 2019 and 2024. 

TABLE II.  EXCLUSION CRITERIA 

ID Exclusion criterion 

E1 
Studies do not focus on denoising in the context of Monte 

Carlo rendering. 

E2 
Studies lacking sufficient empirical data or clear evaluation 

methods, which could undermine the validity of the findings. 

E3 
Non-peer-reviewed articles, editorials, or opinion pieces, as 
these sources do not provide the rigorous analysis required for 

this review. 

E4 Studies published in languages other than English. 

E5 Studies published before 2019. 
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6) Selection process: The selection process involved two 

phases: initial screening and full-text review. In the initial 

screening, titles and abstracts of all retrieved papers were 

reviewed against the inclusion and exclusion criteria. Papers that 

did not meet these criteria were excluded. In the full-text review, 

the remaining papers were examined in detail to assess their 

relevance to the research questions and the quality of their 

methodologies and findings. A total of seven papers were 

selected for the final analysis. To provide a clear overview of the 

study selection process, a PRISMA flowchart (Fig. 1) was 

created, following the guidelines outlined by Pati and Lorusso 

[11]. The flowchart visually summarizes the number of studies 

identified, screened, and included at each stage of the review 

process. 

 

Fig. 1. PRISMA flowchart summarizing the study selection process. 

B. Conducting the Review 

This phase involved three key steps: data extraction, quality 
assessment, and data synthesis. Each step was meticulously 
performed to ensure a robust and unbiased evaluation of the 
selected studies, enabling a comprehensive comparison of ML-
based denoising techniques for MC rendering. 

1) Data extraction: Data extraction was systematically 

performed on the selected studies to comprehensively address 

the research questions. Key information extracted included the 

specific ML models employed for denoising, the datasets used, 

and performance metrics such as PSNR and SSIM, rMSE. This 

structured extraction approach enabled a robust comparison of 

the effectiveness and efficiency of different ML-based denoising 

techniques across a range of rendering scenarios. 

2) Quality assessment: To ensure the reliability and validity 

of the findings, each study included in this review underwent a 

rigorous quality assessment. This process evaluated the 

methodological rigor of the studies, focusing on factors such as 

the robustness of the experimental design, the clarity of data 

presentation, and the appropriateness of the performance metrics 

used. Only studies that met these stringent criteria were 

included, ensuring that this review comprises high-quality 

research offering credible insights into the effectiveness and 

efficiency of ML-based denoising methods. 

3) Data synthesis: The extracted data were synthesized to 

provide a comprehensive comparison of the different ML-based 

denoising techniques for MC rendering. Both qualitative and 

quantitative analyses were conducted to identify trends, 

strengths, and limitations across the existing literature. 

Performance metrics were aggregated where applicable, 

allowing for a standardized comparison of the denoising 

effectiveness across different studies. This synthesis provides a 

holistic view of the current landscape of ML-based denoising 

methods in MC rendering, highlighting their practical 

applications and potential areas for future research. 

C. Analyzing the Gathered Information 

1) Synthesis of results: The extracted data were synthesized 

to provide a comprehensive comparison of the different ML-

based denoising techniques for MC rendering. Both qualitative 

and quantitative analyses were conducted to identify trends, 

strengths, and limitations across the existing literature. 

Performance metrics were aggregated where applicable, 

allowing for a standardized comparison of the denoising 

effectiveness across different studies. This synthesis provides a 

holistic view of the current landscape of ML-based denoising 

methods in MC rendering, highlighting their practical 

applications and potential areas for future research. 

2) Discussion of results: The analysis identified several 

challenges associated with applying ML techniques to MC 

rendering denoising. One major challenge is the computational 

complexity of these methods, as many ML-based denoisers 

require substantial processing power and memory to achieve 

high-quality results. This computational demand makes it 

difficult to deploy these techniques in real-time or interactive 

applications where performance and speed are critical. 

Additionally, the complexity of the models can hinder their 

ability to generalize across diverse scenes, as training datasets 

may not fully capture the variability in noise patterns that arise 

in different rendering scenarios. 

Another challenge is the difficulty in balancing denoising 
performance with computational efficiency. While deep 
learning models such as CNNs and GANs have shown promise 
in reducing noise while preserving image details, these methods 
often come with a trade-off between the quality of the denoised 
output and the computational resources required. Addressing 
these challenges involves exploring more efficient architectures, 
optimization techniques, and potentially new approaches to 
model training that can reduce computational overhead without 
compromising denoising quality. 

3) Recommendations for future research: Based on the 

findings, several recommendations for future research have been 

proposed. These include integrating physics-based models, 

adopting adaptive sampling strategies, employing advanced 

network architectures such as GANs and CNNs, utilizing detail-

preserving neural networks, and implementing path-based 

denoising techniques. These suggestions aim to steer future 
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research efforts toward overcoming current limitations and 

exploring new opportunities in ML-based denoising for MC 

rendering. 

III. RESULTS AND DISCUSSION 

This study explores three key questions. The following 
sections analyze the findings and their significance to each 
question. 

A. What ML Methods have been Employed for Denoising MC 

Rendering, according to the Existing Literature? 

MC rendering is well-known for simulating realistic lighting 
effects, but it has its challenges, particularly with noise in the 
images because of the stochastic nature of the sampling process. 
Over the years with the advancement of ML, it has been 
employed to effectively denoise MC renderings. These methods 
leverage neural networks which enables them to clean up images 
more effectively than traditional techniques. Below, we explore 
some of the research papers that use ML methods for denoising 
MC rendering, categorized into kernel prediction, parameter 
prediction, radiance prediction, and temporal denoising. This 
categorization framework, derived from the work of Huo et al. 
[12], provides a structured approach to understanding the 
strengths and limitations of each method. 

1) Kernel prediction: Kernel prediction focuses on directly 

predicting the filtering kernels used to combine neighboring 

pixel values. This enhances the denoising process by adapting 

the kernels to the specific noise characteristics of each pixel. 

This approach is a more flexible and accurate solution compared 

to traditional filtering techniques, particularly in handling 

complex scenes and varying lighting conditions. 

Back et al. [13] introduce a deep learning-based framework 
designed to improve the accuracy of MC rendering by 
effectively combining independent and correlated pixel 
estimates. Their approach utilizes a combination kernel modeled 
as a deep neural network, which optimally weights the 
combination of these pixel estimates, thereby reducing residual 
noise and systematic errors commonly found in existing 
methods like denoising and gradient-domain rendering. The 
framework is robust against outliers, thanks to an extension that 
employs multi-buffered inputs, which further enhances the 
reliability of the results. Experimental evaluations demonstrate 
that this method not only enhances the visual quality of renders 
by preserving high-frequency details and reducing noise but also 
outperforms existing techniques in terms of both numerical 
accuracy and visual fidelity. This makes the approach 
particularly valuable for applications requiring high-quality 
rendering, such as production-level visual effects and interactive 
applications. 

Gharbi et al. [14] introduce a sample-based MC denoising 
technique using a kernel-splatting network. Unlike traditional 
pixel-based methods, their approach operates directly on the raw 
MC samples, leveraging deep learning to map these samples to 
a denoised image. The core innovation lies in a novel kernel-
predicting architecture that splats individual samples onto 
nearby pixels. This method treats each sample independently 
and uses a permutation-invariant design to handle the arbitrary 
order of samples. The kernel-splatting approach is particularly 

effective in managing complex light transport scenarios such as 
motion blur, depth of field, and specular effects. By directly 
processing the sample-level information, the technique achieves 
higher quality results with reduced numerical error and 
improved visual fidelity, especially in low-sample-count 
settings. The network was trained on a large dataset of synthetic 
scenes and demonstrated significant improvements over state-
of-the-art methods in both visual quality and computational 
efficiency [14]. 

Munkberg and Hasselgren et al. [15] propose a novel 
approach to neural denoising in MC path tracing by introducing 
a layered architecture that partitions per-sample data into distinct 
layers. Each layer is processed with unique filter kernels before 
being composited to produce the final output. This approach 
balances computational efficiency with high-quality denoising, 
offering comparable results to more expensive per-sample 
methods while significantly reducing memory and performance 
overhead. The architecture is particularly robust against high-
intensity outliers and performs well even in complex visibility 
scenarios, such as defocus and motion blur. The authors 
demonstrate that their method achieves near real-time 
performance on contemporary GPUs, making it viable for both 
real-time rendering and offline production environments. Future 
work is suggested in extending this layered approach to temporal 
domains and deep compositing workflows, indicating its 
potential for broader applications in rendering technologies. 

2) Parameter prediction: Parameter prediction involves 

training neural networks to predict the optimal parameters for 

traditional filters to enhance their ability to reduce noise while 

preserving image details. 

Xing and Chen [16] introduce an approach to denoising 
path-traced images by combining SURE-based adaptive 
sampling with neural networks. Their process begins with 
generating coarse samples and using Stein’s Unbiased Risk 
Estimator (SURE) to estimate the noise level for each pixel. 
Extra samples are then allocated to pixels with higher noise 
levels. In the reconstruction phase, a MLP network predicts the 
optimal reconstruction parameters based on features extracted 
from the adaptive sampling results, such as shading normal, 
depth, and texture values. These predicted parameters are used 
with an anisotropic filter to produce the final noise-free image. 
This method reduces numerical error as well as enhances visual 
quality compared to existing techniques. 

3) Radiance prediction: Radiance prediction focuses on 

directly estimating the radiance values for each pixel in a MC 

rendering. These methods bypass the need for traditional 

filtering or kernel prediction. They utilize deep learning models 

to map noisy input pixels directly to their denoised counterparts, 

effectively capturing complex relationships between the noisy 

input and the desired output. By predicting radiance directly, 

these approaches can handle high-frequency details and 

complex lighting scenarios more effectively, allowing them to 

be more suitable for applications where visual accuracy is 

needed. 

Xu et al. [17] introduce an adversarial approach for 
denoising MC renderings, leveraging GANs to improve the 
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realism of high-frequency details and global illumination. Their 
method employs a conditioned auxiliary feature modulation 
technique that utilizes auxiliary features such as normal, albedo, 
and depth to enhance the denoising process. The GAN 
framework consists of a denoising network, which predicts the 
clean image, and a critic network, which evaluates the 
perceptual quality of the denoised output. The critic network is 
trained using the Wasserstein distance, which provides a 
smoother measure of perceptual similarity compared to 
traditional losses. This approach enables the denoising network 
to learn from the distribution of high-quality path-traced images, 
resulting in better reconstruction of MC integrals from fewer 
samples. Xu et al. demonstrate that their method outperforms 
previous state-of-the-art techniques in terms of both visual 
quality and computational efficiency, making it suitable for 
high-end production environments. 

The paper by Alsaiari et al. [18] presents a novel approach 
for image denoising using GAN architecture. The method 
involves rendering images with a reduced number of samples 
per pixel, which results in noisy outputs, and then passing these 
images through a GAN-based network that produces high-
quality, photorealistic denoised images in less than a second. 
The proposed network architecture leverages residual blocks, 
skip connections, and batch normalization to enhance the 
denoising process. Despite being trained on a limited dataset of 
40 images, the network demonstrated impressive generalization 
capabilities, effectively denoising images outside the training 
domain, including grainy photographs and medical CT scans. 
The authors also discuss potential future extensions of their 
work, including handling more complex noise patterns such as 
those generated by MC rendering and incorporating additional 
information like depth maps to improve denoising performance 
in scenes with motion blur, depth of field, and global 
illumination. The study underscores the effectiveness of GANs 
in producing high-quality denoised images and suggests further 
exploration of this approach in real-time rendering applications. 

4) Temporal rendering: Temporal rendering is specifically 

designed to address the challenges of ensuring frame-to-frame 

consistency in animated or real-time rendering sequences. Noise 

reduction in MC rendering needs to be effective not just on 

individual frames, but also across time, to prevent flickering or 

temporal artifacts that can detract from the visual experience. 

These methods often utilize recurrent structures to ensure that 

noise is reduced consistently across frames. It preserves 

temporal coherence while maintaining high-quality image 

details. 

Meng et al. [19] introduce a practical and efficient approach 
to real-time MC denoising by leveraging a neural bilateral grid. 
Their method utilizes a convolutional neural network, called 
GuideNet, to predict guide images that direct the placement of 
noisy radiance data into a multi-scale bilateral grid. The grid is 
then sliced to extract denoised data, resulting in high-quality 
renders even from extremely noisy inputs at 1 spp. The proposed 
approach is highly scalable and adaptable to both real-time and 
offline applications, demonstrating superior denoising quality 
compared to existing methods, particularly for low-sample 
scenarios. The study emphasizes the method's ability to maintain 
interactive frame rates while achieving high visual fidelity, 

making it a robust solution for real-time rendering in demanding 
environments. 

B. How do these ML Methods Compare in Terms of 

Performance, Efficiency, and Application? 

These denoising methods analyzed in this study exhibit 
varying degrees of performance, efficiency, and application 
suitability in MC-rendered images. By examining key metrics 
such as rMSE, SSIM, PSNR, and processing time, we can assess 
how each method balances noise reduction, computational 
efficiency, and applicability to different rendering scenarios. 

Methods such as Xu et al. [17] excel with an rMSE of 
0.003164 and a PSNR of 34.194759 dB in the HorseRoom 
scene, outperforming traditional methods like NFOR in 
retaining fine details. These methods are particularly suited for 
scenarios where achieving the highest possible image quality is 
crucial, even if it comes at the cost of longer processing times. 

In environments where real-time performance is essential, 
such as video games, virtual reality, and interactive simulations, 
the kernel-splatting network by Gharbi et al. [14] and the GAN-
based approach by Alsaiari et al. [18] are particularly effective. 
Gharbi et al.’s method [14] achieves an rMSE of 0.026 at 32 spp 
while processing a 1024 × 1024 image in just 6.0 seconds at 4 
spp, making it ideal for real-time applications that require a 
balance between speed and quality. Similarly, Alsaiari et al.’s 
method [18] generates high-quality denoised images in under a 
second, emphasizing rapid processing without significantly 
compromising visual fidelity, making it highly suitable for 
scenarios where quick turnaround times are critical. 

Methods by Jonghee Back et al. [13] and Munkberg and 
Hasselgren [15] offer strong capabilities in handling complex 
lighting environments and preserving intricate details. Jonghee 
Back et al.’s deep combiner for independent and correlated pixel 
estimates achieves a significant reduction in rMSE, such as 
0.0207 in the Bookshelf scene at 64 spp, making it effective in 
handling scenes with intricate lighting and textures. Munkberg 
and Hasselgren's neural denoising method with layer embedding 
also shows strong performance, achieving an rMSE of 0.0288 
and SSIM of 0.941 at 32 spp, making it highly effective for 
maintaining image quality in complex visual effects. 

Xing and Chen’s method [16] leverages adaptive sampling 
based on SURE combined with a modified MLP network to 
predict optimal reconstruction parameters. The method 
demonstrates significant noise reduction with a RelMSE of 
0.00831 in the Sibenik scene at 16.9 spp, and 2.37E-4 in the 
Anim-BlueSphere scene at 30.6 spp. It optimizes sample 
distribution across pixels with varying noise levels, enhancing 
computational efficiency while maintaining high image quality. 
This method is particularly effective for real-time applications 
and interactive graphics, where maintaining quality with lower 
sample counts is crucial. 

C. What are the Current Challenges in the Application of ML 

for Denoising MC Rendering? 

One of the main challenges associated with using ML for 
denoising in MC rendering is its inherent complexity. MC 
rendering simulates how light behaves within a scene by tracing 
numerous random paths. Hence, this results in inherently noisy 
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images and requires a denoising process for better visual quality 
[20]. The primary difficulty lies in the nature of the noise, which 
is stochastic and can vary significantly across different scenes. 
Therefore, denoising algorithms must be adept at distinguishing 
between noise and the true signal to avoid blurring or distorting 
the final image [20]. In addition, the denoising task is 
complicated both by the high dimensionality of the data and the 
complex interplay of light transport phenomena. In this regard, 
a sophisticated ML model is needed to be able to capture these 
intricate relationships with complex data [21, 22]. 

Additionally, the efficiency and computational cost of 
denoising algorithms are also challenges in the MC rendering 
process. Deep learning techniques have shown promise in 
attaining higher quality denoising, but they often come with a 
computational cost and require substantial processing power and 
time for training and inference [23]. This computational 
overhead can make deploying ML-based denoising solutions in 
real-time or interactive rendering scenarios challenging, where 
performance is crucial [24]. Real-time rendering applications, 
such as video games or virtual reality, demand quick and 
efficient processing to maintain smooth and responsive user 
experiences. Therefore, balancing denoising quality and 
computational efficiency in rendering and MC is today's critical 
challenge using ML approaches for denoising [23]. Developing 
methods that optimize this balance is essential to ensure that 
high-quality denoising can be achieved without compromising 
the performance required for real-time applications. This 
involves exploring more efficient algorithms, hardware 
acceleration, and innovative training techniques to reduce 
computational demands while maintaining or improving 
denoising effectiveness. 

The other critical challenge is the generalization of denoising 
algorithms across different scenes and lighting conditions. Noise 
patterns and characteristics of MC renderings can vary greatly 
depending on scene complexity, materials present, and lighting 
setup [25]. For instance, a scene with complex geometry and 
reflective surfaces might produce noise patterns that are vastly 
different from a simple scene with diffuse materials. This 
variability necessitates that ML models are not only trained on 
diverse datasets but are also rigorously tested to ensure their 
effectiveness in new, unseen scenarios. Thus, it is essential to 
practically assess that ML models effectively generalize over 
unseen data and across diverse rendering scenarios in rendering 
pipelines [25]. Robustness to scene variations and the ability to 
adapt to different noise profiles are crucial aspects that need to 
be addressed to make denoising algorithms effective across a 
wide range of rendering scenarios [25][26][27]. Addressing 
these issues involves developing more sophisticated training 
regimes, incorporating a wider range of scenes and conditions, 
and continuously updating models to handle new types of noise 
as they are encountered. 

Besides, ML-based denoising methods further raise issues 
concerning interpretability and transparency for MC rendering. 
Deep learning models are often thought to be black boxes, 
making it difficult to understand the decision process for 
denoising and what features were prioritized in the process [21]. 
This can be problematic for artists and developers who rely on 
precise control over rendering parameters to achieve specific 
visual effects [21]. For instance, they may need to adjust the 

denoising parameters to maintain certain artistic details or to 
ensure the consistency of visual styles across different scenes. 
Without a clear understanding of how the ML model operates, 
making these adjustments becomes exceedingly difficult. This 
lack of interpretability can also hinder debugging and 
improvement efforts, as it is unclear why the model might fail in 
certain scenarios. Thus, improving the interpretability of these 
models while preserving their denoising performance is a 
challenge that needs attention in applying ML for denoising MC 
rendering [21]. 

Table III provides a summary of the performance, efficiency, 
and application of a selection of seven methods. This table 
serves as a quick reference for understanding the strengths and 
limitations of each approach, making it easier for researchers 
and practitioners to select the most appropriate denoising 
method based on their specific needs. By comparing metrics 
such as PSNR, SSIM, and computational demands, the table 
illustrates the diverse range of strategies employed across 
different methods to balance speed and quality. 

IV. CONCLUSION 

This study set out to explore and analyze ML-based 
denoising techniques for MC rendering, focusing on three key 
research questions. Using a SLR approach guided by the 
PRISMA framework, the authors identified, categorized, and 
compared seven peer-reviewed studies published between 2019 
and 2024. These methods were grouped into four main 
categories—radiance prediction, kernel prediction, temporal 
rendering, and adaptive sampling—and evaluated using metrics 
like PSNR, SSIM, and rMSE. Our findings show that deep 
learning models, such as CNNs and GANs, are highly effective 
at reducing noise while preserving important details in MC-
rendered images. However, challenges like high computational 
demands and difficulties in generalizing across different scenes 
still limit their use in real-time applications. 

The main contribution of this work is bringing together a 
fragmented field into a clear and structured framework. This 
makes it easier for practitioners to choose the right denoising 
technique based on their specific needs. For example, kernel-
splatting networks work well for real-time scenarios, while 
adversarial methods excel in producing high-quality results for 
offline production. We also highlighted some critical gaps in the 
literature, such as the need for more interpretable models and 
efficient architectures that strike a better balance between 
quality and computational cost. 

That said, this review isn’t without its limitations. By 
focusing only on studies from 2019 to 2024, we might have 
missed some foundational work from earlier years. Additionally, 
our reliance on databases like IEEE Xplore, ACM, and 
ScienceDirect could introduce bias, and the inclusion of just 12 
papers may not fully capture the diversity of approaches out 
there. While qualitative comparisons provide valuable insights, 
they lack the statistical depth of a meta-analysis, which could 
offer a more quantitative assessment of these methods. 

Looking ahead, there are several exciting directions for 
future research. One promising area is hybrid approaches that 
combine physics-based models with ML techniques to improve 
robustness and accuracy. Another is exploring temporal 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

587 | P a g e  

www.ijacsa.thesai.org 

optimization strategies to reduce flickering artifacts in 
animations. By addressing these challenges, researchers can 
develop deployable solutions that balance photorealism with 
computational efficiency, ultimately transforming workflows in 
industries like film, architecture, and gaming. 

In short, this study provides a comprehensive overview of 
the current state of ML-based denoising for MC rendering, 
identifies key challenges, and suggests practical ways forward. 
The goal is to inspire further innovation in creating denoising 
solutions that are not only powerful but also practical for real-
world applications. 

TABLE III.  SUMMARY OF THE PERFORMANCE, EFFICIENCY, AND APPLICATION OF THE METHODS 

Method rMSE (Range) 
SSIM 

(Range) 
PSNR (dB) Efficiency Application 

Adversarial Monte Carlo Denoising 

by Xu et al. [17] 
0.003164 N/A 34.194759 

High computational 

cost, suited for offline 
rendering 

High-end production 

environments, detailed visual 
effects 

Kernel-Splatting Network by 

Gharbi et al. [14] 
0.026 N/A N/A 

Optimized for fewer 
samples, balance 

between speed and 

quality 

Real-time applications, 

interactive graphics, gaming 

GAN-based Denoising by Alsaiari 

et al.[18] 
N/A 0.938 - 0.941 33.706 - 33.878 

Real-time 

performance, quick 

processing in under a 

second 

Real-time rendering, architectural 

visualization 

Neural Bilateral Grid by Meng et al. 
[19] 

N/A 0.941 33.838 

High real-time 

performance at 61 
FPS, optimized for 

low sample scenarios 

Real-time rendering, gaming, and 
VR 

Deep Combiner for Independent and 

Correlated Pixel Estimates by 

Jonghee Back et al. [13] 

N/A N/A N/A 

Effective in handling 

complex scenes, 

reduces relMSE 

Production-level visual effects, 

interactive applications requiring 

high-quality rendering 

Neural Denoising with Layer 
Embedding by Munkberg and 

Hasselgren [15] 

0.0288 0.941 N/A 

Robust against 
artifacts, effective 

with varying 
configurations 

Offline rendering, flexible in 
handling per-sample, per-pixel, 

and layered configurations 

Path Tracing Denoising based on 

SURE Adaptive Sampling by Xing 
and Chen [16] 

0.00831  N/A N/A 

Adaptive sampling 

with SURE; highly 

efficient in real-time 
scenarios with CUDA 

acceleration 

Interactive graphics, real-time 

applications, scenarios with 
limited computational resources 
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