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Abstract—Gas-tightness experiment is an effective means to 

detect leakage of stainless steel welded pipe, and the vision-based 

bubble recognition algorithm can effectively improve the 

efficiency of gas-tightness detection. This study proposed a new 

detection network of YOLOv8-BGA using the YOLOv8 model as 

a baseline, which can achieve effective identification of leakage 

bubbles and bubble images are collected under different lighting 

conditions in a practical industrial inspection environment to 

create a bubble dataset. Firstly, a C2f_BoT module was designed 

to replace the C2f module in the backbone network, which 

improved the feature extraction capability of the model; secondly, 

the convolutional layer of the neck network was replaced by using 

the GSConv module, which achieved the model lightweighting; 

thirdly, the C2f-BM attention mechanism was added before the 

detection layer, which effectively improved the model 

performance; finally, the WIoU was used to improve the loss 

function, which improved the detrimental effect of small bubbles 

of low-quality samples in the dataset on the gradient, and 

significantly improved the convergence speed of the network. The 

experimental results showed that the average leakage bubble 

detection accuracy of the YOLOv8-BGA model algorithm reached 

97.7%, which improved by 5.3% compared with the baseline, and 

meets the needs of practical industrial inspection. 

Keyword—Image processing; stainless steel welded pipe; non-

destructive testing; YOLOv8; attention mechanism; loss function 

I. INTRODUCTION 

Stainless steel welded pipe has a wide range of uses, and is 
widely used in chemical industry, automobile manufacturing, 
shipbuilding and other industrial production areas [1], but it is 
prone to leakage problems, which has a greater impact on the 
subsequent use of the product. Gas tightness test is an effective 
means to test whether the stainless steel welded pipe leakage, 
when the welded pipe leakage exists, air bubbles are generated 
in the water, and the identification of air bubbles is an important 
indicator for judging the gas tightness. The traditional 
airtightness detection for workers to observe, the method is 
subject to subjective factors, easy to miss, low detection 
efficiency [2-4].Vision-based airtightness testing can exclude 
the influence of human subjective factors, assess the results 
through the indicators, make the test results more accurate, and 
improve the efficiency of product testing. Vision-based 
airtightness detection has traditional image processing method 
[5] and deep learning target detection based method [6]. 

Traditional image processing algorithms rely on classical 
image processing techniques based on edge contour and 

circumferential curvature fitting to manually extract the bubble 
edge features. Qaddoori [7] used the use of Hough's Circle 
Transform algorithm to identify the tiny bubbles in the graph 
based on Canny operator and segmented the centre and edges 
of the bubbles by two thresholds to calculate the average 
diameter and number of bubbles in the graph; Wen [8] designed 
a new image processing algorithm based on the concept of 
differential segmentation while considering the geometry and 
deflection angle of the bubbles; Akdemir [9] proposed a 
detection method using wavelet transform denoising and 
entropy threshold segmentation. The above proposed methods 
need to modify the parameters to respond to different detection 
environments, and have weak generalisation ability for 
identifying bubbles, and are prone to miss detection and false 
detection. Deep learning based target detection method has 
higher detection rate, stronger generalisation ability and better 
robustness for bubble recognition. 

Deep learning target detection algorithms are classified into 
two types: a two-stage algorithm with high accuracy but slow 
speed, such as Faster R-CNN [10], Mask R-CNN [11]; and a 
single-stage algorithm with a simple structure and high 
computational efficiency, such as Krysko, N.V.et al [12] 
through the integrated application of non-destructive testing 
techniques, computer vision and convolutional neural networks, 
the surface of pipeline pitting and defects were classified and 
quantitatively analysed; Zhao et al [13] proposed a 3D quartz 
crucible bubble detection method, which significantly 
improved the detection accuracy of tiny bubbles by optimising 
the YOLOv5 network structure, introducing dilated 
convolution and ECA-Net mechanism, and combining Kalman 
filtering with Hungarian matching algorithm. Due to the 
different generalisation ability of the model in different 
detection environments. The real-time identification of bubbles 
is affected by the ripples generated by the bubble movement, 
the lighting environment, impurities in the water, sedimentation 
and other factors, which makes the collected bubble images 
have a lot of noise and missing bubble boundaries, which in turn 
affects the accuracy of target detection. 

In this study, a model algorithm YOLOv8-BGA based on 
YOLOv8 is developed to achieve effective identification of 
leakage bubbles. Firstly, a C2f_BoT module is designed to 
replace the C2f module in the backbone network, which 
improves the feature extraction capability of the model; 
secondly, the convolutional layer of the neck network is 
replaced by using the GSConv module, which realises the 
model lightweight; again, the C2f-BM attention mechanism is 
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added before the detection layer, which effectively improves 
the model performance; and lastly, the loss function is improved 
by using the WIoU to improve the dataset The unfavourable 
effect of small bubbles of low-quality samples on the gradient 
significantly improves the convergence speed of the network. 

II. RELATED WORK 

The first single-stage target detection YOLO algorithm was 
first proposed by Redmon [14] in 2015.The algorithm achieves 
fast identification and precise positioning of the target to be 
detected through a regression method. Currently, the YOLO 
series of algorithms has been developed to YOLOv10, and a 
variety of improved algorithms have been derived in academia. 
For example, Li [15] and others improved the internal structure 
of YOLOv5s and proposed a ‘YOLOv5s-ShuffleNetV2-
DWconv-Add’ model, which provides an efficient acquisition 
method for fruit picking robots; Sun [16] and others proposed a 
‘Pconv-Wide lightweight’ model for fruit picking robots. 
Pconv-Wide lightweight convolutional simplified YOLOv7 
model, which increases the detection accuracy of UAVs on 
small targets while reducing the number of model parameters; 
Zhao [17] et al. proposed a Res-Clo network for denoising pre-
processing of SAR images, and designed a DML-YOLOv8w 
network, which improves the performance of the model in 
multi-scale detection; YOLOv8 uses an Anchor-Free detection 
head [18], which improves the generalisation ability while 
reducing the model complexity, and improves the detection 
speed and accuracy compared to the previous YOLO algorithm. 

YOLOv8 has four network model structures, YOLOv8n, 
YOLOv8s, YOLOv8m, and YOLOv8l, and the choice of the 
structure depends on the actual detection scenario and resource 
conditions. The YOLOv8n model is mainly divided into four 
parts: (1) Data enhancement strategies are applied to the image 
in the input part, such as Mosaic data enhancement and adaptive 

anchor frame computation to enhance the data diversity; (2) 
The backbone network is processed by multiple convolutional 
downsampling at key nodes, thus effectively reducing the size 
of the feature map and preserving the spatial information of the 
image. Then C2f modules of different sizes are used to capture 
multi-scale features; (3) The neck network accepts feature maps 
of various scales obtained through 8, 16, and 32 times 
downsampling from the backbone network, and fuses shallow 
high-resolution features and deep low-resolution features 
through PANet (path aggregation network), followed by fusing 
the fused feature maps with rich spatial and semantic 
information. Then the fused feature maps with rich spatial and 
semantic information are output to the Head part for further 
processing; (4) The Head network receives the multi-scale 
feature maps from Neck, performs up-sampling and splicing 
operations on them to match the resolution of the input image, 
and adjusts the number of channels through the feature 
conversion layer. 

YOLOv8 has three Detect layers of different scales, 80×80, 
40×40, and 20×20, which are used to detect large, medium, and 
small sized targets in the image, respectively. The three 
prediction layers output the category probability and bounding 
box location of each cell, and the stability of the prediction box 
is evaluated by a confidence layer.YOLOv8 adopts a 
Decoupled-Head structure to separate the classification and 
detection tasks to improve the detection efficiency. Finally, IOU 
(Intersection over union) [19] is used as the loss function for the 
bounding box regression, and then NMS (Non-Maximum 
Suppression) [20] removes the redundant prediction frames so 
as to avoid the same target from being detected repeatedly and 
retain the best results. This paper is based on the YOLOv8n 
algorithm to improve. The structure of the YOLOv8 model is 
shown in Fig. 1. 

 

Fig. 1. YOLOv8 model structure. 
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III. ALGORITHM DESIGN 

A. Network Architecture Design 

In this paper, four improvement modules for the YOLOv8n 
model are proposed. Firstly, the C2f_BoT module was 
constructed to replace the original C2f module of 40×40 and 
20×20 sizes in the Backbone section, which improves the 
ability of the model to detect small and medium-sized bubbles; 
Secondly, the original Conv(Convolution) block is replaced by 
the GSConv in the neck network, which reduces the complexity 

of the model and improves the inference speed to achieve the 
effect of model lightweighting; Next, the C2f-BM attention 
mechanism is embedded in front of each detection head, which 
improves the detection accuracy of the model for small bubble 
targets; Finally, the WIoU loss function is introduced to speed 
up the network convergence. These improvements greatly 
improved the detection accuracy and detection speed of the 
original model in the stainless steel welded pipe gas-tightness 
inspection task. Fig. 2 shows the structure of the YOLOv8-
BGA model obtained after the improvement. 

 

Fig. 2. YOLOv8-BGA model structure. 

B. Mosaic Image Data Enhancement 

Data enhancement of the self-constructed bubble dataset is 
performed using the Mosaic method at the YOLOv8n input. 
The Mosaic data enhancement algorithm improves the 
detection ability of the model in a small field of view by fusing 
multiple images into a single image according to a certain 
random scale. As shown in Fig. 3, four bubble images are 
randomly selected, certain parameters are set, and they are 
stitched into one image by random permutation, random size 
scaling, and random cropping. 

 

 

Fig. 3. Data enhancement. 

Using Mosaic data enhancement technique to strengthen the 
dataset can increase the data diversity, and the combined images 
obtained are more than the number of original images, which 
can get more small targets, and improve the generalisation 
ability of the trained model, which is a great improvement for 
detecting some tiny bubbles produced by subtle defects. And 
the network is able to batch process four image data in a single 
batch, which optimises the effect of the batch normalisation 
layer, thus reducing the computational burden on the GPU, 
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making it possible to achieve efficient training results on a 
single GPU. 

C. C2f Module Improvements 

The YOLOv8 network structure makes several uses of the 
C2f module [21], which is an improved residual block that 
enables feature fusion by connecting feature maps of different 
depths through splicing and upsampling operations. The spliced 
feature map fuses multi-scale features, which is helpful for the 
model to detect targets of different sizes. Compared with the 
traditional C3 module in YOLOv5, the C2f module increases 
the depth while ensuring smooth gradients, and the detection 
accuracy of the model is subsequently improved. However, for 
medium and small size targets, there are still cases of missed 
detection, in order to meet the accurate identification of tiny 
bubbles generated at the subtle defects of defective stainless 
steel welded pipes, and to increase the detection accuracy 
without increasing the additional computational cost, this paper 
proposes a C2f_BoT module for replacing the C2f module in 
the backbone network, and the structure of the C2f and the 
C2f_BoT network is shown in Fig. 4. 

The BoT(Bottleneck Transformer) modules added after the 
last layer of Bottleneck in the C2f module, because the BoT 

module  helps to improve the detection accuracy of the model 
for small and medium-sized targets, in order to maximise the 
utilisation of computational resources, this paper only replaces 
the C2f module with the 40×40 and 20×20 scales in the 
backbone network. The C2f_BoT module can effectively 
improve the accuracy. Moreover, the generalisation ability of 
the model can be further improved due to the MHSA attention 
mechanism in the BoT module. BoT network has a simple and 
powerful structure and is widely used in visual tasks such as 
image classification, target detection, semantic segmentation, 
etc. [22], and its structure is shown in Fig. 5.It replaces the 3×3 
convolutional layers in the ResNet structure with the MHSA 
(Multi-Head Self-Attention), which automatically captures the 
dependencies between sequences when processing the input 
sequences and thus better understands the contextual 
information to improve the model performance. This operation 
significantly improves the baseline in the target detection task, 
resulting in lower latency. The C2f_BoT module with the added 
BoT structure improves the computational efficiency and 
detection accuracy of the model compared to the original C2f 
module, which is more suitable for the practical application of 
the model in industrial inspection. 

 
(a)C2f network structure  (b)C2f_BoT network structure 

Fig. 4. C2f and C2f_BoT network structure. 

 

Fig. 5. Bottleneck transform structure. 
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D. Lightweight Processing 

In order to reduce model complexity and reduce 
computational requirements, this paper uses the GSConv 
module to replace the original convolutional layer.GSConv is a 
hybrid of SConv (Standard convolution) and DSConv (Depth-
wise separable convolution) [23] combined by the Shuffle 
convolution. DSConv incorporates deep convolution, which 
focuses on spatial feature extraction, and point-by-point 
convolution, which focuses on channel features. This structure 
performs deep convolution for each channel independently 
when processing features, and performs channel fusion at the 
output stage through a 1×1 convolutional layer to reduce the 
number of computations and parameters. Since DSConv 
separates each channel at the input image, some of the bubble 
image features are lost, which is degraded for airtightness 

detection accuracy. And GSConv can reduce the number of 
parameters and computation of the model while ensuring the 
training speed and detection accuracy. Its structure is shown in 
Fig. 6. 

In this paper, the GSConv structure is introduced in the 
Neck part. In the Neck part, the channel dimension of the 
feature map extracted by the network is large, in order to 
maximally retain the circulation of feature information in the 
spatial and channel dimensions, and to avoid the loss of detail 
information, the original convolutional layer is replaced with 
GSConv in this part, which can reduce the model complexity 
under the premise of guaranteeing a certain model accuracy. If 
GSConv is used in all parts of the network, it will increase the 
depth of the network and thus prolong the inference time. 

 

Fig. 6. GSConv structure. 

E. C2f-BM 

The attention mechanism is a resource allocation scheme 
that mimics human vision, which effectively allocates 
computational resources, prioritises critical tasks and alleviates 
information overload.YOLOv8 often faces the problem of 
feature loss in stainless steel welded pipe airtightness 
experiments for detecting small target bubbles, because small 
bubbles occupy fewer pixels in the feature map, and as the 
network undergoes many times of downsampling, the feature 
details of the small bubbles may be overlooked which makes 
the model performance degraded and generates problems such 
as leakage detection, which has a significant impact on the 
leakage detection generated by fine defects in steel pipes. 
Especially in the complex scene in the water, due to the water 
surface ripples caused by leakage, the impurity precipitation in 
the water and the pixel difference between the light and dark 
areas, the noise information in the background may occupy 
most of the feature space, so that the model is interfered with 
and cannot be accurately focused on the target area, resulting in 
the inability to accurately locate the target, and thus leakage 
detection. 

To solve the above problems, the C2f-BM attention 
mechanism is designed in this section and embedded in front of 

the YOLOv8 detection head, the structure of which is shown in 
Fig. 7. 

 

Fig. 7. G2f-BM structure. 
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The BAM (Bottleneck Attention Module) [24] is a simple 
and efficient attention mechanism, the structure of which is 
shown in Fig. 8, which mimics how the human visual system 
focuses on the critical parts of an image by separating the 
information from both channel and spatial pathways. 

Channel attention focuses on enhancing the identification of 
feature channels relevant to the target detection task, while 
spatial attention focuses on the spatial location in the image, 
helping the model to focus more on the region where the small 
target is located, thus reducing the loss of feature information 
of the small target. The BAM combines the results of these two 
to generate a comprehensive Attention Map. This mechanism 
effectively improves the model's performance in the detection 
of small bubble target. This mechanism effectively improves 
the performance of the model in small bubble target detection, 
especially in complex detection scenarios in water. Through the 

spatial attention mechanism, the BAM mechanism can 
effectively suppress the irrelevant information in the 
background, reduce the noise interference, and make the model 
more focused on the feature space of the small target to enhance 
the robustness of the model. The C2f module itself optimises 
the feature extraction process, and by embedding the BAM 
mechanism, the model can focus on important features in the 
early feature extraction stage to improve the feature quality and 
model performance in the subsequent stages. Moreover, since 
C2f improves the gradient flow, the introduction of BAM can 
further optimise the gradient distribution, which makes the 
model more stable to be trained when dealing with complex 
visual tasks. Due to the lightweight nature of the BAM 
mechanism, it does not significantly increase the extra 
computational burden during embedding, allowing the whole 
model to improve performance while maintaining efficient 
computation. 

 

Fig. 8. BAM structure. 

BAM calculates Attention Map through two branches: 
channel and space, and this paper introduces its calculation 
method from the following three points:  

1) .Channel Attention (CA): The expectation maximisation 

algorithm aims to find maximum likelihood solutions for the 

hidden variables. In this step, the posterior probability 

distribution of the hidden variables under the current model 

parameters is calculated. In fact, it is to calculate the weights 

and responsibilities of each base for each pixel, the formula is 

shown in Eq. (1). 

( )cF AvgPool F              (1) 

where the global average pooling of the input feature map 
 


C H W

F R is performed to obtain the average value of each 

channel to obtain the vector 
1 1 


C

cF R . C  is the number of 

channels, H  is the height, and W  is the width. 

Next, a multilayer perceptron (MLP) containing hidden 
layers is used to estimate the inter-channel attention from the 
channel vector cF ,the formula is shown in Eq. (2). 

c 1 0 c 0 1( ) ( (Re ( + )+ ))MLP F BN W bLU W F b b
 (2) 

where, 0





C
C

r
W R , 0

C

rb R , 1





C
C

r

W R , 1
C

b R , the size 

of the hidden layer is 
C

r
 , and r  is the reduction ratio. 

After the MLP, a batch normalisation layer is added to scale 
the output, the formula is shown in Eq. (3). 

( ( )) cCA BN MLP F
           (3) 

2) Spatial Attention (SA): First, the feature map F  is 

projected to a smaller size using a 1×1 convolution to integrate 

and compress the feature map across channel dimensions, the 

formula is shown in Eq. (4). 
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1 1( )RF Conv F              (4) 

Next, the contextual information is effectively utilised with 
two 3×3 null convolutions, the formula is shown in Eq. (5). 

 
3 3 R)DF DilatedConv F（

        (5) 

Finally, the feature map is again reduced to a spatial 
attention map using 1×1 convolution, the formula is shown in 
Eq. (6). 

1 1( ) DSA Conv F             (6) 

3) Combination of CA and SA: 

( ) ( ( ) ( )) c SM F M F M F
       (7) 

where ( )cM F is the channel attention mapping, ( )SM F is the 

spatial attention mapping, and  is the Sigmoid activation 

function. Finally, the 3D attention map ( )M F is multiplied 

element-by-element with the input feature map, and then added 
to the original input feature map to obtain the refined feature 

map
'

F , the formula is shown in Eq. (8). 

' ( )  F F F M F             (8) 

where denotes element-by-element multiplication. 

This combination of BAM mechanisms is simple yet 
effective in adaptively assigning higher weights to small targets 
by balancing information from both the channel and spatial 
branches, while facilitating gradient flow. 

F. Loss Function Improvement 

The original YOLO family of algorithms uses IoU 
(Intersection over union) to calculate the bounding box 
regression loss, which refers to the ratio of the intersection and 
concatenation set of the true and predicted frames, as shown in 
Eq. (4). 






A B
IoU

A B
               (9) 

Where A denotes the true frame and B denotes the predicted 

frame, A B  is its intersection, A B  is its union set. 

When the similarity ratio between the predicted frame and 
the real frame is higher, it means that the detection is better. 
However, there are shortcomings, in the detection when the real 
frame and the predicted frame do not intersect, that is, when 

0 A B , it is impossible to determine the size of the distance 

between the predicted frame and the real frame. 

Therefore, in order to solve the instability brought by the 
above situation to the detection, YOLOv8 adopts CIoU 
(Complete-IoU) [25] instead of IoU. CIoU adds distance and 
aspect ratio to IoU, and its calculation formula is shown in Eq. 
(10)- Eq. (12). 

2

2

( , )
1


   CIoU

A B
L IoU V

c     (10) 

2 B

4
(arctan arctan )

 

  
 

A B

A
V

     (11) 

1
 

 

V

IoU V              (12) 

where, 2
( , ) A B  is the Euclidean distance between the 

centroids of the true and predicted frames, V is a parameter 
indicating the consistency of the aspect ratio, and   is a 

parameter used to balance the ratio. 

Using CIoU, the minimum value of the distance between 
the real and predicted frames, the aspect ratio and the distance 
between the centre points of the bounding boxes can be 
calculated, which improves the stability of the target box 
regression. However, CIoU only considers the centre distance 
of the two bounding boxes, and the matching of the boundaries 
cannot be accurately assessed, leading to an impact on the 
detection effect when the target shape changes. The WIoU loss 
function, on the other hand, introduces a weight function on the 
basis of IoU, which makes it flexible to adjust the weights 
between different samples even in more complicated situations. 
For samples with poorer labelling quality in the dataset, WIoU 
performs better compared to other boundary loss functions. 

In this paper, WIoU (Wise-IoU) is replaced as the loss 
function, which is proposed on the basis of Focal-EIoU 
[25].Most of the research on loss function in recent years 
assumes that the samples in the dataset are of high quality, and 
is committed to improving the fitting ability of the bounding 
box loss, while when there are low-quality samples in the 
dataset, it will jeopardise the model detection performance if 
the regression of the bounding box on the low-quality samples 
is improved, while Focal-EIoU is proposed to solve the problem, 
and its formula is shown in Eq. (13) - Eq. (14). 

2 2 2

2 2 2

( , ) ( , ) ( , )
1



    
    

A B A B

EIoU

h

A B h h
L IoU

c c c (13) 


 Focal EIoU EIoUL IoU L          (14) 

where  is the hyperparameter used to control the curvature 

of the curve and its focusing mechanism is static. To fully 
exploit the potential of the non-monotonic focusing mechanism, 
WIoU [26] uses a dynamic non-monotonic mechanism to assess 
the quality of the anchor frame, which gives it a better 
performance when facing the targets with different geometric 
factors, and the detection performance of the samples from low-
quality datasets is improved, and improves the model's 
generalisation ability. The WIoU loss function expression is 
shown in Eq. (15) - Eq. (17). 

oU WIR
 



 
WI oU IoUL L              (15) 

2

2 2

2
)

I
*

( y ) )
( )

( ) 

  


gt gt
W oU

g g

x x y
R exp p

h

（
        (16) 

1 IoUL IoU                  (17) 
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where  describes the outlier of the anchor frame mass,   

and are hyperparameters.g  and gh  are the dimensions of 

the minimum enclosing frame, ( , )x y and ( , )gt gtx y are the 

coordinates of the centre points of the anchor and target frames. 
Using the WIoU loss function in the improved model, the 
performance of target detection can be improved by introducing 
the weighting factor, and for targets with different sizes and 
shapes, the WIoU can give more reasonable weights to different 
samples, so that the improved model can better learn the 
characteristics of bubbles with different sizes and shapes during 
the training process, and improve the robustness of the stainless 
steel welded pipe airtightness detection task. 

IV. LEIS EXPERIMENTS AND ANALYSIS OF RESULTS 

A. Experimental Methodology Flow 

The experimental methodology of this paper is specifically 
divided into the steps of data preparation, model construction, 
model training, model validation, and result analysis. The flow 
chart of the experimental method is shown in Fig. 9. 

The specific work is as follows: 

1) Data preparation. It is necessary to collect the datasets 

(D1, D2, D3, D4) of stainless steel defective welded pipe 

leakage detection, perform data enhancement on the D1 and D2 

datasets, and divide the datasets into a training set and a 

validation set. 

2) Model construction. Taking YOLOv8n as the base 

model, the model improvement work in section III of this paper 

is carried out on it in order to obtain the improved YOLOv8-

BGA model. 

3) Model training. Train the model on D1 and D2 datasets 

respectively. 

4) Model validation. Use the trained model weights to 

validate the model on the validation sets of D1, D2, D3, and D4 

datasets, and calculate Precision, Recall, and mAP metrics. 

5) Result analysis. Compare the detection performance of 

different models, analyze the generalization ability of models 

in different environments, and conduct ablation experiments to 

verify the effectiveness of each improvement module. 

B. Experimental Setup 

The experiments in this paper were conducted under 
Windows 11 operating system, using a CPU model i7-13620H 
with 16G of RAM, a graphics card NVIDIA RTX4060, 
accelerating the GPU using CUDA11.8 and CUDNN8.8.1, and 
running under the Pytorch2.0.0 deep learning framework. In 
this experiment, the official website YOLOv8n model weights 
are used as the basic network model, batchsize is set to 32 and 
epoch is 200.an industrial face array camera with model number 
MV-CS004-10GM is used, and the camera is shown in Fig. 10. 

 

Fig. 9. Experimental methodology. 

 

Fig. 10. Industrial camera. 

An airtightness tester model LS11Z-100 was used for 
inflation and pressurization, as shown in Fig. 11. 

 

Fig. 11. Airtightness tester diagram. 
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The light source is a strip light source and the schematic 
diagram of the image acquisition device is shown in Fig. 12. 

 

Fig. 12. Image acquisition device. 

C. Experimental Data Set 

The dataset in this paper was acquired in an image 
acquisition platform built in a real industrial inspection 
environment. The stainless steel defective welded pipe used for 
the experiment is obtained from the processing workshop, and 
several common defective welded pipes are shown in Fig. 13. 

   
(a)Weld hole defect        (b) Defect in changing tungsten needles 

 

(c) Soldering defect             (d) Skipped weld defects 

Fig. 13. Stainless steel welded pipe common defects diagram. 

In order to evaluate the generalisation ability of the 
improved model, two datasets, D1 and D2, were acquired in two 
different lighting environments (bright and dimmer), and 
secondly, two noisy images were acquired in these two lighting 
environments as D3 and D4 datasets. All the dataset images 
were labelled and their basic characteristics are detailed in 
Table I. 

TABLE I BASIC INFORMATION ON THE D1-D4 DATA SETS 

Dataset Feature train set val set 

D1 Sufficient light 4640 1160 

D2 dusky 5080 1270 

D3 Sufficient light, noise 0 945 

D4 Dusky, noise 0 975 

Due to the defects of the original data, Mosaic data 
enhancement is performed on D1 and D2 datasets, and the 
images of D1 dataset are expanded to 5800, D2 dataset is 
expanded to 6350, and D3 and D4 datasets are not processed. 
The D1 and D2 datasets are divided into training set and 
validation set with the ratio of 8:2. Some images of D1-D4 
datasets are shown in Fig. 14. 

 
D1                       D2 

 
D3                       D4 

Fig. 14. Partial images of the dataset. 
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D. Assessment of Indicators 

In the field of deep learning target detection, the main 
metrics for model performance evaluation are P (Precision), R 
(Recall) and mAP (mean AP), and the model complexity can be 
evaluated by GFLOPS (Giga Floating Point Operations) and 
Parameters [27]. FPS were used to evaluate the performance of 
the model. In this paper, the model evaluation is also based on 
these criteria.p, R and mAP are calculated as shown in Eq. (18)-
Eq. (21): 

TP
P

TP FP



              (18) 

TP
R

TP FN



             (19) 

AP=P(r)dr                (20) 

1
mAP= AP

N
             (21) 

In Eq. (13) - Eq. (16), TP is the number of positive samples 
correctly detected; FP is the number of positive samples 
incorrectly detected; FN is the number of negative samples 
incorrectly detected; AP is the average precision; and N is the 
number of all predictions. 

E. Error Analysis and Discussion 

In the process of detecting leakage bubbles in stainless steel 
welded pipes using the YOLOv8-BGA model, several types of 
errors were observed. Small bubbles, particularly those 
generated by subtle defects, are more likely to be missed due to 
their low pixel occupancy in the feature map. The repeated 
downsampling in the network can lead to the loss of these fine 
details. Additionally, bubbles that appear in regions with high 
background noise or similar textures are prone to incorrect 
detection. For example, in the presence of water impurities or 
ripples, the model may confuse these with actual bubbles. 
These factors collectively contribute to the challenges faced 
during the detection process. 

The impact of noise and ripples on detection accuracy 
cannot be overlooked. The movement of bubbles can generate 
ripples on the water surface, which introduce additional noise 
into the image. These ripples can interfere with the model's 
ability to accurately locate and identify bubbles, especially in 
complex underwater scenes. Variations in lighting conditions 
can cause significant reflection and refraction effects on the 
water surface, leading to false positives or false negatives as the 
model may misinterpret the light patterns as bubbles. 
Overlapping bubbles and those with unclear or irregular 
boundaries also pose challenges, as the model may struggle to 
distinguish individual bubbles or accurately delineate bubble 
contours. These issues highlight the need for further 
improvements to enhance the model's robustness and accuracy. 

To address these challenges, several strategies were 
implemented. Mosaic data augmentation was employed to 
increase the diversity of the training dataset, helping the model 

learn to detect small targets more effectively. The C2f-BM 
attention mechanism was introduced to allow the model to 
focus more on critical regions, reducing the impact of noise and 
improving the detection accuracy for small bubbles. 
Additionally, the WIoU loss function was utilized to enhance 
the model's fitting ability, especially for low-quality samples 
with small bubbles, thereby improving the overall detection 
performance. Through these improvements, the YOLOv8-BGA 
model demonstrated enhanced robustness and accuracy in 
detecting leakage bubbles under various conditions. Future 
work will continue to explore advanced techniques and 
additional data collection under varied conditions to further 
improve the model's performance. 

F. Experimental Results and Analysis 

1) Comparison experiment: In order to verify the 

performance of the improved model in this paper, a comparison 

experiment is first taken. Several common target detection 

algorithms are selected and trained on D1 dataset under the 

same experimental environment and experimental 

configuration, and validated. The experimental results are 

detailed in Table II. 

TABLE II COMPARATIVE EXPERIMENTAL RESULTS OF SOME 

MAINSTREAM ALGORITHMS 

Model P/% R/% mAP/%t Parameters/M FLOPS/G 
FPS 

(F/S) 

Faster R-CNN 60.1 63.7 64.6 14.3 19.8 25 

YOLOv3 84.6 85.4 87.3 54 125.6 45 

YOLOv5s 90.1 89.8 91.6 7.0 15.8 65 

YOLOv8n 90.6 90.8 92.4 3.0 8.1  85 

YOLOv8s 89.9 90.4 91.5 11.1 28.4 50 

YOLOv8-

BGA 
95.4 96.3 97.7 2.7 7.5 89 

Table II shows that the improved algorithm in this paper has 
excellent training effect on the D1 dataset, and has certain 
improvement compared with other algorithms. Compared with 
Faster R-CNN, it has the biggest improvement, with an average 
accuracy improvement of 34.1%; compared with YOLOv3, the 
average accuracy improvement is 11.4%; compared with 
YOLOv5s and YOLOv8s, it has an improvement of 7.1% and 
7.2%, respectively; this paper improves the improved model by 
using YOLOv8n as the baseline, and the improved model has 
an average accuracy improvement of 5.3% compared with 
YOLOv8n.The FPS value of YOLOv8-BGA is 89, which is 
significantly higher than that of other algorithms, indicating 
that it not only improves the detection accuracy, but also 
optimizes the inference speed of the model, which can make the 
detection task achieve a good balance between real-time and 
accuracy. In addition, while the detection accuracy is improved, 
the number of parameters and inference time of the model are 
lower than the other five algorithms. It can be seen that 
YOLOv8-BGA has higher detection accuracy in the dataset of 
this paper, and at the same time, the model complexity is lower, 
which can better meet the actual industrial detection needs of 
stainless steel defective welded pipe bubbles. The comparison 
of the detection results of YOLOv8-BGA and the other 
algorithms is shown in Fig. 15. 
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(a)FasterR-CNN                               (b)YOLOv3                                   (c) YOLOv5s 

 
(d) YOLOv8n                                 (e) YOLOv8s                                  (f) YOLOv8-BGA 

Fig. 15. Comparison of detection results between YOLOv8-BGA and other algorithms. 

2) Verification of generalisation capabilities: In the actual 

detection process, the image quality is affected by a variety of 

factors such as illumination, water reflection and ripples, so it 

is crucial to evaluate the generalisation ability of the model. In 

this section of experiments, the improved algorithm is trained 

on D1 and D2 datasets under the same configuration, and the 

corresponding validation sets are validated with the respective 

training results. Precision and recall are chosen to evaluate the 

model performance, and the experimental results are detailed in 

Table 3.In this experiment, the influence of lighting conditions 

on the leakage bubble detection results of stainless steel welded 

pipe based on YOLOv8-BGA model is emphatically analyzed. 

In this section, two lighting environments is set up, bright and 

dark, and the results show that the lighting conditions have a 

significant impact on the model detection performance. The 

results show that the lighting conditions have a certain 

influence on the model detection performance. 

TABLE III COMPARISON OF TEST RESULTS 

mission P/% R/% 

D1 Validated D1 95.4 96.3 

D2 Validated D2 93.9 94.3 

In low-illumination conditions, the overall brightness of the 
image is reduced, which directly leads to a decrease in image 
contrast. According to the fundamental principles of image 
processing, contrast is a key factor in distinguishing targets 
from the background. When contrast is reduced, the differences 
between small bubbles and the background become less distinct, 
especially for small bubbles generated by minor defects, which 
occupy fewer pixels in the feature map. In low-contrast images, 
the features of these small bubbles become even more difficult 
to extract. For example, in our experimental dataset, when the 

illumination is dim, the edge details of small bubbles are blurred, 
making it challenging for the model to accurately identify their 
contours. This results in larger deviations between the predicted 
and ground-truth bounding boxes when calculating the loss 
function, thereby reducing the detection accuracy of the model. 
Specifically, when validating on the dataset D2 under low-
illumination conditions, the model's Precision is lower 
compared to that on the dataset D1 under bright illumination 
conditions. For instance, the Precision is 95.4% when D1 is 
validated on D1, while it is 93.9% when D2 is validated on 
D2.In bright illumination conditions, although the overall 
brightness of the image is sufficient, strong reflections become 
a significant factor affecting detection results. When light 
strikes the surface of the water and bubbles, reflection and 
refraction occur. According to the principles of optics, the angle 
of incidence is equal to the angle of reflection. When light is 
incident at a large angle, the intensity of the reflected light 
increases. Under bright illumination, due to the undulations of 
the water surface and the movement of bubbles, the direction of 
the reflected light constantly changes, causing the bubble 
boundaries to appear blurred in the image. This blurred 
boundary interferes with the model's accurate judgment of 
bubbles because the model relies on clear boundary features for 
localization and identification. For example, in the experiment, 
we observed that under bright illumination with undulating 
water surfaces, the model is prone to misjudging reflective 
areas as bubbles or inaccurately locating the boundaries of 
bubbles, thereby affecting Recall and Precision. 

Then, in order to verify the generalisation ability of the 
improved algorithm under different environmental conditions, 
the D2, D3, and D4 datasets were validated using the training 
results of the D1 training set, and the D1, D3, and D4 were 
validated using the training results of the D2 training set, 
respectively, and the results are shown in Fig. 16. 
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(a)D1 to D1                                    (b)D1 to D2                                   (c) D1 to D3 

 
(d)D1 to D4                                    (e)D2 to D1                                   (f)D2 to D2 

 
(g)D2 to D3                                              (h)D2 to D4 

Fig. 16. Comparison of some test results. 

In assessing the performance of the model in various 
environments, precision and recall are also used as evaluation 
metrics, as detailed in Table IV. 

TABLE IV RESULTS OF DIFFERENT ENVIRONMENTS 

Mission P/% R/% 

D1 Validated D2 88.7 85.6 

D1 Validated D3 92.4 93.6 

D1 Validated D4 85.9 86.1 

D2 Validated D1 86.9 83.2 

D2 Validated D3 83.4 82.9 

D2 Validated D4 90.8 91.5 

Comparing Table IV, it can be found that the validation is 
carried out under datasets with different environments, and 
although the precision and recall of the improved algorithm 
have decreased compared with those under the corresponding 
datasets, the model as a whole still maintains a good 
performance. The experimental results illustrate that the 
improved YOLOv8-BGA algorithm has good generalisation 
ability under different detection environments, and can 
effectively detect air bubbles generated by stainless steel 
defective welded pipes in real time under a variety of detection 
environments. Using the model trained under the D1 dataset to 

validate the D3 dataset is 9% more accurate compared to the 
model trained under the D2 dataset to validate the D3 dataset; 
similarly, using D1 to validate D4 is 4.9% less accurate 
compared to D2 to validate D4, which indicates that the 
performance of the improved model trained under the D1 
dataset is higher than the performance of the model trained 
under the D2 dataset. Because the D1 dataset and the D3 dataset, 
the D2 dataset and the D4 dataset have the same kind of lighting 
conditions, which indicates that the lighting conditions have a 
greater impact on the training results of this model, and the 
image quality of the D1 dataset is higher than that of the D2, 
which may affect the performance of the model generalisation 
ability. 

3) Comparative experiments with multiple datasets: To 

further validate the generalization and robustness of the 

improved model across diverse fields and industries, this 

section devises experiments to assess the performance of 

YOLOv8n and YOLOv8-BGA on publicly available datasets, 

namely the Bubble Image Database and UF-120.The Bubble 

Image Database, disseminated by researchers from the 

University of Queensland, encompasses 5,184 original images 

and 25,920 augmented images. It comprises five bubble 

categories: “Fine bubbles fully covering the viewing window”, 
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“fine bubbles partially covering the viewing window”, “Co-

existence of coarse and fine bubbles”, “Only coarse bubbles”, 

and “No bubbles”. The UF-120 dataset consists of 120 high- 

quality underwater bubble images, representing a wide array of 

underwater scenarios and faithfully mirroring the complexity 

inherent in underwater environments. The experimental 

outcomes are presented in Table V and Table VI. 

TABLE V EXPERIMENTAL RESULTS OF BUBBLE IMAGE DATABASE 

Model mAP/% Parameters/M FLOPS/G FPS(F/S) 

YOLOv8n 82.1 3.1 8.2 70 

YOLOv8-BGA 82.7 2.8 7.6 72 

TABLE VI EXPERIMENTAL RESULTS OF UF-120 

Model mAP/% Parameters/M FLOPS/G FPS(F/S) 

YOLOv8n 89.1 3.0 8.2 77 

YOLOv8-BGA 89.8 2.7 7.6 75 

Evident from the findings presented in Table V, the 
YOLOv8-BGA model exhibits an increment of 0.6 in the mAP. 
Concurrently, the model experiences a reduction of 9.7% in the 
Parameters and 7.3% in the FLOPS, with no discernible 
alteration in the detection speed. Inspection of the results in 
Table 6 reveals that the YOLOv8-BGA model registers a mAP 
increase of 0.7, accompanied by decreases of 10% in 
Parameters and 7.3% in FLOPS. The detection speed remains 
commendably stable, showing no significant fluctuations. 
Experimental outcomes on publicly accessible datasets, 
including the Bubble Image Database and UF-120, 
incontrovertibly demonstrate that, within the domain of bubble 
detection, the YOLOv8-BGA model surpasses the YOLOv8n 
model with respect to accuracy, model complexity, and 
computational efficiency. Overall, the YOLOv8-BGA model 
demonstrates good utility value and robustness in practical 
industrial applications. 

4) Ablation experiment: In order to test the effectiveness 

and model performance of adding BoT module, replacing 

GSConv module, adding C2f-BM attention mechanism and 

improving loss function in the improved algorithm on the gas 

tightness detection of stainless steel defective welded pipe, 

ablation experiments are carried out on YOLOv8-BGA 

algorithm under D1 dataset, and the results of the ablation 

experiments are shown in Table VII in detail. 

Analysing the experimental results in Table VII, the 
YOLOv8n model is used as the baseline, and the improved 
modules are added individually in sequence for 
comparison.YOLOv8-BoT replaces the 40×40 and 20×20 C2f 
modules in the Backbone section with the C2f_BoT module, 
which improves the average accuracy by 0.9% without any 
change in the number of Parameters and FLOPS, which is due 
to the fact that the BoT module is able to automatically identify 
and capture the dependencies in the input sequence through its 
multi-head self-attention mechanism, which helps the model to 
extract features more efficiently and improves the detection 
accuracy, the introduction of the BoT module did not 
significantly increase the model complexity, so the FPS was not 
significantly reduced; YOLOv8-GSConv is to replace the 
original convolutional layer in the Neck part with the GSConv 
module, and the number of parameters is reduced by about 
0.2M, and the FLOPS is reduced by 0.4G.The GSConv module 
reduces the amount of computation through deeply separable 
convolution, which improves the lightness of the model and the 
speed of inference, so the FPS is improved, the model achieves 
a lightweight effect while maintaining the detection accuracy; 
YOLOv8-BM is to add the C2f-BM attention mechanism in 
front of each detection layer, the number of parameters is 
reduced by about 0.1M, the FLOPS is reduced by 0.2G, and the 
average accuracy is improved by 4.4%, which indicates that the 
expectation maximisation algorithm reduces the computational 
volume of the model while the detection accuracy is improved 
dramatically, the attention mechanism performs well on this 
dataset, improving performance along with inference speed and 
FPS values; YOLOv8-WIoU introduces the WIoU loss 
function, and the average accuracy of the model is improved by 
1.9%, and the WIoU loss function improvesthe degree of model 
fitting, which in turn improves the accuracy of model 
recognition. The introduction of the WIoU loss function, which 
mainly optimizes the training process, has a small impact on the 
inference speed, so the FPS value is unchanged; YOLOv8-BGA 
is the final model after adding all of the above modules, and the 
number of references is lowered by about 0.3M, FLOPS is 
reduced by 0.6G, and the average accuracy is improved by 
5.3%.After combining all the improvements, the model is 
optimized in all aspects, and the inference speed is further 
optimized while maintaining high accuracy, and the final FPS 
value of YOLOv8-BGA reaches 89. 

TABLE VII RESULTS OF ABLATION EXPERIMENTS 

Model BoT GSConv C2f-BM WIoU mAP/% Parameters/M FLOPS/G FPS(F/S) 

YOLOv8n     92.4 3.0 8.1 85 

YOLOv8-BoT √    93.3 3.0 8.1 84 

YOLOv8-GSConv  √   92.1 2.8 7.7 87 

YOLOv8-BM   √  96.8 2.9 7.9 86 

YOLOv8-WIoU    √ 94.3 3.0 8.1 85 

YOLOv8-BGA √ √ √ √ 97.7 2.7 7.5 89 
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The experimental results verify that the YOLOv8-BGA 
model obtained after the improvement of this paper has been 
improved compared with the original model in terms of 
reasoning speed, detection accuracy, model complexity, etc., 
and is able to better complete the task of stainless steel defective 
welded pipe airtightness detection compared with other 
algorithms proposed above. 

V. CONCLUSION 

1) The improved model is better than the original 

YOLOv8n model in terms of inference speed, detection 

accuracy, and model complexity, and can achieve effective 

identification of leakage bubbles. 

2) With the introduction of the C2f-BoT module and the 

WIoU loss function, the improved model possesses excellent 

detection capability for tiny bubbles and reduces leakage 

detection. 

3) The improved model has a strong generalisation ability, 

and can also have a good detection ability in poorer airtightness 

detection environments. 

4) Due to the limitations of the experimental conditions, 

the accurate linkage between real-time detection, positioning 

and alarm at the leakage of stainless steel welded pipe needs to 

be further investigated in order to improve the popularisation of 

the improved model in the field of industrial airtightness 

detection.The model algorithm is a useful exploration and 

reference for other different products airtightness detection. 
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