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Abstract—The monkeypox epidemic has spread to nearly 

every nation. Governments implement several strict policies, 

to stop the virus that causes monkeypox. For effective handling 

and treatment, early identification and diagnosis of monkeypox 

using digital skin lesion images is critical, and this work 

employed deep learning architectures to achieve this goal. This 

article presents a supervised learning-based classification method 

designed for the precise identification of monkeypox cases. The 

analysis was conducted using an open-source dataset from 

Kaggle, consisting of digital images of monkeypox, which were 

processed using advanced image processing and deep learning 

techniques. The data was categorized based on findings related 

and unrelated to monkeypox. A deep neural network with 50 

layers and up to 35 folds was utilized to identify regions of 

interest, which could be indicative of characteristics relevant to 

computer-assisted medical diagnosis and enable us to solve image 

processing and natural language processing tasks with high 

accuracy. In terms of performance, the proposed method 

achieved an accuracy of 96% during cross-validation 

classification testing. This outcome demonstrates the potential for 

computer-assisted diagnosis as a supplementary tool for medical 

professionals. Amid the monkeypox outbreak, this method offers 

a technical and objective assessment of patients' skin conditions, 

thereby simplifying the diagnostic process for specialists. 
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I. INTRODUCTION 

The infectious illness known as "mpox," or monkeypox, 
has spread quickly across the globe and is characterized by 
fever, muscle pains, and skin lesions that resemble boils. In 
response, the World Health Organization (WHO) raised the 
warning level to its maximum in July by classifying it as a 
public health emergency of international concern (PHEIC) [1]. 
When a tourist returned from Nigeria, where the disease is 
widespread, the epidemic began in the UK. However, there 
have previously been isolated occurrences of this kind, and 
those outbreaks ended swiftly. This time, the disease began to 
spread from the first cluster of patients and appeared in various 
European, Australian, and American nations [2]. 

Although African epidemiologists have been warning for 

several years that patterns of transmission seem to be shifting 
in endemic nations, scientists are still unsure of the exact 
reason for the virus's rapid expansion. As of December 19, 110 
countries have reported more than 83,000 cases, with 66 
fatalities, according to W.H.O. Encouragingly, the weekly total 
of new cases worldwide has dropped by 49.3%; this past week 
saw 265 new cases globally, compared to 523 from December 
5–11 [1–3]. Currently, the Americas are considered to be at 
greater risk than Africa. The Americas (90.5%) and Europe 
(4.9%) accounted for the majority of cases recorded over the 
previous four weeks [3]. Fig. 1 shows the DNA structure of 
monkeypox, while Fig. 2 highlights the 10 most affected 
countries worldwide. 

In some regions of the globe, the pandemic may have 
decreased due to the availability of the currently preventable 
JYNNEOS monkeypox vaccine, but nations below the poverty 
line have been left behind. Given that monkeypox may mutate 
and become harder to manage in the future, experts argue that 
it is imperative to administer the vaccination in a fair and 
equitable manner [4]. 

 

Fig. 1. Monkeypox DNA image [1]. 
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Fig. 2. Affected countries of monkeypox worldwide [1]. 

Artificial Intelligence (AI) and Deep Learning have 
demonstrated remarkable results across various domains, 
transforming the way tasks are approached. In agriculture, AI-
powered models have optimized crop management [5,6], 
disease detection[7], and yield prediction [8,9]. In education, 
adaptive learning platforms are tailoring educational content to 
individual needs, enhancing student engagement and success. 
In finance, AI-based algorithms are improving fraud detection, 
risk assessment, and investment strategies. In healthcare, AI 
and Deep Learning have revolutionized diagnostics, treatment 
plans, and patient management through the precise analysis of 
complex medical data [10–13]. 

Specifically in healthcare, AI has significantly enhanced 
decision-making by enabling more accurate diagnosis and 
personalized treatments through the interpretation of medical 
images, patient records, and genetic data [10–13]. This 
progress can extend to infectious diseases, where a deep 
learning could be employed for precise identification 
of Monkeypox using skin imaging. By leveraging AI's ability 
to analyze and differentiate subtle features in skin lesions, the 
technique could improve early detection and reduce 
misdiagnosis. This would facilitate timely interventions, 
reducing the spread of the disease and enhancing patient 
outcomes, demonstrating AI's critical role in addressing 
emerging public health challenges. 

In this study, a computer-aided diagnostic (CAD) system 
using deep learning and artificial intelligence (AI) techniques is 
proposed for potential pulmonary follow-up due to its accuracy 
and ability to optimize reaction times. AI has played a 
significant role in medical diagnosis [14, 15]. Expert 
interpretation is facilitated by the technique's automated and 
objective assessment of pulmonary follow-ups, which is 
enabled by artificial neural network designs. Since artificial 
neural networks (deep learning) have proven to be successful, 
AI has also been applied to medical image processing [16, 17]. 
The development of trustworthy and accurate medical 
diagnostics has garnered significant attention in recent years. 
Artificial neurons are layered and interconnected to transfer 
signals in neural network techniques, with intermediate layers 
being hidden. These networks, along with more advanced 
learning processes, form the foundation of deep learning, 

which generates categorization approaches that are both 
optimal and precise [18, 19]. Main aim of the research is to 
develop a technique which can classify image efficiently 
without leaving a single skin lesion in images which can help 
doctors to treat well and detect the disease at its initial stage. 

This paper's primary research contributions can be summed 
up as follows: 

 Our suggested technique uses images with 224 × 224 x 
3 the RGB spectrum dimensions and those without 
monkeypox lesions. 

 To  implement pre-processing steps using Resnet 50 to 
generate the feature vector(1 × 1 × 2048 ) then the its 
subsets are defined using its increase and decrease in 
fold values which solve image processing and natural 
language processing tasks with high accuracy. 

 To Classify various  methods likes SVN, LR, KNN, 
NB, NC evaluates the accuracy and precision value 
depending upon various folds 

II. RELATED WORK 

Monkeypox disease is often mistaken for other illnesses, 
leading to misdiagnosis and inappropriate treatment. Early 
diagnosis and treatment of this contagious disease are crucial. 
Detecting monkeypox typically requires expert interpretation 
and clinical examination, which can delay the treatment 
process. AI-based detection can assist in the early identification 
of this disease. There are limited studies in the literature on this 
topic, which are discussed in detail below, along with Table I. 

Dipanjali Kundu et al. [20] presented a secure Federated 
Learning and deep learning-based framework for monkeypox 
virus detection using skin lesion images. The framework aims 
to improve classification performance while maintaining data 
confidentiality. The CycleGAN generator augments training 
and test data, and synthetic images are divided into four groups 
for local techniques. ViT-B32 outperforms other classifiers 
with an impressive accuracy of 97.90. The approach ensures 
user data privacy and effectively performs categorization tasks, 
making it relevant in medical contexts with limited datasets 
and data privacy concerns. Sitaula et al.  [21]  evaluated 13 pre-
trained deep learning techniques (including VGG-16, 
InceptionV3, Xception, MobileNet, EfficientNet, etc.) for 
monkeypox detection using the publicly available Monkeypox 
virus image dataset. They trained the techniques on the 
ImageNet dataset. The study included 1,754 images, consisting 
of 329 chickenpox, 286 measles, 587 monkeypox, and 552 
normal images. They developed a technique using the Keras 
library in Python. The proposed ensemble learning technique 
outperformed the 13 deep learning techniques, achieving an 
accuracy of 87.1% (precision: 85.4%, recall: 85.4%, F1-score: 
85.4%). Xception was the second-best technique with an 
accuracy of 86.51%, while precision, recall, and F1-score were 
85%. Alakus and Baykara [22] classified monkeypox disease 
and warts based on their DNA sequences. They employed 
various DNA mapping techniques and deep learning. The 
study used 110 genome sequences, consisting of 55 
monkeypox virus and 55 human papillomavirus sequences. To 
address the data imbalance, they used the zero-padding 

https://ieeexplore.ieee.org/author/37089747651
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technique. Five DNA mapping techniques achieved an average 
classification accuracy of 96.08%, with the integer DNA 
matching technique achieving the highest accuracy at 99.5%. 
This demonstrates the successful detection of monkeypox and 
warts through DNA mapping and classification. Ali et al. [23] 
addressed the challenge of early clinical diagnosis of 
monkeypox, similar to chickenpox and measles, through 
computer-aided detection. They created a dataset of skin lesion 
images from various sources, consisting of 228 images. Three 
classification techniques were used: VGG16, ResNet50, and 
InceptionV3. ResNet50 achieved the highest accuracy (82.96% 
± 4.57), VGG16 performed competitively (81.48% ± 6.87), and 
InceptionV3 had the lowest accuracy (74.07% ± 3.78). A 
community technique using majority voting outperformed 
ResNet50 and was integrated into a prototype web application. 
Haque et al. [24] aimed to classify human monkeypox disease 
from images using a pre-trained deep learning technique. The 
study utilized VGG-19, Xception, DenseNet121, 
MobileNetV2, and EfficientNetB3 deep learning techniques for 
classification. A uniform approach was applied to customize all 
pre-trained techniques. To enhance the network's focus on 
more pertinent feature maps, a convolutional block attention 
module was incorporated. The initial preparation of the MSLD 
involved resizing the images to a resolution of 224x224x3 for 
training purposes. In the research, many hyperparameters were 
used to maximize the effectiveness of the strategies. The 
design that included Xception, CBAM, and thick layers 
performed better than other techniques in the findings, 
obtaining a validation accuracy of 83.89% in the classification 
of human monkeypox and other illnesses. Sahin et al. [25] 
developed a mobile app using deep learning to detect 
monkeypox from video footage captured on mobile devices. 

They used the MSLD dataset and deep transfer learning with 
Matlab. Transfer learning is a machine learning technique 
where a model trained on one task is adapted to improve 
performance on a related but different task, often with fewer 
data [28] . MobileNetV2 (91.11%) and EfficientNetB0 
(91.11%) achieved the best results in 60 epochs. MobileNetV2, 
with precision (90%), recall (90%), F1-score, and accuracy 
(91.11%), outperformed other techniques and was integrated 
into an Android mobile app, allowing easy pre-screening for 
monkeypox. Ahsan et al. [26] developed an AI-driven decision 
support system using CNNs. Their study used a dataset of 572 
images (monkeypox and normal). They employed twelve 
different CNN techniques for classification, with MobileNetV2 
achieving the highest accuracy (98.25%), precision (96.55%), 
specificity (100%), and F1-score (98.25%). The study also 
highlighted that MobileNetV2 is suitable for mobile-based 
monkeypox testing due to its smaller technique size. Ahsan et 
al.[27] created a dataset of patient images infected with 
monkeypox. The researchers aimed to detect monkeypox virus 
in patients using a modified pre-trained VGG16 technique. The 
study collected a total of 1,915 images, including monkeypox, 
chickenpox, measles, and normal images, as well as augmented 
versions. Two separate studies were conducted, one with a 
small dataset and the other with a medium-sized dataset. In the 
first study, using a small dataset, the VGG16 technique 
achieved training and testing accuracy rates of 97% and 83%, 
respectively. In the second study, with a medium-sized dataset, 
the technique achieved accuracy rates of 88% in training and 
78% in testing. The proposed technique's predictions were 
validated through cross-validation by medical professionals. 
The study suggests that this technique could be used to develop 
a mobile-based diagnostic tool. 

TABLE I.  LITERATURE REVIEW OF RELATED WORK 

Reference Data type Technique Accuracy Research Gap 

Kundu et 
al.[20] 

a total of 381 images of 
monkeypox, 102 images of 

chickenpox, 110 images of 

measles, and 293 images of 
normal skin.  

federated learning (FL) with  Cycle GANS 

and deep learning-based techniques such as 
MobileNetV2, Vision Transformer (ViT), 

and ResNet50 for the classification 

Proposed technique accuracy 
97.90% 

Limited datasets and data 
privacy  

Sitaula et 

al. [21] 

Monkeypox virus dataset images 

(329 chickenpox, 286 measles, 

587 monkeypox, and 552 normal 
images) 

13 pre-trained deep learning techniques 
(including VGG-16, InceptionV3, 

Xception, MobileNet, Efficient-Net, etc.) 

 Proposed technique accuracy 
87.13%.  

 

Less accuracy rate 

Alakus et 

al.[22] 

55 monkeypox virus and 55 

human papilloma virus 
sequences 

DNA mapping techniques 
Proposed technique accuracy 

99.5%. 
Very small Dataset used 

Ali et 
al. [23] 

228 images from open source 
data set 

VGG16, ResNet50, and InceptionV3 

ResNet50 accuracy (highest 

accuracy) (82.96% ± 4.57),  

VGG16 accuracy (81.48% ± 
6.87),  

InceptionV3 accuracy (lowest 

accuracy) (74.07% ± 3.78). 

Need of improved 
segmentation technique 

Haque et 

al.[24] 
MSLD 

VGG-19, Xception, DenseNet121, 

MobileNetV2, and EfficientNetB3 
Accuracy: 83.89% Less accuracy rate 

Sahin et al. 
[25] 

MSLD  112 images MobileNetv2, EfficientNetb0 

MobileNetv2 (91.11%) and 

EfficientNetb0 (91.11%) 
achieved the best results in 60 

epochs.  

Small dataset used and less 
augmentation used 

Ahsan et 

al.[26] 

Dataset of 572 images 

(monkeypox and normal). 

AI-driven decision support system using 

CNNs (MobileNetv2) 

MobileNetV2 highest accuracy 
(98.25%), precision (96.55%), 

specificity (100%), and F1-

score (98.25%) 

MobileNetV2 is suitable for 
mobile-based monkeypox 

testing due to its smaller 

technique size 

Ahsan et 

al.[27] 

Open source Dataset 1915 

images 
VGG16 Proposed accuracy 88% 

Need to develop a mobile-

based diagnostic tool 
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III. MATERIAL AND TECHNIQUES 

A. Deep Learning Classification Techniques 

In this study, CNN-based deep learning techniques, namely 
VGG16, ResNet50, EfficientNetB3, Xception, and 
InceptionResNetV2, were used to perform image-based 
classification of monkeypox disease. Brief descriptions of 
these techniques are provided below: 

VGG16 is a deep learning technique developed at the 
University of Oxford. VGG stands for Visual Geometry Group, 
and 16 refers to the number of layers in the technique [20]. 
VGG16 is a CNN technique commonly used for image 
classification tasks. Convolutional, fully linked, and pooling 
layers make up the approach. The pooling layers highlight key 
characteristics and condense the bulk of the data [20]. Because 
of its depth, VGG16 is a large approach with a significant 
number of learnable parameters. Large datasets and more 
challenging picture classification tasks are often better served 
by it. VGG16 became well-known, especially when it 
performed well on the ImageNet dataset. It is known for 
emphasizing the fundamental structure of convolutional 
networks and the depth of its layers, which has influenced the 
development of related techniques that use weighted 
convolutional layers and depth. 

In deep learning, one popular Convolutional Neural 
Network (CNN) approach is called ResNet50. Microsoft 
Research first introduced the ResNet (Residual Network) 
approach in 2015 with the express purpose of resolving issues 
related to depth in deep networks. ResNet50 is a 50-layer deep 
network that uses a unique building component known as a 
residual block. These blocks introduce skip links in the 
network's transitions, which attempt to mitigate the issue of 
gradient vanishing that arises in deeper networks. In 
comparison to earlier techniques, the residual blocks allow 
information to move across the network more quickly and 
smoothly [29]. ResNet50 has pooling layers, activation 
functions, and convolutional layers—basic CNN building 
blocks. Additionally, it has a global average pooling layer in 
the center of the network that uses smaller feature maps to 
summarize data. 

A version known as ResNet blends the ResNet and 
Inception architectures [30]. While the ResNet design makes 
use of residual connections to solve gradient vanishing in deep 
networks, the Inception architecture is composed of 
convolutional layers with filters of varying sizes. ResNet seeks 
to integrate these two topologies to make training deeper and 
more complicated networks easier. While the ResNet blocks 
maintain information flow by using connections to prevent 
gradient vanishing, the Inception blocks combine convolutional 
layers with filters of varying sizes to capture a broad variety of 
characteristics. Extreme Inception, a term that is shortened to 
"Xception," is a deep learning approach [31]. It is based on the 
CNN architecture, more precisely on an Inception approach 
variant. Improving the Inception network's processing 
efficiency is the primary objective of Xception. It deviates 
from the conventional CNN technique by optimizing the 
convolution operations in the Inception blocks to achieve this. 

Depth-wise separable convolution is the method used to 
accomplish this improvement. Two steps of convolution 
operations are carried out by depth-wise separable convolution. 
A point-wise convolution layer is used in the first stage to 
capture relationships between several channels and modify the 
input data's dimension. The second step is a depth-wise 
convolution layer, which improves computing efficiency by 
processing each input data channel independently. 
The CNN technique known as EfficientNetB3 is used in deep 
learning [32]. It belongs to the family of EfficientNets, and 
EfficientNetB3 is a scalable and effective technique. 
Compound scaling is a technique that EfficientNet uses to 
automatically scale deep learning approaches to different sizes. 
The purpose of EfficientNetB3 is to be applied to larger and 
more intricate datasets. The method improves efficiency on 
smaller datasets by combining depth features with scalability. 
To handle input images, EfficientNetB3 uses a variety of 
convolutional layers, activation functions, and pooling layers 
[32, 33]. 

B. Data Set 

The study used a dataset that included skin lesion images 
classified into two groups: those with monkeypox and those 
without (chickenpox and measles). The University of Dhaka 
research team in Bangladesh [33] contributed to the dataset, 
which was augmented to contain approximately 3,192 images 
with dimensions of 224 × 224 x 3 in RGB. There were 228 
images in the original dataset, of which 102 belonged to the 
monkeypox class and 126 to the other class. This dataset has a 
comparatively modest amount of images, especially when 
considering the deep learning environment. The only 
restriction was that more images were obtained by using image 
enhancement. Through picture augmentation, the dataset was 
increased by a factor of fourteen. After augmentation, there 
were 1,428 images in the monkeypox class and 1,764 images 
in the 'others' class. An unequal distribution of images was 
observed between the 'others' and monkeypox classes. To 
address this imbalance, data augmentation techniques were 
applied to create more samples for the monkeypox class. By 
adding these extra examples, the dataset's classes were 
distributed more evenly, as shown in Fig. 3, which displays 
1,764 images in each class. 

To further enhance the dataset's durability, the researchers 
used stratified sampling to divide it into seven folds. This 
technique ensured that the monkeypox class and the other 
classes were represented proportionally in each fold. The 
stratified split of the dataset into folds allowed for a more 
accurate evaluation and validation of the technique's 
effectiveness by taking into account any variances in the 
distribution of classes within the dataset. The technique's 
ability to generalize was assessed by applying cross-validation 
on multiple data subsets and evaluating its performance on 
each fold. This experiment used two subsets of the dataset, 
namely the training set and the testing set. The testing set, 
consisting of 252 images, provided a more thorough insight 
into the technique's ability to categorize monkeypox images. 
The training set consisted of 1,512 enhanced images used for 
training the classification system. To develop a reliable and 
efficient classification technique, it is essential to carefully 
analyze the segmentation of this dataset [34, 35]. 
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Fig. 3. Sample augmented monkeypox images from dataset. 

IV. PROPOSED TECHNIQUES 

The approach is based on the categorization of the images 
in Fig. 4; the technique diagram is comprehensive and includes 
the dataset. High reliability is achieved by identifying the 
optimal settings for executing the procedure. Python, an open-
source programming language, was used to develop the 
method. The approach is divided into many steps; however, the 
preprocessing step is crucial for successful classification. In 
particular, the first phase focuses on the initial analysis, as the 
experiment was conducted using the dataset to enable the CNN 
to extract features from the images related to the identification 
of monkeypox. 

 

Fig. 4. Technique of the proposed technique. 

 

Fig. 5. An illustration of the first phase and the pre-processing steps to 

generate the feature vector. 

The schematic diagram of the first and second phases is 
shown in Fig. 5. The residual neural network ResNet50, which 
was used, contains 50 hidden layers [36]. This artificial neural 

network consists of three layers of artificial neurons: one input, 
fifty intermediate (hidden), and one output. The process of 
creating a matrix from the feature vectors is based on residual 
learning. By putting neural networks through performance tests 
with partial and random changes to their connections, residual 
learning increases the technique's accuracy and enhances its 
ability to solve complex problems with greater reliability. 

Here is a list of the four preliminary processing phases 
shown in Fig. 4: All input images are scaled to 224 × 224 
pixels, and if the appropriate dimensions are not met, zeros are 
added to the perimeter of the original image. The pixel values 
in each layer are adjusted from 0 to 255. A new matrix with 
dimensions of 224 × 224 × 3 is then created by converting the 
images to three layers (the RGB spectrum). In the case of 
single-layer image graphs, the same layer is repeated in each 
channel. After completing these procedures, the images are fed 
into the ResNet50 network. The convolution process and the 
network's fundamental architecture are illustrated in Fig. 4. Up 
until the middle pooling layer is reached, the input image is 
subjected to successive convolution and sampling processes. 
The grouping layer features are extracted as a vector with 
dimensions of 1 × 1 × 2048 in this layer. This vector, generated 
for each image in the dataset, contains general attributes of the 
images retrieved by the approach, such as saturation, 
brightness, and intensity. 

The final step in producing the feature vector is carried out 
using machine learning techniques; in other words, classifier 
techniques are applied to categorize the dataset. The ResNet50 
neural network acts as an image feature extractor; by utilizing 
the convolutional base of this network, the most significant and 
distinctive features of the images are obtained. This is achieved 
not through machine learning, but rather through deep learning, 
using artificial networks that extract the most relevant features 
to enable optimal classification. 

 

Fig. 6. The convolutional technique and the ResNet50 network's easy 

layout. 

Even though a single CNN [37] may be used for both 
feature extraction and classification, there are several 
advantages to utilizing different techniques for each task. As a 
result, the automated classification approach used consisted of 
three stages: pre-processing, feature extraction (via CNN), and 
the classification system as shown in above Fig. 6. 
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V. CONFIGURING THE EXPERIMENT 

The cross-validation classification scenario served as the 
foundation for the suggested technique [38]. There were 57 
homogeneous and symmetric images with and without 
evidence of monkeypox; 114 images were divided using a 
cross-validation technique. When there are insufficient images 
in the collection, this type of categorization is suitable [39]. 
Fig. 3 depicts the cross-validation scenario using automated 
categorization algorithms. Due to their effectiveness in binary 
classification—where a set's components are divided into two 
categories according to a classification rule—the classification 
techniques used are well-established in the field [40]. Support 
Vector Machines (SVM) provides an optimal separation that 
reduces classification risk and increases the margin while also 
reducing error [41,42]. Logistic regression (LR) is used to 
predict the probability that a categorical dependent variable 
will be dichotomous, or divided into two groups [43]. Nearest 
Neighbors (KNN) uses discrete sample classification to 
forecast and estimate future values based on proximity, 
identifying similar data points. Additionally, Naive-Bayes' 
(NB) success is due to feature independence, which allows the 
determination of the likelihood that a test case has a particular 
feature value. Finally, the Centroid-based classifier (NC), 
derived from distances from the center, takes into account 
similarity with each class's centroid. The centroid is a vector 
representing the average frequencies of all terms among the 
members of a specific class. 

The validation was carried out in three sections, with 
divisions of 15, 25, and 35 folds. Accuracy (A) and Precision 
(P), two evaluation measures, were used to assess the 
technique's performance with the dataset. These measures are 
based on the four elements listed below [44]: 

 True Positive (TP): occurs when there is a match 
between the predicted class of the technique and the 
actual class of the dataset (finding). 

 True Negative (TN): occurs when there is a match 
between the dataset's actual class (no finding) and the 
one predicted by the technique (no finding). 

 False Positive (FP): occurs when there is a mismatch 
between the dataset's actual class (no finding) and the 
one predicted by the algorithm (finding). 

 False Negative (FN): occurs when there is a mismatch 
between the dataset's actual class (a finding) and the 
one predicted by the technique (no finding). 

Accuracy refers to the percentage of all predictions that 
were made correctly. Precision, on the other hand, indicates the 
accuracy of the positive predictions, i.e., the proportion of true 
positive values to all predicted positive values [45]. 

Metrics are calculated as follows [44]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (2) 

VI. RESULTS  

Four different classifier techniques were used as the 
learning strategy in the cross-validation classification scenario. 
The dataset was split into three studies, as previously 
mentioned: 15 folds, 25 folds, and 35 folds. The dataset was 
randomly divided into K = 15, 25, and 35 segments as shown 
above. K − 1 segments were used for training the technique, 
while the remaining portion was used for performance 
evaluation. After dividing the dataset into K parts at random, 
this process was repeated K times to obtain K procedures and 
assessment outcomes. The final average performance was 
determined once all evaluations were completed. 

 

Fig. 7. The K-folds cross-validation strategy uses a single classifier with K 

values of 15, 25, and 35. 

The technique was then retrained for the subsequent 
divisions. The technique's performance (E) is assessed as 
follows: 

   (3) 

The process for 15 divisions, as well as the divisions of the 
folds in the dataset, is shown in Fig. 7. The 25 and 35 
categories follow the same procedure to determine the 
performance (E). To compare the outcomes of several 
predictive classification processes—that is, the five learning 
strategies used to categorize the images—cross-validation was 
applied. The results of the various classification techniques are 
shown in Table II, along with a comparison of the divisional 
processes and evaluation criteria, which make it possible to 
identify the most accurate classifier. It is evident that as the 
number of folds increases, the KNN classifier (nearest 
neighbors) produces the highest values in the accuracy measure 
[46]. 
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Fig. 8. The precision assessment metric's learning techniques in the three 

division experiments. 

TABLE II.  OUTCOMES OF A CROSS-VALIDATION CLASSIFICATION 

SCENARIO 

Fold 15 25 35 

Classificati

on 

Accura

cy 

Precisi

on 

Accura

cy 

Precisi

on 

Accura

cy 

Precisi

on 

SVM 92.7 94.2 93.3 95.2 93.8 95.8 

LR 90.3 92.5 90.1 92.6 89.4 90.4 

KNN 94.2 95.4 95.5 96.4 95.2 97.7 

NB 93.0 94.7 93.7 96.2 93.7 94.9 

NC 92.7 94.2 93.2 95.7 93.7 94.9 

VII. DISCUSSION 

This shows that the categorization percentage is 94% in 15 
divisions, 95% in 25 divisions, and 96% in 35 divisions. The 
accuracy indicates the proportion of the positive class predicted 
by the approach and the actual positive class in the dataset, as 
well as the quality of the classification scenario. In small 
datasets, the classifier with the best values often performs 
optimally. Similarly, the accuracy provides a 94% confidence 
level in the KNN classifier's quality compared to other learning 
techniques, provided the classes of the variables in the dataset 
are balanced. The accuracy measure and various folds used in 
the learning techniques are shown in Fig. 7. According to the 
suggested approach, the KNN classifier, the reported metrics, 
and the cross-validation classification scenario with 15, 25, and 
35 folds together represent the best automated classification 
technique for the dataset, including discoveries related to 
monkeypox. The characteristic vectors of the images are 
extracted using the ResNet50 networks, and when paired with 
the approach, the results yield values that are competitive with 
the state of the art. As demonstrated, this strategy enables us to 
identify regions of interest within the images. While the current 
study focused on binary classification, it has been shown that 
the system can be expanded to categorize different diseases. 
The deep neural network's feature extraction technique 
includes the extraction of regions of interest (ROI) as shown in 
Fig. 8. Once combined, these characteristics are sent to the 
final classification technique, which utilizes them to provide a 
prediction. 

VIII. CONCLUSION 

This article's approach, which utilizes a dataset of patients 
with monkeypox, has demonstrated success. It gives the binary 

labels of finding lesions with monkeypox and non-monkeypox 
findings. Classification results with 96% precision were 
achieved using 35 divisions of folds using KNN classification, 
which improves the image processing quality by identifying 
even small lesions in skin images. The accuracy of these results 
not only reflects the quality of the classification scenario and 
the percentage of the positive class predicted by the technique 
compared to the actual positive class in the dataset but also 
improves as the dataset is split into several parts, indicating an 
increase in the technique's performance. The ResNet50 
technique of CNN is a crucial component of the technique, as it 
enables comparison of the features of images with and without 
lesions by applying deep learning to identify monkeypox 
findings. This is accomplished through classifiers that are 
assessed using metrics that measure how effectively the 
technique functions. Based on the conclusions acquired, this 
article can now report on categorizing medical images from a 
dataset related to monkeypox. The technique provides an 
automatic and objective estimation of the classification of 
monkeypox findings, facilitating expert interpretation during 
the pandemic. This makes the values obtained from the 
scenario and binary classifier in the quantitative analysis of the 
imaging study more reliable, leading to a more accurate 
diagnosis. In future, ascertaining the viability and use of AI-
based monkeypox detection systems in clinical settings, 
researchers can conduct empirical assessments of these 
systems. It will take patients and healthcare professionals 
working together to assemble large datasets. Moreover, other 
designs might be studied to tackle the difficulty mentioned 
before. Researchers can increase the precision of AI-based 
monkeypox diagnosis by including other data sources, such as 
clinical symptoms, laboratory test findings, and patient history. 
As a result of these findings, the categorization approach serves 
as a supplementary tool in medical diagnostics. 

ACKNOWLEDGMENT 

This work was supported by the Deanship of Scientific 
Research under the Vice Presidency for Graduate Studies and 
Scientific Research of King Faisal University in Saudi Arabia 
under Project KFU241811. 

REFERENCES 

[1] WHO Director-General Declares Mpox Outbreak a Public Health 
Emergency of International Concern Available online: 
https://www.who.int/news/item/14-08-2024-who-director-general-
declares-mpox-outbreak-a-public-health-emergency-of-international-
concern (accessed on 19 September 2024). 

[2] Monkeypox Global Trends Available online: 
https://archive.cdc.gov/#/details?url=https://www.cdc.gov/poxvirus/mpo
x/response/2022/world-map.html (accessed on 19 September 2024). 

[3] Stilpeanu, R.I.; Stercu, A.M.; Stancu, A.L.; Tanca, A.; Bucur, O. 
Monkeypox: A Global Health Emergency. Front Microbiol 2023, 14, 
1094794, doi:10.3389/FMICB.2023.1094794/BIBTEX. 

[4] Deputy, N.P.; Deckert, J.; Chard, A.N.; Sandberg, N.; Moulia, D.L.; 
Barkley, E.; Dalton, A.F.; Sweet, C.; Cohn, A.C.; Little, D.R.; et al. 
Vaccine Effectiveness of JYNNEOS against Mpox Disease in the United 
States. New England Journal of Medicine 2023, 388, 2434–2443, 
doi:10.1056/NEJMOA2215201/SUPPL_FILE/NEJMOA2215201_DAT
A-SHARING.PDF. 

[5] Malik, I.; Ahmed, M.; Gulzar, Y.; Baba, S.H.; Mir, M.S.; Soomro, A.B.; 
Sultan, A.; Elwasila, O. Estimation of the Extent of the Vulnerability of 
Agriculture to Climate Change Using Analytical and Deep-Learning 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

617 | P a g e  

www.ijacsa.thesai.org 

Methods: A Case Study in Jammu, Kashmir, and Ladakh. Sustainability 
2023, Vol. 15, Page 11465 2023, 15, 11465, doi:10.3390/SU151411465. 

[6] Gulzar, Y. Enhancing Soybean Classification with Modified Inception 
Model: A Transfer Learning Approach. Emirates Journal of Food and 
Agriculture 36: 1-9 2024, 36, 1–9, doi:10.3897/EJFA.2024.122928. 

[7] Alkanan, M.; Gulzar, Y. Enhanced Corn Seed Disease Classification: 
Leveraging MobileNetV2 with Feature Augmentation and Transfer 
Learning. Front Appl Math Stat 2024, 9, 1320177, 
doi:10.3389/FAMS.2023.1320177. 

[8] Jabbari, A.; Humayed, A.; Reegu, F.A.; Uddin, M.; Gulzar, Y.; Majid, 
M. Smart Farming Revolution: Farmer’s Perception and Adoption of 
Smart IoT Technologies for Crop Health Monitoring and Yield 
Prediction in Jizan, Saudi Arabia. Sustainability 2023, Vol. 15, Page 
14541 2023, 15, 14541, doi:10.3390/SU151914541. 

[9] Amri, E.; Gulzar, Y.; Yeafi, A.; Jendoubi, S.; Dhawi, F.; Mir, M.S. 
Advancing Automatic Plant Classification System in Saudi Arabia: 
Introducing a Novel Dataset and Ensemble Deep Learning Approach. 
Model Earth Syst Environ 2024, 10, 2693–2709, doi:10.1007/s40808-
023-01918-9. 

[10] Mehmood, A.; Gulzar, Y.; Ilyas, Q.M.; Jabbari, A.; Ahmad, M.; Iqbal, 
S. SBXception: A Shallower and Broader Xception Architecture for 
Efficient Classification of Skin Lesions. Cancers 2023, Vol. 15, Page 
3604 2023, 15, 3604, doi:10.3390/CANCERS15143604. 

[11] Khan, F.; Ayoub, S.; Gulzar, Y.; Majid, M.; Reegu, F.A.; Mir, M.S.; 
Soomro, A.B.; Elwasila, O. MRI-Based Effective Ensemble 
Frameworks for Predicting Human Brain Tumor. Journal of Imaging 
2023, Vol. 9, Page 163 2023, 9, 163, doi:10.3390/JIMAGING9080163. 

[12] Majid, M.; Gulzar, Y.; Ayoub, S.; Khan, F.; Ree 

[13] gu, F.A.; Mir, M.S.; Jaziri, W.; Soomro, A.B. Enhanced Transfer 
Learning Strategies for Effective Kidney Tumor Classification with CT 
Imaging. International Journal of Advanced Computer Science and 
Applications 2023, 14, 2023, doi:10.14569/IJACSA.2023.0140847. 

[14] Majid, M.; Gulzar, Y.; Ayoub, S.; Khan, F.; Reegu, F.A.; Mir, M.S.; 
Jaziri, W.; Soomro, A.B. Using Ensemble Learning and Advanced Data 
Mining Techniques to Improve the Diagnosis of Chronic Kidney 
Disease. International Journal of Advanced Computer Science and 
Applications 2023, 14, doi:10.14569/IJACSA.2023.0141050. 

[15] Asif, S.; Zhao, M.; Li, Y.; Tang, F.; Ur Rehman Khan, S.; Zhu, Y. AI-
Based Approaches for the Diagnosis of Mpox: Challenges and Future 
Prospects. Archives of Computational Methods in Engineering 2024, 31, 
3585–3617, doi:10.1007/S11831-024-10091-W/METRICS. 

[16] Suzuki, K. Overview of Deep Learning in Medical Imaging. Radiol Phys 
Technol 2017, 10, 257–273, doi:10.1007/S12194-017-0406-
5/METRICS. 

[17] Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A Survey of the Recent 
Architectures of Deep Convolutional Neural Networks. Artificial 
Intelligence Review 2020 53:8 2020, 53, 5455–5516, 
doi:10.1007/S10462-020-09825-6. 

[18] Tayir, T.; Li, L. Unsupervised Multimodal Machine Translation for 
Low-Resource Distant Language Pairs. ACM Transactions on Asian and 
Low-Resource Language Information Processing 2024, 23, 
doi:10.1145/3652161. 

[19] Rafi, T.H.; Shubair, R.M.; Farhan, F.; Hoque, M.Z.; Quayyum, F.M. 
Recent Advances in Computer-Aided Medical Diagnosis Using Machine 
Learning Algorithms with Optimization Techniques. IEEE Access 2021, 
9, 137847–137868, doi:10.1109/ACCESS.2021.3108892. 

[20] Castiglioni, I.; Rundo, L.; Codari, M.; Di Leo, G.; Salvatore, C.; 
Interlenghi, M.; Gallivanone, F.; Cozzi, A.; D’Amico, N.C.; Sardanelli, 
F. AI Applications to Medical Images: From Machine Learning to Deep 
Learning. Physica Medica 2021, 83, 9–24, 
doi:10.1016/J.EJMP.2021.02.006. 

[21] Kundu, D.; Rahman, M.M.; Rahman, A.; Das, D.; Siddiqi, U.R.; Alam, 
M.G.R.; Dey, S.K.; Muhammad, G.; Ali, Z. Federated Deep Learning 
for Monkeypox Disease Detection on GAN-Augmented Dataset. IEEE 
Access 2024, 12, 32819–32829, doi:10.1109/ACCESS.2024.3370838. 

[22] Sitaula, C.; Shahi, T.B. Monkeypox Virus Detection Using Pre-Trained 
Deep Learning-Based Approaches. J Med Syst 2022, 46, 1–9, 
doi:10.1007/S10916-022-01868-2/FIGURES/5. 

[23] Alakus, T.B.; Baykara, M. Comparison of Monkeypox and Wart DNA 
Sequences with Deep Learning Model. Applied Sciences 2022, Vol. 12, 
Page 10216 2022, 12, 10216, doi:10.3390/APP122010216. 

[24] Ali, E.; Sheikh, A.; Owais, R.; Shaikh, A.; Naeem, U. Comprehensive 
Overview of Human Monkeypox: Epidemiology, Clinical Features, 
Pathogenesis, Diagnosis and Prevention. Annals of Medicine & Surgery 
2023, 85, 2767–2773, doi:10.1097/MS9.0000000000000763. 

[25] Haque, M.E.; Ahmed, M.R.; Nila, R.S.; Islam, S. Human Monkeypox 
Disease Detection Using Deep Learning and Attention Mechanisms. 
Proceedings of 2022 25th International Conference on Computer and 
Information Technology, ICCIT 2022 2022, 1069–1073, 
doi:10.1109/ICCIT57492.2022.10055870. 

[26] Sahin, V.H.; Oztel, I.; Yolcu Oztel, G. Human Monkeypox 
Classification from Skin Lesion Images with Deep Pre-Trained Network 
Using Mobile Application. J Med Syst 2022, 46, 1–10, 
doi:10.1007/S10916-022-01863-7/TABLES/6. 

[27] Ahsan, M.M.; Ali, M.S.; Hassan, M.M.; Abdullah, T.A.; Gupta, K.D.; 
Bagci, U.; Kaushal, C.; Soliman, N.F. Monkeypox Diagnosis with 
Interpretable Deep Learning. IEEE Access 2023, 11, 81965–81980, 
doi:10.1109/ACCESS.2023.3300793. 

[28] Ahsan, M.M.; Uddin, M.R.; Farjana, M.; Sakib, A.N.; Momin, K. Al; 
Luna, S.A. Image Data Collection and Implementation of Deep 
Learning-Based Model in Detecting Monkeypox Disease Using 
Modified VGG16. arXiv:2206.01862 2022. 

[29] Gulzar, Y. Fruit Image Classification Model Based on MobileNetV2 
with Deep Transfer Learning Technique. Sustainability 2023, 15, 1906. 

[30] Anand, V.; Gupta, S.; Koundal, D.; Mahajan, S.; Pandit, A.K.; Zaguia, 
A. Deep Learning Based Automated Diagnosis of Skin Diseases Using 
Dermoscopy. Computers, Materials & Continua 2021, 71, 3145–3160, 
doi:10.32604/CMC.2022.022788. 

[31] Neshat, M.; Ahmed, M.; Askari, H.; Thilakaratne, M.; Mirjalili, S. 
Hybrid Inception Architecture with Residual Connection: Fine-Tuned 
Inception-ResNet Deep Learning Model for Lung Inflammation 
Diagnosis from Chest Radiographs. Procedia Comput Sci 2024, 235, 
1841–1850, doi:10.1016/J.PROCS.2024.04.175. 

[32] Rahul; Sharma, A.; Gupta, S.; Anand, V. Proposed Convolution 
Architecture for Monkeypox Detection Using Dermoscopy Images. 
2023 3rd International Conference on Advances in Electrical, 
Computing, Communication and Sustainable Technologies, ICAECT 
2023 2023, doi:10.1109/ICAECT57570.2023.10118296. 

[33] Nuipian, W.; Meesad, P.; Kanjanawattana, S. A Comparative ResNet-
50, InceptionV3 and EfficientNetB3 with Retinal Disease. ACM 
International Conference Proceeding Series 2023, 283–287, 
doi:10.1145/3639233.3639337. 

[34] Ahsan, M.M.; Uddin, M.R.; Luna, S.A. Monkeypox Image Data 
Collection. arXiv:2206.01774 2022. 

[35] Ayoub, S.; Gulzar, Y.; Reegu, F.A.; Turaev, S. Generating Image 
Captions Using Bahdanau Attention Mechanism and Transfer Learning. 
Symmetry (Basel) 2022, 14, 2681. 

[36] Ayoub, S.; Gulzar, Y.; Rustamov, J.; Jabbari, A.; Reegu, F.A.; Turaev, 
S. Adversarial Approaches to Tackle Imbalanced Data in Machine 
Learning. Sustainability 2023, Vol. 15, Page 7097 2023, 15, 7097, 
doi:10.3390/SU15097097. 

[37] Chen, Y.; Wang, L.; Ding, B.; Shi, J.; Wen, T.; Huang, J.; Ye, Y. 
Automated Alzheimer’s Disease Classification Using Deep Learning 
Models with Soft-NMS and Improved ResNet50 Integration. J Radiat 
Res Appl Sci 2024, 17, 100782, doi:10.1016/J.JRRAS.2023.100782. 

[38] Shivadekar, S.; Hundekari, S.; Kataria, B.; Wanjale, K.; Balpande, V.P.; 
Suryawanshi, R. Deep Learning Based Image Classification of Lungs 
Radiography for Detecting COVID-19 Using a Deep CNN and ResNet 
50. International Journal of Intelligent Systems and Applications in 
Engineering 2009, 11, 241–250. 

[39] Suresh Kumar, K.; Radha Mani, A.S.; Ananth Kumar, T.; Jalili, A.; 
Gheisari, M.; Malik, Y.; Chen, H.C.; Jahangir Moshayedi, A. Sentiment 
Analysis of Short Texts Using SVMs and VSMs-Based Multiclass 
Semantic Classification. Applied Artificial Intelligence 2024, 38, 
doi:10.1080/08839514.2024.2321555. 

[40] Pavlou, M.; Omar, R.Z.; Ambler, G. Penalized Regression Methods 
With Modified Cross-Validation and Bootstrap Tuning Produce Better 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

618 | P a g e  

www.ijacsa.thesai.org 

Prediction Models. Biometrical Journal 2024, 66, e202300245, 
doi:10.1002/BIMJ.202300245. 

[41] Zhang, B.; Zhang, H.; Zhen, T.; Ji, B.; Xie, L.; Yan, Y.; Yin, E. A Two-
Stage Real-Time Gesture Recognition Framework for UAV Control. 
IEEE Sens J 2024, doi:10.1109/JSEN.2024.3413787. 

[42] Mahmood, O.A.; Sulaiman, S.O.; Al-Jumeily, D. Forecasting for 
Haditha Reservoir Inflow in the West of Iraq Using Support Vector 
Machine (SVM). PLoS One 2024, 19, e0308266, 
doi:10.1371/JOURNAL.PONE.0308266. 

[43] Khan, F.; Gulzar, Y.; Ayoub, S.; Majid, M.; Mir, M.S.; Soomro, A.B. 
Least Square-Support Vector Machine Based Brain Tumor 
Classification System with Multi Model Texture Features. Front Appl 
Math Stat 2023, 9, 1324054, doi:10.3389/FAMS.2023.1324054. 

[44] Geng, Y.; Li, Q.; Yang, G.; Qiu, W. Logistic Regression. Practical 
Machine Learning Illustrated with KNIME 2024, 99–132, 
doi:10.1007/978-981-97-3954-7_4. 

[45] Erickson, B.J.; Kitamura, F. Magician’s Corner: 9. Performance Metrics 
for Machine Learning Models. Radiol Artif Intell 2021, 3, 
doi:10.1148/RYAI.2021200126/ASSET/IMAGES/LARGE/RYAI.2021
200126.FIG6.JPEG. 

[46] Vandana; Kaushal, C. Analysis of the Monkeypox Outbreak Using CNN 
Model: A Systematic Review. 2023 4th IEEE Global Conference for 
Advancement in Technology, GCAT 2023 2023, 
doi:10.1109/GCAT59970.2023.10353352. 

[47] Agarwal, M.; Gill, K.S.; Chauhan, R.; Kapruwan, A.; Banerjee, D. 
Classification of Network Security Attack Using KNN (K-Nearest 
Neighbour) and Comparison of Different Attacks through Different 
Machine Learning Techniques. 2024 3rd International Conference for 
Innovation in Technology, INOCON 2024 2024, 
doi:10.1109/INOCON60754.2024.10512250. 


