
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

RSCHED: An Effective Heterogeneous Resource
Management for Simultaneous Execution of

Task-Based Applications

Etienne Ndamlabin, Bérenger Bramas
Inria Nancy – Grand Est, CAMUS Team,

Villers-lès-Nancy, France
ICPS Team, ICube, Illkirch, France

Abstract—Modern parallel architectures have heterogeneous
processors and complex memory hierarchies, offering up to
billion-way parallelism at multiple hierarchical levels. Their
exploitation by HPC applications greatly boosts scientific dis-
coveries and advances, but they are still not fully utilized,
leading to proportionally high energy consumption. The task-
based programming model has demonstrated promising potential
in developing scientific applications on modern high-performance
platforms. This work introduces a new framework for managing
the concurrent execution of task-based applications, RSCHED.
The framework aims to minimize the overall time spent executing
a set of applications and maximize resource utilization. RSCHED
is a two-level resources management framework: resource distri-
bution and task scheduling, with sharable and reusable resources
on the fly. A new model of Gradient Descent has been proposed,
among other strategies for resource distribution, due to its
well-known speedy convergence event in fast-growing systems.
We implemented our proposal on StarPU and evaluated it on
real applications. RSCHED demonstrated the potential to speed
up the overall makespan of executed applications compared to
consecutive execution with an average factor of 10x and the
potential to increase resource utilization.

Keywords—Heterogeneous resource management; scheduling;
task-based applications; gradient descent; StarPU

I. INTRODUCTION

High-performance computing (HPC) is crucial to making
discoveries and advances in several scientific domains (as-
trophysics, climatology, epidemiology, biology, geology, etc.).
HPC offers the ability to perform complex calculations and
massive data processing at very high speed by aggregating
the power of several thousand processing units, called super-
computers. Supercomputers rely on a complex, heterogeneous,
and hierarchical hardware organization. The largest super-
computers are mostly composed of central processing units
(CPUs) and graphical processing units (GPUs)1, or even Field
Programmable Gate Arrays (FPGAs). As parallel systems, they
can process several jobs at the same time by scheduling their
execution on the available resources.

In the current HPC paradigm, there are schedulers at
multiple levels, that all have the same aim: distributing the
workload over hardware resources. At the higher level, the

1https://www.top500.org/

batch-scheduler, like Slurm 2, OAR 3, or OpenPBS 4, manages
the hardware resources of an entire supercomputer by deciding
the order of execution of the jobs submitted by the users.
Submitted jobs are treated by the batch scheduler as black
boxes. This is advantageous because the batch scheduler can
run applications implemented with any technology, giving
freedom to the programmers. However, this approach might
lead to resource wastage and increasing energy consumption.
Such a situation can happen when an application inefficiently
uses the allocated resources, when an adjustment of resources
is required during different phases of execution, or when the
resource manager cannot adapt the resources to the workload
of newly submitted jobs. Especially since the dominant scheme
for scheduling parallel jobs on parallel computers is known
as variable partitioning [1], in which scheduled jobs have
partitioned assigned processors they keep and use throughout
their lifetime. However, executing one job after another is
likely counterproductive, since HPC applications are often
composed of interdependent executing kernels, and therefore
cannot fully use resources due to their precedence constraints.
In the current study, we aim to improve the batch scheduler by
using a dynamic resource allocation strategy. Our objective is
to improve the executions at the scale of the supercomputer, i.e.
to reduce the overall makespan of an application set, and not to
focus on a single application only. In addition, our work is tied
to the task-based method, as we consider that each application
is composed of tasks and that some of them can be executed
on CPU, GPU or both.

In this paper, we present a resource manager for het-
erogeneous environments considering task-based model ap-
plications called RSCHED, aiming at optimizing their usage.
In RSCHED, we propose strategies for resource distribution
between concurrent task-based applications while orchestrating
their execution. We have implemented our proposal within
StarPU [2] and analyzed the performance of our proposal via
diverse experiments. Our contributions can be summarized as
follows:

• We propose a framework for managing the execution
of concurrent task-based applications.

• We propose strategies for dynamically distributing
resources between concurrent task-based applications.

2https://www.schedmd.com/
3https://oar.imag.fr/
4https://www.openpbs.org/

www.ijacsa.thesai.org 60 | P a g e

https://www.top500.org/
https://www.schedmd.com/
https://oar.imag.fr/
https://www.openpbs.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

• We propose a new model of Gradient Descent in a
(three-dimensional) discrete space.

• We propose a strategy to automatically create and
configure a scheduling context for a given task-based
application.

• We present performance analysis and results showing
the effectiveness of our proposals.

The remaining sections of the paper are organized as
follows. In Section II, we introduce the notion of task-based
application and present the state-of-the-art concerning the
scheduling of task-based application under StarPU. Then, in
Section III, we present our proposed resource management for
simultaneous execution of task-based applications. Finally in
Section IV, we evaluate the performance of our proposals.

II. BACKGROUND

A. Task-Based Application

Several strategies to parallelize applications on heteroge-
neous computing nodes aim at maximizing resource usage. The
task-based model has demonstrated high potential in various
fields [3], [4], [5]. This method allows obtaining hardware-
independent algorithm descriptions while developing efficient
HPC applications. The level of abstraction and encapsulation
relieves the users by shifting the complexity to the runtime sys-
tems, where researchers can invest the effort to create generic
and efficient optimization solutions. The HPC community has
at its disposal highly documented and maintained runtime
systems supporting the task-based model, such as Parsec [6],
and StarPU [2] a runtime system library developed at Inria
Bordeaux.

Among other runtime systems supporting the task-based
model, StarPU has a plus in that it has a component – hypervi-
sor – allowing concurrent execution of task-based applications
with minimal interference [7]. StarPU hypervisor provides con-
fined execution environments – scheduling contexts – which
can be used to partition computing resources. StarPU schedul-
ing contexts can be dynamically resized and linked to a well-
designed scheduler to optimize the allocation of computing
resources among concurrent task-based applications/libraries.
A scheduler can be chosen for each application via its linked
scheduling context. Since task-based applications have various
types and structures, a scheduler can be effective only for some
applications, or a specific type of machine architecture [8],
[9], [10], [11], [12]. StarPU also proposes basic strategies for
resizing scheduling contexts and a platform for implementing
additional custom ones.

Different task-based frameworks have been used to develop
efficient HPC applications, such as the Lattice-Boltzmann
method [13], [14], the fast-multipole method (FMM) [3], [4],
[15], N-body simulations [16], linear algebra solvers [17],
[18], [19], H-matrix solvers [20], the particle-in-cell method
[21], the polar decomposition method [22], seismic imaging
[23], [24], [25], Galerkin solver [26], to mention a few. This
demonstrates that at least at a moderate scale and when used
by experts, the existing task-based runtime systems can be
efficient for various classes of algorithms.

1) Task-based parallelization: The task-based method di-
vides an application into interdependent sections, called tasks.
The dependencies between the tasks ensure valid parallel
executions and task execution orders without race conditions.
This can be likened to a graph, where the nodes represent the
tasks and the edges represent the dependencies. We consider
a task-based application as a Directed Acyclic Graph (DAG)
G(V,E) where V = {t1, t2, ..., tn} is the set of nodes and
E = {ei,j = (ti, tj)|1 ≤ i, j ≤ n, i ̸= j} the set of edges
representing the existing data dependencies between tasks. An
edge (ti, tj) ∈ E if there is a precedence constraint between
ti and tj ∈ V , such that tj can be executed only after the task
ti is over, and the data made available.

A task ti is a computational element executable on one
or (potentially) several types of hardware and incorporates
different interchangeable kernels, each targeting a specific
architecture. For instance, a matrix-matrix multiplication task
in linear algebra could be either a call to cuBLAS and executed
on a GPU, or a call to Intel MKL and executed on a CPU, but
both kernels return equivalent results.

B. Task Scheduling and Related Work

The scheduling problem on heterogeneous computing sys-
tems has been proven NP-complete [27], whether in static or
dynamic situations. Dealing with the first situation requires
prediction models which are not always accurate, and a knowl-
edge of the complete view of the task graph [28], which need
expensive analysis mechanisms and incur significant overhead.
The latter one is the most used [29], [30], [31], [25], [32], [22],
[4] and has demonstrated its ability to deliver high performance
with reduced overhead.

The two main steps of a scheduler are task selection or
prioritization, and resource selection. This action can be static
or dynamic according to the scheduling situation.

Due to the evolution of computing architectures, task
scheduling in heterogeneous computing is an aged but hot
topic. Various strategies for task scheduling have been pro-
posed, with Heterogeneous Earliest Finish Time (HEFT) being
one of the most widely used. [33] In HEFT, tasks are priori-
tized using a heuristic based on a prediction of the processing
length of the tasks and the data transfer time between them.
Whereas, resource selection is based on a heuristic that de-
termines the resource providing the best finish time for the
tasks according to the scheduling decision of previous tasks.
Several variances of this approach with more advanced ranking
and resource selection models have been proposed [34], [35],
[36], [37]. These schedulers have in common the limitations
of static schedulers previously argued, and therefore rely on
greedy algorithms. In a changing environment, re-prioritizing
the tasks could be necessary, which can add more overhead. A
larger spectrum of task schedulers can be found in the literature
[38], [39].

1) Task scheduling in StarPU: Our scheduling process fol-
lows the terminology of StarPU. In StarPU, the user first splits
the problem into smaller computational tasks. Afterwards,
the tasks are implemented into codelets, which are simple C
functions. One task can be implemented differently in several
codelets according to the targeted hardware, allowing the user
to harness special accelerators, such as vectorial CPU cores

www.ijacsa.thesai.org 61 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

or OpenCL devices. In StarPU terminology, these devices are
called workers. For each task, the user also has to describe
precisely the input data, in read mode, and the output data, in
write or read/write mode. StarPU considers that a scheduler
has an entry point where the ready tasks are pushed, and it
provides a request method where workers pop the tasks to
execute, as depicted in Fig. 1.

Fig. 1. Schematic view of task-based runtime system organization. A
program as a sequential task flow (STF) model and converted into
tasks/dependencies by the RS. New ready tasks pushed on resolved

dependencies. Any idle worker calls the scheduler pop function to request a
task to execute.

In StarPU, both pop/push methods are directly called by
the workers that either release the dependencies or ask for a
task. Consequently, assigning a task to a given worker means
returning this task when the worker calls the pop method.
During the execution of a StarPU program, it is possible to
choose among several schedulers. The DMDA (deque model
data-aware) scheduler is one of the most famous and sophis-
ticated. It uses a HEFT-like strategy and tries to minimize the
makespan by using a look-ahead strategy and data transfer
costs. Another effective StarPU scheduler is Heteroprio [40],
[4], a semi-automatic scheduler designed for heterogeneous
machines where users must provide task priorities. A fully
automatic version of the Heteroprio scheduler that computes
efficient priorities is proposed [8]. Another extension of Het-
eroprio is the MulTreePrio [9] scheduler based on a set of
balanced trees data structure, in which assignment of tasks
to available resources is done according to priority scores
per task for each type of processing unit. MulTreePrio makes
overall good scheduling results thanks to its fast and efficient
heuristics, despite the considerable variety of DAG structures
from one application to another.

In all of the above, one task-based application is considered
for execution/scheduling.

2) Scheduling concurrent task-based applications: In gen-
eral, there is contention for the usage of resources in an HPC
environment. Each user’s application requests a number of
processing resources (CPU/GPU for instance), an entire node
or part of it. However, in both cases, it is up to the user to
determine the number and type of resources, therefore this
might often lead to resource wastage.

The problem presented here has a completely distinct
parallelization and resources management approaches in cloud
computing and Big-data frameworks, such as Spark5 or Apache
Hadoop6. In cloud computing, the scheduler orchestrates dif-
ferent executions from different types of applications, such as
Big data programs, over given hardware resources. It has a

5https://spark.apache.org/
6https://hadoop.apache.org/

view on the different operations that compose the executions,
hence it can schedule and interleave them finely. However,
there is a gap between the programming model and resource
management.

In the basic HPC context, there is not yet a dynamic
solution for concurrent job execution on the same resource
as it is done in a cloud environment. In Slurm for instance,
there is the notion of Job Array which consists of submitting
and managing collections of similar jobs such that they may
run in parallel with different input parameters or data on a
node. However, it is the responsibility of the programmer to
orchestrate the execution of the tasks over the resources. The
same problem is encountered when several jobs are submitted
separately, but now at the level of the scheduler.

The RECIPE project [41], [42] attempts to control the
resources more efficiently without bridging the gap with the
applications, which will end as being oriented to cloud com-
puting instead of HPC.

Most recently, other researchers proposed a method to build
scalable containerized HPC clusters in the Cloud [43], [44],
by containerizing three batch schedulers, namely SLURM,
OpenPBS, and OAR. They attempt to solve the problem of
scaling, dynamically adding or removing containerized HPC
nodes, without altering neither the Cloud orchestrator nor the
HPC scheduler. This works presented promising preliminary
results in that direction, scaling jobs do not impact running
or pending jobs. However, it is still in the direction of Cloud
Computing, where some researchers are trying to answer the
question ”Is the Cloud able to encompass all the categories of
scientific issues in a unified way?”. In addition, this does not
consider task-based applications, but MPI-based applications
only.

In most of the works presented above, it is either cloud
oriented, or based on basic batch scheduling-like approaches
using the variable partitioning scheme [1]. In both case, we
can have more idle resources, which could have been used
by starved applications, or could have helped in fastening
the overall completion of applications and therefore in op-
timizing energy consumption. However, StarPU [7] offers a
good platform to dynamically partition computing resources
into contexts that can be used to execute several applications,
and with the possibility to share resource between them.
Nevertheless, there is no means to launch several applications
nor dynamically distribute the workers among them.

III. PRESENTATION OF RSCHED

In this section, we present our concurrent execution ap-
proach, named RSCHED. Let us consider that we have n
concurrent users’ applications requesting resources for exe-
cution in a node with p workers (nb cpus the number of
CPUS and nb gpus the number of GPUS). The main objective
of RSCHED is to minimize the overall makespan for all
the n applications. A secondary objective of RSCHED is
maximizing resource utilization, which is a well-known energy
consumption reduction approach (Fig. 2).

The RSCHED framework has a two-level scheduling
model: resource distribution and task scheduling. The schedul-
ing at each level assumes the resources are sharable between

www.ijacsa.thesai.org 62 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

Dependency
Manager Scheduler 1

Worker 0

Worker 2

Pop

STF

RSCHED :
Resource

distribution
&

Execution
orchestration

App 1

Dependency
Manager

Scheduler 2 Worker 1
App 2

Dependency
Manager Scheduler n

Worker (p-r)

Worker (p-r’)

Worker (p-1)

App n

... ...

Push
(Ready Tasks)

STF

STF

Push
(Ready Tasks)

Push
(Ready Tasks)

Pop

Pop

(re-)Distribute

(re-)Distribute

(re-)Distribute

Fig. 2. Schematic view runtime system organization with n concurrent
task-based applications and p workers.

the applications, and reusable on the fly (for instance when an
application ends), even without a new resource subscription.
The resource distribution aims at distributing the available
resource among the application, and task scheduling to effec-
tively map each task unto a given compute resource.

That said, our model is intended to be more flexible for
efficient resource usage than basic batch scheduling-like ap-
proaches. Idle resources can be reused by starved applications
(even before the completion of the application to which they
have been assigned). For shared resources, the end of one
application can help in fastening the completion of others.

Before the execution of an application, a task scheduler is
associated with a separate context linked to it. The required
resource distribution can be done before any task is pushed, or
after all tasks have been pushed but no task has been executed.
In the beginning, the lack of information on the applications
makes it difficult to process an advanced distribution strategy.
That is why in the first case, a naive strategy can be used to
distribute the workers between the contexts, and afterward a
more advanced distribution strategy. In the second case, we
can have sufficient information on the applications to process
an advanced distribution strategy before any task is executed.

A compromise between having all information before start-
ing and starting sooner is to process an advanced distribution
at an arbitrary time after the tasks have started to be pushed
and executed. That time could be for instance when any first
application completes its execution, or after all tasks have been
pushed. The execution of tasks starts as soon as possible,
and afterward, we re-distribute workers to the rest of the
applications to balance the load and therefore minimize the
overall makespan. While distributing resources, two contexts
may share some workers, but with a possible performance
penalty, due to context switches.

We assume all the n applications were submitted before
the distribution. However, we propose early investigations of
continuous application arrivals (mimicked by the proposed
resizing options) that will be properly and intensively investi-
gated in our future work.

A. RSCHED API

To distribute resources among task-based applications, the
RSCHED’s API requires their performances on the targeted

hardware. We assume in this work that we have two types of
workers, CPUs and GPUs. For each application, the required
information are the following:

• CPUW : Total (sequential) CPU workload of the graph
on the targeted CPU.

• GPUW : Total (sequential) GPU workload of the graph
on the targeted GPU.

• CPUPW : Total (sequential) pure CPU workload of
the graph on the targeted CPU.

• GPUPW : Total (sequential) pure GPU workload of
the graph on the targeted GPU.

By pure CPU (or GPU) workload, we mean the workload
of tasks that can only be executed by a CPU (or GPU).
Providing those pieces of information implies knowing (an
approximation of) the processing time of each task in the
application per type of worker. There are several means of
obtaining such information, like Machine Learning, or history-
based performance models as it exists in StarPU.

The constraints over this information are given by the Rule
1.

Rule 1. Given the required information as defined above,
either the total workload is equal to the pure one for all the
types of workers, or strictly greater than the pure one for all
(see Eq. 1 and 2).

CPUW ≥ CPUPW ANDANDAND GPUW ≥ GPUPW (1)
(CPUW = CPUPW ANDANDAND GPUW = GPUPW) OROROR
(CPUW > CPUPW ANDANDAND GPUW > GPUPW)

(2)

Proof: The proof of Eq. 1 is obvious. For Eq. 2, there are
two cases to have equality: all the tasks are either pure CPU
or pure GPU. In both cases, the other type of worker will have
zero workload.

1) RSCHED resource distribution: Given the n applica-
tions with the required information described in the last
section, a distribution strategy should produce the following
information for each graph:

• LCPUS : List of CPUs assigned.

• LGPUS : List of GPUs assigned.

• #CPUS: Number of distinct CPUs assigned
(#CPUS = |LCPUS |).

• #GPUS: Number of distinct GPUs assigned
(#GPUS = |LGPUS |).

• CPUSPR: The power rate of the assigned CPUs (0 ≤
CPUSPR ≤ #CPUS).

• GPUSPR: The power rate of the assigned GPUs (0 ≤
GPUSPR ≤ #GPUS).

Rule 2. Each application must receive at least one worker,
and applications can share all the workers.

(#CPUS +#GPUS > 0.0) ANDANDAND
(0.0 ≤

∑
0≤r≤n #CPUSr ≤ n× nb cpus) ANDANDAND

(0.0 ≤
∑

0≤r≤n #GPUSr ≤ n× nb gpus)
(3)

www.ijacsa.thesai.org 63 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

Rule 3. Each application must receive at least one worker per
type of pure workload.

(CPUPW = 0.0 OROROR (CPUPW ̸= 0.0 ANDANDAND #CPUS > 0.0)) ANDANDAND
(GPUPW = 0.0 OROROR (GPUPW ̸= 0.0 ANDANDAND #GPUS > 0.0))

(4)

An estimation of the makespan of each application is used
as a building block of our strategies, given a set of workers
(CPUs/GPUs) assigned to the applications. We proposed an
estimation called “Ideal Makespan”, and more details are given
in Appendix (see Algorithm ??). The following metrics are
used in the evaluation of our “Ideal Makespan”.

When an application has a pure workload for a given
type of worker, there is a minimum length constraint over its
makespan. We denote them as tgpuminM and tcpuminM (see
Eq. 5 and 6).

tgpuminM =
GPUPW × coef par eff#GPUS+#CPUS−1

#GPUS
(5)

tcpuminM =
CPUPW × coef par eff#GPUS+#CPUS−1

#CPUS
(6)

In the case no CPUs (or GPUs) are assigned unto the
application, tcpuminM (or tgpuminM) is equal to zero.

The general formulation of our makespan estimation is
given by Eq. 7.

ideal makespan = MAX(tcpuminM , tgpuminM)

+
cpu rem wl

#CPUS +#GPUS × cpu rem wl

gpu rem wl
(7)

Where cpu rem wl (resp. gpu rem wl) is the exceed-
ing CPU (resp. GPU) workload compared to the gap be-
tween tgpuminM and tgpuminM , and the CPU/GPU (resp.
GPU/CPU) speedup.

In this work, we present four distribution strategies: Lp-
Solve, MinMaxWL (Min-Max Workload balancing), DSR-
CLUS (Dedicated plus Shared Resource with Clustering) and
DSR-GD (Dedicated plus Shared Resource with Gradient
Descent).

a) LpSolve: In this strategy, we rely on the linear pro-
gramming model presented in a previous study [4]. Originally,
this model was employed to compute an ideal makespan (a
theoretical lower bound) for tasks executed on heterogeneous
architectures. The model is given by:

Objective function : min(T)∑
ω inΩ

αω
1 tω1 = t1 ≤ T∑

ω inΩ

αω
2 tω2 = t2 ≤ T

...∑
ω inΩ

αω
P tωP = tP ≤ T

(8)

P∑
p=1

α1
p = 1

P∑
p=1

α2
p = 1

...
P∑

p=1
α
|Ω|
p = 1

(9)

Here, P denotes the number of processing units and |Ω|
is the total number of tasks. The coefficient αω

p indicates the
proportion of task ω processed by unit p, and tωp represents the
time taken to complete task ω on unit p, given that this duration
varies based on the type of the processing unit. Accordingly,
the first system determines the computation duration for each
unit, with T being the longest duration. The second part
ensures that each task is computed at 100%.

While this model provides an upper bound for ideal per-
formance, it doesn’t account for the dependencies between the
task order and consider that tasks can be divided among various
processing units.

In our adaptation, we assume that a single application
consists of three tasks: one for exclusive CPU work, another
for exclusive GPU work, and the last one for work that can be
executed on either CPU or GPU. Given this characterization,
the aforementioned LP model remains applicable.

However, our focus isn’t on the ideal makespan T , but on
the α coefficients as we aim to find the most efficient way
to distribute the application across processing units. Although
the LP provides an optimal distribution for an ideal system,
it also guides us on the proportion of each application that
should be allotted to each processing unit type. However,
this distribution might be inefficient in real-world scenarios,
leading to a task being fragmented across all units or a skewed
allocation, like 99% on one unit and 1% on another, which
may not always be practical. Consequently, it’s essential to
transform these coefficients into practical distribution values
to derive a feasible scheduling strategy.

To achieve this, we use a two-step method. First, we sum
the distribution coefficients per unit type to determine the
fraction of each application designated for every processing
unit type. For instance, if the LP solution suggests distributing
an application as 0.1 and 0.4 across two CPUs, and 0.2, 0.2,
and 0.1 across three GPUs, we infer it should be equally split
(0.5 for CPU and 0.5 for GPU). Subsequently, we decide
on the application distribution based on these values. In the
next step, we compute the processing time for each unit type
by multiplying the number of a given unit type with T . For
instance, with two CPUs and a makespan of 10s, we have
20s of total CPU time to distribute. Each application is then
assumed to use a fraction of this time proportional to its
distribution coefficient. Our greedy algorithm identifies the
application with the highest use proportion and allocates it to
the processing unit with the least utilization, continuing until
every application has been entirely mapped to processing units.

b) DSR (Dedicated plus Shared Resource) strategies:
For illustrations, let us consider for instance that we have three
applications, four CPUs, and two GPUs. The DSR strategies

www.ijacsa.thesai.org 64 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

proceed in two steps to distribute the workers among the
applications:

The first step consists in assigning dedicated (unshared)
workers (GPUs or CPUs) to each application, proportionally
to their GPU/CPU workload compared to the sum of all the
applications’ workloads. Supposed the proportions of CPU
workloads (cpu pwl) are 0.31, 0.56, and 0.13, the numbers
of dedicated CPUs (given by ⌊nb cpus× cpu pwl⌋) will
be respectively ⌊4× 0.31⌋ = ⌊1.24⌋ = 1, ⌊4× 0.56⌋ =
⌊2.24⌋ = 2, and ⌊4× 0.13⌋ = ⌊0.52⌋ = 0. In that case,
the number of remaining CPUs is 1. The same is similarly
done for GPUs. In the case of hybrid workloads, and if the
standard deviation between the GPU/CPU speedups is above
a certain threshold, we proceed to the barter which consists of
exchanging GPU against CPUs to accelerate the most GPU-
optimized applications.

The second step involves sharing the remaining workers to
the applications, using a given technique. Here we proposed
two DSR strategies, based on two different techniques for
workers sharing, the clustering and the gradient descent: DRS-
CLUS (Dedicated plus Shared Resource with Clustering) and
DSR-GD (Dedicated plus Shared Resource with Gradient
Descent). The sharing process is done based on the remaining
cpu pwl (here in the case of CPUs, we have: 0.24, 0.24, and
0.52).

As for the DRS-CLUS strategy, resource sharing is done
as follows. The number of clusters is equal to the number of
remaining workers. The workers/applications mapping is done
to balance the load over the workers as much as possible.

In the DSR-GD strategy, the second step is done as follows
(see Algorithm ?? in Appendix, from lines 18 to 24). The
remaining workers are shared between applications using a
new model of gradient descent (GD) in a (three-dimensional)
discrete space.

The Gradient Descent is an efficient strategy well-known
for its speedy convergence in convex and smooth optimization
problems (if well-tuned), even in low memory, and computa-
tional loading environments [45], [46].

Our GD strategy is modelled as follows:

Given the CPUs and GPUs IDs, {0,1,2,3} and {0,1}
respectively, our research space is modelled as a three-
dimensional discrete space (X, Y, Z):

• X: The numbers of assigned CPUs (#CPUS) per
graph. Each application can have from zero to the
number of CPUs (Ex. {1,2,1}, the first app has 1 CPU,
the second one 2 CPUs, and the third one has 1 CPU).

• Y: The numbers of assigned GPUs (#GPUS) per
graph. Each application can have from zero to the
number of GPUs (Ex. {1,1,1}, the first app has 1 GPU,
the second one 1 GPU, and the third one has 1 GPU).

• Z: The possible (graph-to-gpu/cpu) mappings given X
and Y. An example of mapping related to the Y and Y
ones above is {{0}, {0}}, {{1, 2}, {0}}, {{3}, {1}}.
In this example, the first app has the CPU id=0 and
the GPU id=0, app 2 has the CPU ids=1,2 and the
GPU id=0 and app 3 has the CPU id=3 and the GPU

CPU possible
assignements

CPU possible assignements

app1i
0
1
2
3

app2i
0,1
0,2
0,3

1,2
1,3

2,3

app3i
0
1
2
3

GPU possible assignements

app1j
0
1

app2j
0
1

app3j
0
1

(a) Naive possible mappings

CPU possible assignements

app1i
0

app2i
1,2

0,1

app3i
0
1
3

0
1
2

GPU possible assignements

app1j
0

app2j
1

0

app3j
0

1

(b) Improved mappings

Fig. 3. Illustration of determination of possible mappings with three
applications, four CPUs, and two GPUs, and given that X={1,2,1} and

Y={1,1,1}.
The improved version has fewer duplicates in terms of obtained mappings

24 vs 768).

id=1. We can see that app 1 and app 2 share one GPU
together.

Iteration in the axis is done as follows:

• The indexes in X and Y can be seen as permutations
with repetition of a possible number of assigned
workers in nb graphs positions:

◦ Xi ∈ {{0,0,0}, {0,0,1}, ... , {0,0,4}, {0,1,0},
... ,{4,4,4}}. By looking carefully, we can
see that each Xi is likened to “i” in base
(nb cpus+ 1)

◦ Yj ∈ {{0,0,0}, {0,0,1}, {0,0,2}, {0,1,0}, ...
,{2,2,2}}. In like manner, Yi is likened to “j”
in base (nb gpus+ 1)

• Zk (or Zijk): The k-th possible mapping, given Xi and
Yj . One naive way to get the Zk’s values is to generate
the different 2-uplets, of the possible CPUs assignment
given Xi and the possible GPUs assignment given Yj .
For our example, Fig. 3(b) illustrates the determination
of possible mappings and how to find the Zk. We have
Z = (app1i × app2i × app3i) × (app1j × app2j ×
app3j). While the naive version leads to ((4×6×4)×
(2× 2× 2) = 96× 8 =) 768 possible mappings, the
improved one gives ((1×2×3)×(1×2×2) = 6×4 =)
24 possible mappings. The improved version has far
fewer duplicates in obtained possible mappings, and
this is for only three applications.

This model presents the whole research space. However,
during our research process, the search space is circumscribed
around the convex zone containing our global optimum. This
is done by setting for each application the minimum number
of workers (CPUs and GPUs) obtained in step one, and the
maximum by adding the number of workers not yet assigned.
Thus, we reduce the search space and speed up the search.

Our gradient function is evaluated as a symmetric linear
interpolation [47]. Our search process follows the pattern
direction [48], first, we search towards the X direction, then
the Y direction, and finally the Z direction. To ensure process
time scaling, the learning rates for the different axes are
taux = 0.001 × (

⌊
nb graphs/

√
nb cpus

⌋
+ 1), tauy =

0.001× (
⌊
nb graphs/

√
nb gpus

⌋
+1) and tauz = 0.0005×

(
⌊
nb graphs/

√
nb cpus+ nb gpus

⌋
+ 1).

c) MinMaxWL (Min-Max Workload balancing): The
MinMaxWL algorithm is a load-balancing strategy that dis-

www.ijacsa.thesai.org 65 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

tributes workers among applications by minimizing the max-
imum ideal makespan. The strategy is depicted in Algorithm
2 (in Appendix), and has four main steps.

First of all, it assigns one worker to each application having
a pure workload according to the type of worker (from lines
3 to 13). While trying to assign a worker to the current
application, if there are no remaining workers of the type,
the application shares one with the under-loaded application
related to that type. A backpropagation is employed in the
case of sharing to ensure load-balancing when less-loaded
applications are treated after more-loaded ones.

The second step is to ensure all the applications have at
least one worker, by assigning a worker to applications without
a pure workload (from lines 15 to 28). Since those applications
are hybrid, the type of worker to assign is the fastest on the
application. A similar sharing process is also employed, but
this time the sharing is made on the worker, leading to the
smallest makespan at the point.

Finally, while there are remaining workers (per type of
worker), it assigns a worker to the application that will mini-
mize the maximum ideal makespan among all the applications.

2) Distribution options: If the distribution of resources to
the applications is accurate, the applications will end almost
at the same time, and so will the workers. Otherwise, some
resources could be idle for a long, while remaining applications
may need them. To deal with that situation, a redistribution
of the resources might be necessary. One crucial aspect to
consider for it is the condition of resizing, the when.

The condition of resizing we employed is the following:

• An application just ended, and there remain applica-
tions to run.

• There is a significant standard deviation between the
progress rate of the applications.

The estimation process time (workload) for a CPU or
GPU may differ from the effective processing time during
the execution. For instance, let us suppose an application
with a CPU workload of 100s, and that has been assigned
10 CPU workers. Suppose 5s after executions start, there is
a need for redistribution, and it remains at an overall 20s
processing time for the workload. We would have expected
having executed 5 × 10 = 50s for the application, whereas
we have 100 − 20 = 80s. The progress rate in this case is
therefore equal to 80/50 = 1.6; which means the application
is running faster than expected. Now we know that possibly
the application may end in (20/1.6)/10 = 1.2s instead of
20/10 = 2s.

Before the redistribution, we adjust the workload of each
application according to its progress rate. We have proposed
two resource redistribution options.

a) One Distribution: This is the default behavior, where
the distribution is done once and for all.

b) Multiple distributions: Here we do the distribution
as initially, but considering the adjusted workloads of the
remaining applications.

c) Inherit released workers: Here we distribute the re-
leased workers (by the just-ended application) to the remaining
ones, with high privilege to those that were delaying.

B. RSCHED Implementation in StarPU

StarPU offers a platform to dynamically construct, delete,
and modify Scheduling Contexts, which are used to execute
several parallel kernels in an isolated way and without interfer-
ence. This allows the users to assign workers to the contexts, at
their creation time, or resize them during program execution.
However, this is subject to the knowledge of the number of
workers needed for each scheduling context. StarPU proposes
online performance tools to monitor the execution of tasks, to
make execution time estimations.

1) Multiple task-based applications: There are several
applications implemented in StarPU. However, there is no
mechanism to launch or orchestrate the execution of concurrent
applications. For the sake of simplicity, instead of using several
different applications, we have exploited the implementation
of Cholesky factorization to have several independent appli-
cations. The Cholesky application in StarPU is implemented
with a performance model for each codelet. We have added a
parameter to specify the number of applications to create, and
for each application, we gave the possibility to specify the size
and the number of blocks via environment variables.

2) Context creation and workload determination: For each
application, a separate context is created and a task scheduler
is associated with it. In this work, we have chosen to use
DMDA as a scheduler for all the applications. DMDA relies
on a historical performance model to be able to estimate in
advance the duration of a codelet on each kind of processing
unit. Using StarPU historical performance model, we have
been able to compute the different workloads of the concurrent
applications.

IV. PERFORMANCE STUDY

A. Experiments Setup

1) Hardware: We conducted our experiments on three
configurations with different GPU models as follows:

• A100: Composed of two 32-core AMD Zen3 EPYC
7513 @ 2.60 GHz, and 2 NVIDIA A100 (40GB). We
use 30 CPU cores and 16 CUDA streams per GPU.

• Quadro: Composed of 2 Icosa-core Cascade Lake Intel
Xeon Gold 5218R CPU @ 2.10 GHz, and 2 NVIDIA
Quadro RTX8000 (48GB). We use 30 CPU cores and
16 CUDA streams per GPU.

• K40M: Composed of 2 Dodeca-cores Haswell Intel
Xeon E5-2680 v3 2.5 GHz, and 4 K40m GPUs
(12GB). We use 20 CPU cores and 8 CUDA streams
per GPU.

We have configured StarPU as follows. For each configura-
tion, we set the environment variables STARPU NCPU to the
number of CPU cores, STARPU NCUDA to the number of
GPU, and STARPU NWORKER PER CUDA to the number
of CUDA streams. Therefore, for all the configurations, we
have more GPU workers than CPU ones.

www.ijacsa.thesai.org 66 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

2) Task-based applications: We implemented Cholesky
factorization in StarPU and tested it across twelve different
configurations as follows:

• app0: Matrix size of 3.200, with 5 blocks

• app1: Matrix size of 3.200, with 10 blocks

• app2: Matrix size of 6.400, with 10 blocks

• app3: Matrix size of 6.400, with 20 blocks

• app4: Matrix size of 9.600, with 10 blocks

• app5: Matrix size of 9.600, with 30 blocks

• app6: Matrix size of 19.200, with 20 blocks

• app7: Matrix size of 19.200, with 30 blocks

• app8: Matrix size of 25.600, with 40 blocks

• app9: Matrix size of 25.600, with 80 blocks

• app10: Matrix size of 76.800, with 80 blocks

• app11: Matrix size of 76.800, with 120 blocks

3) Software configuration: For each application, we have
made different affinities related to the types of compute units
(CPU or GPU). By default, all the tasks of the Cholesky
application have two codelets, one for CPU and one for GPU.
Overall, we have used the three following affinities:

• Default (affinity0): each task has one CPU codelet and
GPU codelet.

• Only CPU (affinity1): all the tasks have only a CPU
codelet.

• Only GPU (affinity2): all the tasks have only a GPU
codelet.

To analyze the influence of the number of concurrent
applications, and of the workload, we have made experiments
with 3, 6, and 12 concurrent applications. To be in accord with
a realistic scenario, we have shuffled the list of applications
in each experiment. Then we took consecutive applications to
form the groups. For instance, in the case of three applica-
tions, we have executed concurrently the applications at the
first, second third positions, then the fourth, fifth, and sixth
positions, and so on.

B. Metrics

In our experiments, we have compared our four distribution
strategies against the concurrent execution using a unique
context with all the workers (DMDA CONC), and against
sequential execution (i.e. one application after the another)
using a unique context with all the workers (DMDA SEQ).

As metrics, we have considered the speedup, the data
transfer, and the resource utilization efficiency (RUE). We also
compared the distribution processing time of our strategies.

The RUE is a new metric hereby introduced and defined
as follows:

Definition 1. We define the RUE as the ability to maximize the
utilization of the resource, that is, using the adequate number
and types of resources for the execution of each application.

The RUE is given by Eq. 10, which is the product of the
resource utilization and the efficiency [49].

RUE =

∑
p∈USED WK{processing time of worker p}∑
p∈USED WK{total active time of worker p}

× speedup

|USED WK|
(10)

USED WK is the list of distinct workers (CPU or GPU)
used for the execution of the applications, whether concur-
rently or sequentially (i.e. in DMDA SEQ). We normalized
the RUE such that the values lie between 0 and 1.

C. Experiments Results and Analysis

1) Default experiments: We first present the performance
of our strategies (LpSolve, MinMaxWL, DSR-GD, and DSR-
CLUS), and of DMDA CONC, against DMDA SEQ, in terms
of Speedup, then in terms of data transfer, and finally in terms
of RUE.

a) Speedup: The big picture of the speedup realized by
the different strategies compared to DMDA SEQ is presented
in Fig. 4. For all the configurations and affinities, the LpSolve,
MinMaxWL, DSR-GD, DSR-CLUS, and DMDA CONC can
significantly accelerate the execution DMDA SEQ (Fig. 4b).
Moreover, our strategies (except MinMaxWL) perform better
even than DMDA CONC with the increase in the number
of applications. We observe in this study an outperformance
over DMDA CONC in more than 50% of cases for LpSolve,
and more than 75% of cases for DSR-GD and DSR-CLUS
(Fig. 4b).

DSR-GD and DSR-CLUS reach an acceleration of 40×
compared to DMDA SEQ. However, DSR-GD outperforms
DSR-CLUS in more than 50% of situations, observed while we
have an increase in applications. This means that conceptually,
the Gradient Descent performs better than the clustering since
the two strategies have the same building block. We observe
that the speedup of the strategies increases with the number of
concurrent applications (Fig. 4a). The study of the variation of
the speedup according to the workload and of the GPU/CPU
acceleration (see Fig. 5 and Fig. 6) reveals that DSR-GD
and DSR-CLUS perform better when the percentage of the
standard deviation of GPU/CPU acceleration among the appli-
cation increases. This is explained by the employed bartering
technique that gives GPU in preference to more accelerated
applications in exchange for CPU to others.

The study of the variation of the speedup according to the
number of applications over the different hardware configura-
tions (Fig. 7) reveals that the strategies perform better on recent
architectures (Quadro and A100) which have more accelerated
GPU than on older ones (K40M). More specifically, DSR-GD
and DSR-CLUS perform better than the other strategies, due
to the same reasons as previously.

Globally, the DSR-GD realizes better speedup and in more
of the situations than the others, then DSR-CLUS followed by
LpSolve.

www.ijacsa.thesai.org 67 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

3 apps 6 apps 12 apps

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

S
pe

ed
up

 v
s.

 D
M

D
A

_S
E

Q Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

(a) Speedup obtained for the 3, 6, and 12 concurrent applications.

0

10

20

30

40

S
pe

ed
up

 v
s.

 D
M

D
A

_S
E

Q Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

(b) Speedup summary

Fig. 4. Speedup of LpSolve, MinMaxWL, DSR-GD, DSR-CLUS, DMDA CONC against DMDA SEQ for all the affinities (affinity0, affinity1, affinity2) and
all the hardware configurations (K40M, Quadro, and A100).

[0 to 15 min]]15 to 30 min]]30 to 60 min]

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

S
pe

ed
up

 v
s.

 D
M

D
A

_S
E

Q Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

Fig. 5. Speedup of LpSolve, MinMaxWL, DSR-GD, DSR-CLUS,
DMDA CONC against DMDA SEQ according to the average workload in

minute, on K40M, Quadro or A100.

[0 to 50 %]]50 to 100 %]]100 to 150 %]

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

S
pe

ed
up

 v
s.

 D
M

D
A

_S
E

Q Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

Fig. 6. Speedup of LpSolve, MinMaxWL, DSR-GD, DSR-CLUS,
DMDA CONC against DMDA SEQ according to the standard deviation

percentage of GPU/CPU speedup between the applications, on K40M,
Quadro or A100.

b) Data transfer: The total amount of memory trans-
fer obtained with the different strategies are provided in
Fig. 9. All the strategies for concurrent execution used in
this study (LpSolve, MinMaxWL, DSR-GD, DSR-CLUS, and
DMDA CONC) significantly reduce the total memory transfer
compared to the sequential execution (Fig. 9b), DSR-CLUS
been the best one.

c) Resource utilization efficiency: The Normalized
RUE obtained with the different strategies are provided in
Fig. 10. We observe in this study that the concurrent execution
of applications leads to more effective resource usage than
the sequential one. The DSR-GD and DSR-CLUS strategies
are more efficient in terms of resource utilization than the
other (Fig. 10b), DSR-GD been the best one as the number of
applications increases. Executing the applications sequentially
one after the other leads to more resource wastage, which
is known as a major cause of energy consumption in data
centers [10], [11]. Moreover, we observe that the improvement
of our strategies (DSR-GD, DSR-CLUS, and LpSolve) in
terms of RUE correspond with the situations in which they
are speeding up compared to the sequential execution (Fig. 10a
≡ Fig. 4a). Therefore, succeeding in speeding up the sequen-
tial execution of tasks-based applications using our strategies
might also help to reduce energy consumption, thanks to the
effectiveness of the scheduler used.

2) Distribution processing time and options:

A100
 3 apps

A100
 6 apps

A100
 12 apps

QUADRO
 3 apps

QUADRO
 6 apps

QUADRO
 12 apps

K40M
 3 apps

K40M
 6 apps

K40M
 12 apps

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

S
pe

ed
up

 v
s.

 D
M

D
A

_S
E

Q Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

Fig. 7. Speedup of LpSolve, MinMaxWL, DSR-GD, DSR-CLUS,
DMDA CONC against DMDA SEQ for 3, 6, and 12 concurrent
applications with all the affinities, on K40M, Quadro or A100.

AFFINITY2
 3 apps

AFFINITY2
 6 apps

AFFINITY2
 12 apps

AFFINITY1
 3 apps

AFFINITY1
 6 apps

AFFINITY1
 12 apps

AFFINITY0
 3 apps

AFFINITY0
 6 apps

AFFINITY0
 12 apps

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

S
pe

ed
up

 v
s.

 D
M

D
A

_S
E

Q Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

Fig. 8. Speedup of LpSolve, MinMaxWL, DSR-GD, DSR-CLUS,
DMDA CONC against DMDA SEQ for 3, 6, and 12 concurrent

applications with each affinity, on K40M, Quadro or A100.

a) Distribution processing time: In a dynamic situation
where applications arrive continuously (as we will study in the
future), the decision processing has to be fast. Fig. 11 presents
the evolution of processing time for each of our proposed
strategies according to the acceleration of GPU compared to
the CPU, and the number of executed applications.

The MinMaxWL and DSR-CLUS strategies are faster than
LpSolve and DSR-GD which are meta-heuristics. However,
the processing times of all the strategies are relatively small to
expect good behavior even in a dynamic and computational
loading environment. Moreover, even though we add the
decision process time to the overall makespan, we will still
have almost the same results as presented above.

Furthermore, we realize that DSR-GD scale better than
LpSolve given their processing time (Fig. 11) and speedup
compared to DMDA SEQ (Fig. 4, 5, 6, 7, 8). This
performance of DSR-GD is due in part to the choice of learning
rate that helped speedily converge towards the optimal solution

www.ijacsa.thesai.org 68 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

3 apps 6 apps 12 apps

0

500

1000

1500

0

100

200

300

400

500

0

50

100

150

D
at

a
Tr

an
sf

er
 (

G
B

)

Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

(a) Memory transfer obtained for the 3, 6, and 12 concurrent applications.

0

100

200

300

400

D
at

a
Tr

an
sf

er
 (

G
B

)

Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

(b) Memory transfer summary

Fig. 9. Memory transfer of LpSolve, MinMaxWL, DSR-GD, DSR-CLUS, DMDA CONC against DMDA SEQ for all the affinities and all the hardware
configurations (K40M, Quadro, and A100).

3 apps 6 apps 12 apps

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
U

E Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

(a) Average RUE obtained for the 3, 6, and 12 concurrent applications.

0.0

0.3

0.6

0.9

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
U

E Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

(b) Average RUE summary

Fig. 10. Average RUE of LpSolve, MinMaxWL, DSR-GD, DSR-CLUS, DMDA CONC against DMDA SEQ for all the affinities and all the arch
configurations (K40M, Quadro, and A100).

0.00

0.01

0.02

0.03

0.04

[0 to 15 min].3 apps]15 to 30 min].3 apps]30 to 60 min].3 apps [0 to 15 min].6 apps]15 to 30 min].6 apps [0 to 15 min].12 apps]15 to 30 min].12 apps

D
is

tr
ib

ut
io

n
pr

oc
es

si
ng

 ti
m

e
(s

ec
.)

AlgoritmsAlgoTiming

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

DMDA_CONC

DMDA_SEQ

Fig. 11. Distribution processing time of LpSolve, MinMaxWL, DSR-GD,
and DSR-CLUS according to the standard deviation percentage of GPU/CPU
speedup between the applications, and the number of concurrent applications

no matter the number of applications and resources, and also
due to the bartering technique employed (see Section III-A1).
This is a promising property for a scalable system.

b) Distribution options: We carried out a study on
the effectiveness of the re-distribution options (“Multiple
Distributions”, and “Inherit released workers”) presented in
Section III-A2 comparatively to the default one (“One Dis-
tribution”) when combined with each of our four strate-
gies (LpSolve, MinMaxWL, DSR-GD, DSR-CLUS). Fig. 12
presents the makespan obtained in each case, which reveals
that the effectiveness of the re-distribution options (“Multiple
Distributions”, and “Inherit released workers”) depends on the
strategies and the configuration.

The combination DSR-GD/“Inherit released workers” al-
ways produces a gain for all the configurations. For the other
cases, the combination strategy/option leads to a gain only
for some configurations. We notify significant improvement in
some cases, proving that there is hope for improving the results
obtained above by using resource redistribution. However, it
is imperative to do more investigations on configuration and
strategy sensitivity to achieve this.

245.09

415.2

179.84
240.31

204.44

346.34

76.97 125.33

137.44
193.06

58.28
126.85

121.92
206.55

137.38

299.17

225.66

382.28

73.48
200.22

137.3

296.8

66.68 96.76

216.2 242.13
173.56

241.38

240.09

406.74

73.15
199.81

199.67

338.27

57.19

198.21

A100
 One Distribution

A100
 Multiple Distributions

A100
 Inherit released workers

QUADRO
 One Distribution

QUADRO
 Multiple Distributions

QUADRO
 Inherit released workers

K40M
 One Distribution

K40M
 Multiple Distributions

K40M
 Inherit released workers

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

M
ak

es
pa

n
(s

ec
.) Algoritms

LpSolve

MinMaxWL

DRS−GD

DRS−CLUS

Fig. 12. Analysis of distribution options for LpSolve, MinMaxWL,
DSR-GD, DSR-CLUS with 12 concurrent applications. The averages

makespan are displayed in red.

V. CONCLUSIONS

As computing resources are getting more complex and
powerful, there is little doubt that we need methods to
reduce the waste from the users’ choices, bad application
optimization, or heterogeneous workloads during executions.
This is where the task-based model grants more opportunities
by exposing a dynamic degree of parallelism with execu-
tion environments able to use this information in the most
constructive and thus efficient way. To minimize the overall
makespan and maximize resource utilization while executing
multiple task-based applications, we introduce RSCHED, a
two-level resource management framework that allows 1)
dynamic resource distribution for concurrent execution of task-
based applications, and 2) dedicated task scheduling for each
application. We proposed strategies for resource distribution
and implemented our proposal on the StarPU runtime system,
proposing schedulers on which we rely for the second level.
A new model of Gradient Descent has been proposed, among
other strategies for resource distribution. We evaluated our

www.ijacsa.thesai.org 69 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

proposal using real applications based on the StarPU imple-
mentation of Cholesky factorization. RSCHED demonstrated
the potential to speed up the overall makespan compared to
consecutive execution with an average factor of 10x, and a
factor of 5x when compared against the concurrent execution
without resource distribution using DMDA. RSCHED also
demonstrated the potential to increase the rate of resource
utilization as the number of applications increases. Moreover,
the decision time of our strategies and our initial study on
resizing options indicate promising scalability.

In our future work, we will investigate continuous appli-
cation arrivals and resizing options to have more adaptive
solutions due to the variability and complexity of both the
applications and the computing resources. That being said,
we would like to consider different applications (instead of
just Cholesky), explore multiple nodes, and improve RSCHED
decisions by analyzing the structures of task graphs.

ACKNOWLEDGMENTS

This work is supported by the TExas, an Inria exploratory
project. Experiments presented in this paper were carried out
using the PLAFRIM experimental testbed, being developed
under the Inria PlaFRIM development action with support from
Bordeaux INP, LABRI and IMB and other entities: Conseil
Régional d’Aquitaine, Université de Bordeaux and CNRS
(and ANR in accordance to the programme d’investissements
d’Avenir (see http://www.plafrim.fr/).

REFERENCES

[1] N. P. Drakenberg, “Multi-objective processor-set selection for compu-
tational cluster-systems,” in Job Scheduling Strategies for Parallel Pro-
cessing: 16th International Workshop, JSSPP 2012, Shanghai, China,
May 25, 2012. Revised Selected Papers 16. Springer, 2013, pp. 56–75.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:
a unified platform for task scheduling on heterogeneous multicore
architectures,” in Euro-Par 2009 Parallel Processing: 15th International
Euro-Par Conference, Delft, The Netherlands, August 25-28, 2009.
Proceedings 15. Springer, 2009, pp. 863–874.

[3] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Taka-
hashi, “Task-based fmm for multicore architectures,” SIAM Journal on
Scientific Computing, vol. 36, no. 1, pp. C66–C93, 2014.

[4] ——, “Task-based fmm for heterogeneous architectures,” Concurrency
and Computation: Practice and Experience, vol. 28, no. 9, pp. 2608–
2629, 2016.

[5] J. M. Couteyen Carpaye, J. Roman, and P. Brenner, “Design and
analysis of a task-based parallelization over a runtime system of an
explicit finite-volume cfd code with adaptive time stepping,” Journal of
Computational Science, vol. 28, pp. 439–454, 2018.

[6] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and
J. J. Dongarra, “Parsec: Exploiting heterogeneity to enhance scalability,”
Computing in Science & Engineering, vol. 15, no. 6, pp. 36–45, 2013.

[7] A. Hugo, A. Guermouche, P.-A. Wacrenier, and R. Namyst, “Com-
posing multiple starpu applications over heterogeneous machines: a
supervised approach,” The International journal of high performance
computing applications, vol. 28, no. 3, pp. 285–300, 2014.

[8] C. Flint, L. Paillat, and B. Bramas, “Automated prioritizing heuristics
for parallel task graph scheduling in heterogeneous computing,” PeerJ
Computer Science, vol. 8, p. e969, 2022.

[9] H. Tayeb, B. Bramas, A. Guermouche, and M. Faverge, “Multreeprio:
Scheduling task-based applications for heterogeneous computing sys-
tems,” in COMPAS 2022-Conférence francophone d’informatique en
Parallélisme, Architecture et Système, 2022.

[10] J. E. Ndamlabin Mboula, V. C. Kamla, M. H. Hilman, and C. Tayou
Djamegni, “Energy-efficient workflow scheduling based on workflow
structures under deadline and budget constraints in the cloud,” arXiv
preprint arXiv:2201.05429, 2022.

[11] J. E. Ndamlabin Mboula, V. C. Kamla, and C. Tayou Djamegni,
“Dynamic provisioning with structure inspired selection and limitation
of vms based cost-time efficient workflow scheduling in the cloud,”
Cluster Computing, pp. 1–25, 2021.

[12] ——, “Cost-time trade-off efficient workflow scheduling in cloud,”
Simulation Modelling Practice and Theory, p. 102107, 2020.

[13] E. Calore and S. F. Schifano, “Porting a lattice boltzmann simulation to
fpgas using ompss,” in Parallel Computing: Technology Trends. IOS
Press, 2020, pp. 701–710.

[14] J. V. Lima, G. Freytag, V. G. Pinto, C. Schepke, and P. O. Navaux, “A
dynamic task-based d3q19 lattice-boltzmann method for heterogeneous
architectures,” in 2019 27th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP). IEEE,
2019, pp. 108–115.

[15] M. AbdulJabbar, R. Yokota, and D. Keyes, “Asynchronous execu-
tion of the fast multipole method using charm++,” arXiv preprint
arXiv:1405.7487, 2014.

[16] M. Pericàs, X. Martorell, and Y. Etsion, “Implementation of a hierar-
chical n-body simulator using the ompss programming model,” in Pro-
ceedings of the 1st Workshop on Irregular Applications: Architectures
and Algorithms, 2011, pp. 23–30.

[17] E. Agullo, L. Giraud, and S. Nakov, “Task-based sparse hybrid linear
solver for distributed memory heterogeneous architectures,” in Euro-
Par 2016: Parallel Processing Workshops: Euro-Par 2016 International
Workshops, Grenoble, France, August 24-26, 2016, Revised Selected
Papers 22. Springer, 2017, pp. 83–95.

[18] X. Lacoste, M. Faverge, G. Bosilca, P. Ramet, and S. Thibault, “Taking
advantage of hybrid systems for sparse direct solvers via task-based run-
times,” in 2014 IEEE International Parallel & Distributed Processing
Symposium Workshops. IEEE, 2014, pp. 29–38.

[19] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez, “Multifrontal qr
factorization for multicore architectures over runtime systems,” in Euro-
Par 2013 Parallel Processing: 19th International Conference, Aachen,
Germany, August 26-30, 2013. Proceedings 19. Springer, 2013, pp.
521–532.

[20] R. Carratalá-Sáez, M. Faverge, G. Pichon, G. Sylvand, and E. S.
Quintana-Ortı́, “Tiled algorithms for efficient task-parallel h-matrix
solvers,” in 2020 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW). IEEE, 2020, pp. 757–766.

[21] R. Arias Mallo, “Particle-in-cell plasma simulation with ompss-2,”
Master’s thesis, Universitat Politècnica de Catalunya, 2019.

[22] D. Sukkari, H. Ltaief, M. Faverge, and D. Keyes, “Asynchronous task-
based polar decomposition on single node manycore architectures,”
IEEE Transactions on parallel and distributed systems, vol. 29, no. 2,
pp. 312–323, 2017.

[23] L. Boillot, G. Bosilca, E. Agullo, and H. Calandra, “Task-based
programming for seismic imaging: Preliminary results,” in 2014 IEEE
Intl Conf on High Performance Computing and Communications, 2014
IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE
11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS).
IEEE, 2014, pp. 1259–1266.

[24] V. Martı́nez, D. Michéa, F. Dupros, O. Aumage, S. Thibault, H. Aochi,
and P. O. Navaux, “Towards seismic wave modeling on heterogeneous
many-core architectures using task-based runtime system,” in 2015
27th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE, 2015, pp. 1–8.

[25] S. Moustafa, W. Kirschenmann, F. Dupros, and H. Aochi, “Task-based
programming on emerging parallel architectures for finite-differences
seismic numerical kernel,” in Euro-Par 2018: Parallel Processing: 24th
International Conference on Parallel and Distributed Computing, Turin,
Italy, August 27-31, 2018, Proceedings 24. Springer, 2018, pp. 764–
777.

[26] B. Bramas, P. Helluy, L. Mendoza, and B. Weber, “Optimization of
a discontinuous galerkin solver with opencl and starpu,” International
Journal on Finite Volumes, vol. 15, no. 1, pp. 1–19, 2020.

[27] P. Brucker and S. Knust, “Complexity results for scheduling problems,”
2009.

[28] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling:
applying constraint programming to scheduling problems. Springer
Science & Business Media, 2001, vol. 39.

www.ijacsa.thesai.org 70 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

[29] M. L. O. Salvana, S. Abdulah, H. Huang, H. Ltaief, Y. Sun, M. G.
Genton, and D. E. Keyes, “High performance multivariate geospatial
statistics on manycore systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 11, pp. 2719–2733, 2021.

[30] Q. Cao, Y. Pei, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief,
D. Keyes, and J. Dongarra, “Extreme-scale task-based cholesky fac-
torization toward climate and weather prediction applications,” in Pro-
ceedings of the Platform for Advanced Scientific Computing Conference,
2020, pp. 1–11.

[31] K. Akbudak, H. Ltaief, A. Mikhalev, A. Charara, A. Esposito, and
D. Keyes, “Exploiting data sparsity for large-scale matrix computa-
tions,” in European Conference on Parallel Processing. Springer, 2018,
pp. 721–734.

[32] J. M. C. Carpaye, J. Roman, and P. Brenner, “Design and analysis of
a task-based parallelization over a runtime system of an explicit finite-
volume cfd code with adaptive time stepping,” Journal of Computa-
tional Science, vol. 28, pp. 439–454, 2018.

[33] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
transactions on parallel and distributed systems, vol. 13, no. 3, pp.
260–274, 2002.

[34] Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,”
Information Sciences, vol. 270, pp. 255–287, 2014.

[35] K. R. Shetti, S. A. Fahmy, and T. Bretschneider, “Optimization of
the heft algorithm for a cpu-gpu environment,” in 2013 International
conference on parallel and distributed computing, applications and
technologies. IEEE, 2013, pp. 212–218.

[36] H. J. Choi, D. O. Son, S. G. Kang, J. M. Kim, H.-H. Lee, and C. H.
Kim, “An efficient scheduling scheme using estimated execution time
for heterogeneous computing systems,” The Journal of Supercomputing,
vol. 65, pp. 886–902, 2013.

[37] M. A. Khan, “Scheduling for heterogeneous systems using constrained
critical paths,” Parallel Computing, vol. 38, no. 4-5, pp. 175–193, 2012.

[38] O. Beaumont, L.-C. Canon, L. Eyraud-Dubois, G. Lucarelli, L. Marchal,
C. Mommessin, B. Simon, and D. Trystram, “Scheduling on two types
of resources: a survey,” ACM Computing Surveys (CSUR), vol. 53, no. 3,
pp. 1–36, 2020.

[39] A. K. Maurya and A. K. Tripathi, “On benchmarking task scheduling
algorithms for heterogeneous computing systems,” The Journal of
Supercomputing, vol. 74, no. 7, pp. 3039–3070, 2018.

[40] B. Bramas, “Optimization and parallelization of the boundary element
method for the wave equation in time domain,” Ph.D. dissertation,
Bordeaux, 2016.

[41] W. Fornaciari, G. Agosta, D. Atienza, C. Brandolese, L. Cammoun,
L. Cremona, A. Cilardo, A. Farres, J. Flich, C. Hernandez et al.,
“Reliable power and time-constraints-aware predictive management of
heterogeneous exascale systems,” in Proceedings of the 18th Inter-
national Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation, 2018, pp. 187–194.

[42] G. Agosta, W. Fornaciari, D. Atienza, R. Canal, A. Cilardo, J. F. Cardo,
C. H. Luz, M. Kulczewski, G. Massari, R. T. Gavilá et al., “The recipe
approach to challenges in deeply heterogeneous high performance
systems,” Microprocessors and Microsystems, vol. 77, p. 103185, 2020.

[43] N. Grenèche, T. Menouer, C. Cérin, and O. Richard, “A methodology
to scale containerized hpc infrastructures in the cloud,” in European
Conference on Parallel Processing. Springer, 2022, pp. 203–217.

[49] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for het-
erogeneous systems by an optimistic cost table,” IEEE transactions on
parallel and distributed systems, vol. 25, no. 3, pp. 682–694, 2013.

APPENDIX

www.ijacsa.thesai.org 71 | P a g e

Algorithm 1: Ideal makespan Algorithm
1 function ideal_makespan(graph_info G, double coef_par_eff)
2 nb_workers = G.#GPUS + G.#CPUS;
3 if (G.#GPUS == 0.0) ∥ (G.#CPUS == 0.0) then
4 if (G.CPUSPR == 0.0) then
5 m = G.GPUW / G.#GPUS;

6 if (G.GPUSPR == 0.0) then
7 m = G.CPUW / G.#CPUS;

8 return m × coef_par_eff (nb_workers−1) ;

9
10

Compute tgpuminM and tcpuminM using equations 5 and 6;
if (G.GPUW == G.GPUPW) ∥ (G.CPUW ==G.CPUPW) then

11 return MAX(tgpuminM , tcpuminM);

12
13
14

gpu_rem_wl = compute the remaining GPU workload;
cpu_rem_wl = compute the remaining CPU workload;
if (gpu_rem_wl == 0.0) ∥ (cpu_rem_wl == 0.0) then

15 return MAX(tgpuminM , tcpuminM) + gpu_rem_wl / G.#GPUS
+ cpu_rem_wl / G.#CPUS;

16
17

Compute ideal_makespan using equation 7;
return ideal_makespan;

18

Algorithm 2: DSR-GD (Dedicated plus Shared Re-
source with Gradient Descent)
1 //-->Dedicated workers per app;
2 rem_gpus = nb_gpus;
3 rem_cpus = nb_cpus;
4 foreach graph G in graphs do
5
6
7

gpus_dedicated = floor(G.GPUW / SUM(GPUW)) × nb gpus;
cpus_dedicated = floor(G.CPUW / SUM(CPUW)) × nb cpus;
while (gpus_dedicated) do

8
9

10

Assign the (rem_gpus)−th GPU to graph G;
gpus_dedicated − −;
rem_gpus − −;

11 while (cpus_dedicated) do
12
13
14

Assign the (rem_cpus)−th CPU to graph G;
cpus_dedicated − −;
rem_cpus − −;

15 if (Stdd_speedup > SPEEDUP_STDD_LIMIT) ∥ Stdd_idealm >
MAKESPAN_STDD_LIMIT)) then

16 bartering();

17 //-->Shared workers between apps Using Gradient Descent;
18 Configure GD axis (X, Y) using rem_cpus and rem_gpus;
19 foreach axis in X, Y, Z do
20 while (No convergence) do
21
22
23

Use the best indexes from previous axes;
Fix the value of the following axis;
Search the best index in the axis using Gradient Descent with

24
Min-Max ideal_makespan as objective function;

keep track of the best solution;

[45] I. Dagal, K. Tanriöven, A. Nayir, and B. Akın, “Adaptive stochastic
gradient descent (sgd) for erratic datasets,” Future Generation Computer
Systems, vol. 166, p. 107682, 2025.

[46] S. Santra, J.-W. Hsieh, and C.-F. Lin, “Gradient descent effects on
differential neural architecture search: A survey,” IEEE Access, vol. 9,
pp. 89 602–89 618, 2021.

[47] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, “Linear in-
terpolation gives better gradients than gaussian smoothing in derivative-
free optimization,” arXiv preprint arXiv:1905.13043, 2019.

[48] S. C. Chapra, Numerical methods for engineers. Mcgraw-hill, 2010.

[44] C. Cérin, N. Grenèche, and T. Menouer, “Executing traditional hpc
application code in cloud with containerized job schedulers,” in High
Performance Computing in Clouds: Moving HPC Applications to a
Scalable and Cost-Effective Environment. Springer, 2023, pp. 75–97.

rahul
Typewritten Text

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

www.ijacsa.thesai.org 72 | P a g e

Algorithm 3: MinMaxWL (Min-Max Workload bal-
ancing)
1 //-->Ensure each graph has at least one worker;
2 //----->Graphs with pure workload;
3 foreach graph G in graphs do
4 if (G.GPUPW ! = 0.0) then
5 if (Remaining GPUs) then
6 Assign one GPU to G;

7 else
8 Share one GPU with the under-loaded pure gpu graph, with

backpropagation;

9 if (G.CPUPW ! = 0.0) then
10 if (Remaining CPUs) then
11 Assign one CPU to G;

12 else
13 Share one CPU with the under-loaded pure cpu graph, with

backpropagation;

14 //----->Graphs without pure workload;
15 foreach graph G in graphs do
16 if (G.CPUPW == 0.0 && G.CPUPW == 0.0) then
17 if (G.CPUW > G.GPUW) then
18 // GPU is faster;
19 if (Remaining GPUs) then
20 Assign one GPU to G;

21 else
22 Share one GPU with the under-loaded graph, with

backpropagation;

23 else
24
25

// CPU is faster;
if (Remaining CPUs) then

26 Assign one CPU to G;

27 else
28 Share one CPU with the under-loaded graph, with

backpropagation;

29 //-->Dist. Remaining Workers: Load-balancing using Min-Max;
30 while (Remaining GPUs Workers) do
31 Assign one GPU to graph leading to Min-Max ideal_makespan;

32 while (Remaining CPUs Workers) do
33 Assign one CPU to graph leading to Min-Max ideal_makespan;

	Introduction
	Background
	Task-Based Application
	Task-based parallelization

	Task Scheduling and Related Work
	Task scheduling in StarPU
	Scheduling concurrent task-based applications

	Presentation of RSCHED
	RSCHED API
	RSCHED resource distribution
	Distribution options

	RSCHED Implementation in StarPU
	Multiple task-based applications
	Context creation and workload determination

	Performance Study
	Experiments Setup
	Hardware
	Task-based applications
	Software configuration

	Metrics
	Experiments Results and Analysis
	Default experiments
	Distribution processing time and options

	Conclusions
	References

